Как найти атмосферное давление над уровнем моря

Сегодня разбираем еще один запрос пользователя — Атмосферное давление, в котором нас просят вычислить атмосферное давление. В виду отсутствия дополнительной информации в запросе, я предположил, что нужно рассчитывать атмосферное давление в зависимости от высоты над уровнем моря.

Зависимость давления газа от высоты определяется так называемой барометрической формулой
P=P_0e^{frac{-mu gh}{RT}},
где
h — разность высот, м
mu — молярная масса воздуха, 29 г/моль (в расчете используется 0.029 кг/моль)
R — универсальная газовая постоянная, 8.31 Дж/(мольК)
g — ускорение силы тяжести, 9.81 м/(с
с)
T — температура воздуха (К)

Кстати, еще тема атмосферного давления развивается здесь Барометрическое нивелирование и здесь Зависимость температуры кипения воды от высоты над уровнем моря.

Ниже калькулятор — вводим давление на высоте уровня моря (можно оставить по умолчанию; 760 миллиметров ртутного столба — это нормальное атмосферное давление), температуру и высоту, получаем результат.

PLANETCALC, Зависимость давления от высоты над уровнем моря

Зависимость давления от высоты над уровнем моря

Давление на уровне моря (мм.рт.ст.)

Температура воздуха (градусы Цельсия)

Высота над уровнем моря (метры)

Давление на заданной высоте (мм.рт.ст.)

From Wikipedia, the free encyclopedia

«Air pressure» redirects here. For the pressure of air in other systems, see Pressure.

Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1,013.25 millibars,[1] 760 mm Hg, 29.9212 inches Hg, or 14.696 psi.[2] The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth’s atmospheric pressure at sea level is approximately 1 atm.

In most circumstances, atmospheric pressure is closely approximated by the hydrostatic pressure caused by the weight of air above the measurement point. As elevation increases, there is less overlying atmospheric mass, so atmospheric pressure decreases with increasing elevation. Because the atmosphere is thin relative to the Earth’s radius—especially the dense atmospheric layer at low altitudes—the Earth’s gravitational acceleration as a function of altitude can be approximated as constant and contributes little to this fall-off. Pressure measures force per unit area, with SI units of pascals (1 pascal = 1 newton per square metre, 1 N/m2). On average, a column of air with a cross-sectional area of 1 square centimetre (cm2), measured from the mean (average) sea level to the top of Earth’s atmosphere, has a mass of about 1.03 kilogram and exerts a force or «weight» of about 10.1 newtons, resulting in a pressure of 10.1 N/cm2 or 101 kN/m2 (101 kilopascals, kPa). A column of air with a cross-sectional area of 1 in2 would have a weight of about 14.7 lbf, resulting in a pressure of 14.7 lbf/in2.

Mechanism[edit]

Atmospheric pressure is caused by the gravitational attraction of the planet on the atmospheric gases above the surface and is a function of the mass of the planet, the radius of the surface, and the amount and composition of the gases and their vertical distribution in the atmosphere.[3][4] It is modified by the planetary rotation and local effects such as wind velocity, density variations due to temperature and variations in composition.[5]

Mean sea-level pressure[edit]

Map showing atmospheric pressure in mbar or hPa

15-year average mean sea-level pressure for June, July, and August (top) and December, January, and February (bottom). ERA-15 re-analysis.

The mean sea-level pressure (MSLP) is the atmospheric pressure at mean sea level (PMSL). This is the atmospheric pressure normally given in weather reports on radio, television, and newspapers or on the Internet. When barometers in the home are set to match the local weather reports, they display pressure adjusted to sea level, not the actual local atmospheric pressure.

The altimeter setting in aviation is an atmospheric pressure adjustment.

Average sea-level pressure is 1,013.25 hPa (29.921 inHg; 760.00 mmHg). In aviation weather reports (METAR), QNH is transmitted around the world in hectopascals or millibars (1 hectopascal = 1 millibar), except in the United States, Canada, and Japan where it is reported in inches of mercury (to two decimal places). The United States and Canada also report sea-level pressure SLP, which is adjusted to sea level by a different method, in the remarks section, not in the internationally transmitted part of the code, in hectopascals or millibars.[6] However, in Canada’s public weather reports, sea level pressure is instead reported in kilopascals.[7]

In the US weather code remarks, three digits are all that are transmitted; decimal points and the one or two most significant digits are omitted: 1,013.2 hPa (14.695 psi) is transmitted as 132; 1,000 hPa (100 kPa) is transmitted as 000; 998.7 hPa is transmitted as 987; etc. The highest sea-level pressure on Earth occurs in Siberia, where the Siberian High often attains a sea-level pressure above 1,050 hPa (15.2 psi; 31 inHg), with record highs close to 1,085 hPa (15.74 psi; 32.0 inHg). The lowest measurable sea-level pressure is found at the centres of tropical cyclones and tornadoes, with a record low of 870 hPa (12.6 psi; 26 inHg).

Surface pressure [edit]

Surface pressure is the atmospheric pressure at a location on Earth’s surface (terrain and oceans). It is directly proportional to the mass of air over that location.

For numerical reasons, atmospheric models such as general circulation models (GCMs) usually predict the nondimensional logarithm of surface pressure.

The average value of surface pressure on Earth is 985 hPa.[8] This is in contrast to mean sea-level pressure, which involves the extrapolation of pressure to sea level for locations above or below sea level. The average pressure at mean sea level (MSL) in the International Standard Atmosphere (ISA) is 1,013.25 hPa, or 1 atmosphere (atm), or 29.92 inches of mercury.

Pressure (P), mass (m), and acceleration due to gravity (g) are related by P = F/A = (m*g)/A, where A is the surface area. Atmospheric pressure is thus proportional to the weight per unit area of the atmospheric mass above that location.

Altitude variation[edit]

Variation in atmospheric pressure with altitude, computed for 15 °C and 0% relative humidity.

This plastic bottle was sealed at approximately 4,300 metres (14,000 ft) altitude, and was crushed by the increase in atmospheric pressure, recorded at 2,700 metres (9,000 ft) and 300 metres (1,000 ft), as it was brought down towards sea level.

Pressure on Earth varies with the altitude of the surface, so air pressure on mountains is usually lower than air pressure at sea level. Pressure varies smoothly from the Earth’s surface to the top of the mesosphere. Although the pressure changes with the weather, NASA has averaged the conditions for all parts of the earth year-round. As altitude increases, atmospheric pressure decreases. One can calculate the atmospheric pressure at a given altitude.[9] Temperature and humidity also affect the atmospheric pressure. Pressure is proportional to temperature and inversely proportional to humidity. And it is necessary to know both of these to compute an accurate figure. The graph on the rightabove was developed for a temperature of 15 °C and a relative humidity of 0%.

At low altitudes above sea level, the pressure decreases by about 1.2 kPa (12 hPa) for every 100  metres. For higher altitudes within the troposphere, the following equation (the barometric formula) relates atmospheric pressure p to altitude h:
{displaystyle {begin{aligned}p&=p_{0}cdot left(1-{frac {Lcdot h}{T_{0}}}right)^{frac {gcdot M}{R_{0}cdot L}}\&=p_{0}cdot left(1-{frac {gcdot h}{c_{text{p}}cdot T_{0}}}right)^{frac {c_{text{p}}cdot M}{R_{0}}}approx p_{0}cdot exp left(-{frac {gcdot hcdot M}{T_{0}cdot R_{0}}}right)end{aligned}}}

. The values in these equations are:

Parameter Description Value
h Height above mean sea level  m
p0 Sea level standard atmospheric pressure 101,325 Pa
L Temperature lapse rate, = g/cp for dry air ~ 0.00976 K/m
cp Constant-pressure specific heat 1,004.68506 J/(kg·K)
T0 Sea level standard temperature 288.16 K
g Earth-surface gravitational acceleration 9.80665 m/s2
M Molar mass of dry air 0.02896968 kg/mol
R0 Universal gas constant 8.314462618 J/(mol·K)

Local variation[edit]

Hurricane Wilma on 19 October 2005. The pressure in the eye of the storm was 882 hPa (12.79 psi) at the time the image was taken.

Atmospheric pressure varies widely on Earth, and these changes are important in studying weather and climate. Atmospheric pressure shows a diurnal or semidiurnal (twice-daily) cycle caused by global atmospheric tides. This effect is strongest in tropical zones, with an amplitude of a few hectopascals, and almost zero in polar areas. These variations have two superimposed cycles, a circadian (24 h) cycle, and a semi-circadian (12 h) cycle.

Records[edit]

The highest adjusted-to-sea level barometric pressure ever recorded on Earth (above 750 meters) was 1,084.8 hPa (32.03 inHg) measured in Tosontsengel, Mongolia on 19 December 2001.[10] The highest adjusted-to-sea level barometric pressure ever recorded (below 750 meters) was at Agata in Evenk Autonomous Okrug, Russia (66°53′ N, 93°28′ E, elevation: 261 m, 856 ft) on 31 December 1968 of 1,083.8 hPa (32.005 inHg).[11] The discrimination is due to the problematic assumptions (assuming a standard lapse rate) associated with reduction of sea level from high elevations.[10]

The Dead Sea, the lowest place on Earth at 430 metres (1,410 ft) below sea level, has a correspondingly high typical atmospheric pressure of 1,065 hPa.[12] A below-sea-level surface pressure record of 1,081.8 hPa (31.95 inHg) was set on 21 February 1961.[13]

The lowest non-tornadic atmospheric pressure ever measured was 870 hPa (0.858  atm; 25.69 inHg), set on 12 October 1979, during Typhoon Tip in the western Pacific Ocean. The measurement was based on an instrumental observation made from a reconnaissance aircraft.[14]

Measurement based on the depth of water[edit]

One atmosphere (101.325 kPa or 14.7 psi) is also the pressure caused by the weight of a column of freshwater of approximately 10.3 m (33.8 ft). Thus, a diver 10.3 m underwater experiences a pressure of about 2 atmospheres (1 atm of air plus 1 atm of water). Conversely, 10.3 m is the maximum height to which water can be raised using suction under standard atmospheric conditions.

Low pressures, such as natural gas lines, are sometimes specified in inches of water, typically written as w.c. (water column) gauge or w.g. (inches water) gauge. A typical gas-using residential appliance in the US is rated for a maximum of 12 psi (3.4 kPa; 34 mbar), which is approximately 14 w.g. Similar metric units with a wide variety of names and notation based on millimetres, centimetres or metres are now less commonly used.

Boiling point of liquids[edit]

Pure water boils at 100 °C (212 °F) at earth’s standard atmospheric pressure. The boiling point is the temperature at which the vapour pressure is equal to the atmospheric pressure around the liquid.[15] Because of this, the boiling point of liquids is lower at lower pressure and higher at higher pressure. Cooking at high elevations, therefore, requires adjustments to recipes[16] or pressure cooking. A rough approximation of elevation can be obtained by measuring the temperature at which water boils; in the mid-19th century, this method was used by explorers.[17] Conversely, if one wishes to evaporate a liquid at a lower temperature, for example in distillation, the atmospheric pressure may be lowered by using a vacuum pump, as in a rotary evaporator.

Measurement and maps[edit]

An important application of the knowledge that atmospheric pressure varies directly with altitude was in determining the height of hills and mountains, thanks to reliable pressure measurement devices. In 1774, Maskelyne was confirming Newton’s theory of gravitation at and on Schiehallion mountain in Scotland, and he needed to measure elevations on the mountain’s sides accurately. William Roy, using barometric pressure, was able to confirm Maskelyne’s height determinations, the agreement being to be within one meter (3.28 feet). This method became and continues to be useful for survey work and map making.[18]

See also[edit]

  • Atmospheric density – Mass per unit volume of earths atmosphere
  • Atmosphere of Earth – Gas layer surrounding Earth
  • Barometric formula – Formula used to model how air pressure varies with altitude
  • Barotrauma – Injury caused by pressure – physical damage to body tissues caused by a difference in pressure between an air space inside or beside the body and the surrounding gas or liquid.
  • Cabin pressurization – Process to maintain internal air pressure in aircraft
  • Cavitation – Low-pressure voids formed in liquids
  • Collapsing can – an aluminium can is crushed by the atmospheric pressure surrounding it
  • Effects of high altitude on humans – Environmental effects on physiology
  • High-pressure area – In meteorology, an anticyclone
  • International Standard Atmosphere – Atmospheric model, a tabulation of typical variations of principal thermodynamic variables of the atmosphere (pressure, density, temperature, etc.) with altitude, at middle latitudes.
  • Low-pressure area – Area with air pressures lower than adjacent areas
  • Meteorology – Interdisciplinary scientific study of the atmosphere focusing on weather forecasting
  • NRLMSISE-00, an empirical, global reference atmospheric model of the Earth from ground to space
  • Plenum chamber – Chamber containing a fluid under pressure
  • Pressure – Force distributed over an area
  • Pressure measurement – Analysis of force applied by a fluid on a surface
  • Standard atmosphere (unit) – Unit of pressure defined as 101325 Pa
  • Horse latitudes – Latitudes 30–35 degrees north and south of the Equator

References[edit]

  1. ^ «Statement (2001)». BIPM. Retrieved 2022-03-19.
  2. ^ International Civil Aviation Organization. Manual of the ICAO Standard Atmosphere, Doc 7488-CD, Third Edition, 1993. ISBN 92-9194-004-6.
  3. ^ «atmospheric pressure (encyclopedic entry)». National Geographic. Archived from the original on 28 February 2018. Retrieved 28 February 2018.
  4. ^ «Q & A: Pressure – Gravity Matters?». Department of Physics. University of Illinois Urbana-Champaign. Archived from the original on 28 February 2018. Retrieved 28 February 2018.
  5. ^ Jacob, Daniel J. (1999). Introduction to Atmospheric Chemistry. Princeton University Press. ISBN 9780691001852. Archived from the original on 2021-10-01. Retrieved 2020-10-15.
  6. ^ Sample METAR of CYVR Archived 2019-05-25 at the Wayback Machine Nav Canada
  7. ^ Montreal Current Weather, CBC Montreal, Canada, archived from the original on 2014-03-30, retrieved 2014-03-30
  8. ^ Jacob, Daniel J. Introduction to Atmospheric Chemistry Archived 2020-07-25 at the Wayback Machine. Princeton University Press, 1999.
  9. ^ A quick derivation relating altitude to air pressure Archived 2011-09-28 at the Wayback Machine by Portland State Aerospace Society, 2004, accessed 05032011
  10. ^ a b World: Highest Sea Level Air Pressure Above 750 m, Wmo.asu.edu, 2001-12-19, archived from the original on 2012-10-17, retrieved 2013-04-15
  11. ^ World: Highest Sea Level Air Pressure Below 750 m, Wmo.asu.edu, 1968-12-31, archived from the original on 2013-05-14, retrieved 2013-04-15
  12. ^ Kramer, MR; Springer C; Berkman N; Glazer M; Bublil M; Bar-Yishay E; Godfrey S (March 1998). «Rehabilitation of hypoxemic patients with COPD at low altitude at the Dead Sea, the lowest place on earth» (PDF). Chest. 113 (3): 571–575. doi:10.1378/chest.113.3.571. PMID 9515826. Archived from the original (PDF) on 2013-10-29.
  13. ^ Court, Arnold (1969). «Improbable Pressure Extreme: 1070 Mb». Bulletin of the American Meteorological Society. 50 (4): 248–50. JSTOR 26252600.
  14. ^ Chris Landsea (2010-04-21). «Subject: E1), Which is the most intense tropical cyclone on record?». Atlantic Oceanographic and Meteorological Laboratory. Archived from the original on 6 December 2010. Retrieved 2010-11-23.
  15. ^ Vapour Pressure, Hyperphysics.phy-astr.gsu.edu, archived from the original on 2017-09-14, retrieved 2012-10-17
  16. ^ High Altitude Cooking, Crisco.com, 2010-09-30, archived from the original on 2012-09-07, retrieved 2012-10-17
  17. ^ Berberan-Santos, M. N.; Bodunov, E. N.; Pogliani, L. (1997). «On the barometric formula». American Journal of Physics. 65 (5): 404–412. Bibcode:1997AmJPh..65..404B. doi:10.1119/1.18555.
  18. ^ Hewitt, Rachel, Map of a Nation – a Biography of the Ordnance Survey ISBN 1-84708-098-7

External links[edit]

  • 1976 Standard Atmosphere from NASA
  • Source code and equations for the 1976 Standard Atmosphere
  • A mathematical model of the 1976 U.S. Standard Atmosphere
  • Calculator using multiple units and properties for the 1976 Standard Atmosphere
  • Calculator giving standard air pressure at a specified altitude, or altitude at which a pressure would be standard
  • Current map of global mean sea-level pressure
  • Calculate pressure from altitude and vice versa

Experiments[edit]

  • Movies on atmospheric pressure experiments from Georgia State University’s HyperPhysics website – requires QuickTime
  • Test showing a can being crushed after boiling water inside it, then moving it into a tub of ice-cold water.

Какое Давление На Высоте 1 Км
Приведение к уровню моря — Многие метеостанции рассылают так называемые «синоптические телеграммы», в которых указывается давление, приведённое к уровню моря (см. КН-01, METAR ). Это делается для того, чтобы давление было сравнимо на станциях, расположенных на разных высотах, а также для нужд авиации. То есть, зная давление и температуру на уровне, можно найти давление на уровне моря, Вычисление давления на высоте по давлению на уровне моря и температуре воздуха : где — давление Па на уровне моря ; — молярная масса сухого воздуха, M = 0,029 кг/моль; — ускорение свободного падения, g = 9,81 м/с²; — универсальная газовая постоянная, R = 8,31 Дж/моль·К; — абсолютная температура воздуха, К,, где — температура Цельсия, выражаемая в градусах Цельсия (обозначение: °C); — высота, м. На небольших высотах каждые 12 м подъёма уменьшают атмосферное давление на 1 мм рт. ст. На больших высотах эта закономерность нарушается, Более простые расчёты (без учёта температуры) дают: где — высота в километрах. Измерения и расчёт показывают в полном согласии, что при подъёме над уровнем моря на каждый километр давление будет падать на 0,1 долю; то же самое относится и к спуску в глубокие шахты под уровень моря — при опускании на один километр давление будет возрастать на 0,1 своего значения.

Какое атмосферное давление на высоте 1000 метров?

Главная Вопросы и ответы Определите атмосферное давление на высоте 200 м, 400 м, 1000 м, если на уровне моря оно равно 760 мм рт. ст.

Определите атмосферное давление на высоте 200 м, 400 м, 1000 м, если на уровне моря оно равно 760 мм рт. ст.5 лет назад +5 Согласно формуле изменения давления, оно падает примерно на 1 мм каждые 12 метров. Тогда, если произойдет подъем на 200 метров, то оно изменится на: 200/12= 17 мм; На 400 метров: 400/12=34 мм; На 1000 метров: 1000/12= 84 мм; Стандартное давление — 760, тогда давление высоте 200 метров будет: 760-17=743 мм; На 400 метров: 760-34=726 мм; На 1000 метров: 760-84=676 мм; Ответ: будет 743 мм, 726 мм и 676 мм соответственно расстоянию от высоты уровня моря.

Какое давление на высоте?

Параметры стандартной атмосферы Земли —

Высота, H, м Температура, Т, К Скорость звука, a, м/с Давление, P, Па Плотность, кг/м³ Средняя длина свободного пробега частиц, м Кинематическая вязкость, м²/c
-2000 301,2 347,9 127783 1,4782 5,4968⋅10 −8 1,2525⋅10 −5
-1500 297,9 346,0 120696 1,4114 5,7567⋅10 −8 1,3009⋅10 −5
-1000 294,7 344,1 113931 1,3470 6,0320⋅10 −8 1,3516⋅10 −5
-500 291,4 342,2 107478 1,2849 6,3236⋅10 −8 1,4048⋅10 −5
288,2 340,3 101330 1,2250 6,6328⋅10 −8 1,46⋅10 −5
500 284,9 338,4 95464 1,1673 6,9608⋅10 −8 1,52⋅10 −5
1000 281,7 336,4 89877 1,1117 7,3090⋅10 −8 1,58⋅10 −5
1500 278,4 334,5 84559 1,0581 7,6790⋅10 −8 1,65⋅10 −5
2000 275,2 332,5 79499 1,0065 8,0723⋅10 −8 1,71⋅10 −5
2500 271,9 330,6 74690 0,9569 8,4907⋅10 −8 1,79⋅10 −5
3000 268,7 328,6 70123 0,9093 8,9361⋅10 −8 1,86⋅10 −5
4000 262,2 324,6 61661 0,8194 9,9166⋅10 −8 2,03⋅10 −5
5000 255,7 320,6 54052 0,7365 1,1033⋅10 −7 2,21⋅10 −5
6000 249,2 316,5 47217 0,6601 1,2309⋅10 −7 2,42⋅10 −5
7000 242,7 312,3 41106 0,59 1,3771⋅10 −7 2,65⋅10 −5
8000 236,2 308,1 35653 0,5258 1,5453⋅10 −7 2,9⋅10 −5
9000 229,7 303,9 30801 0,4671 1,7396⋅10 −7 3,2⋅10 −5
10 000 223,3 299,6 26500 0,4135 1,9649⋅10 −7 3,53⋅10 −5
11 000 216,8 295,2 22700 0,3648 2,2273⋅10 −7 3,9⋅10 −5
12 000 216,7 295,1 19399 0,3119 2,6047⋅10 −7 4,56⋅10 −5
14 000 216,7 295,1 14170 0,2279 3,5659⋅10 −7 6,24⋅10 −5
16 000 216,7 295,1 10353 0,1665 4,8808⋅10 −7 8,54⋅10 −5
18 000 216,7 295,1 7565 0,1216 6,6793⋅10 −7 1,17⋅10 −4
20 000 216,7 295,1 5529 0,0889 9,1387⋅10 −7 1,6⋅10 −4
24 000 220,6 297,7 2971 0,0469 1,7311⋅10 −6 3,07⋅10 −4
28 000 224,5 300,4 1616 0,0251 3,2402⋅10 −6 5,84⋅10 −4
32 000 228,5 303 889 0,0136 5,9942⋅10 −6 1,1⋅10 −3
36 000 239,3 310,1 499 7,26⋅10 −3 1,1195⋅10 −5 2,13⋅10 −3
40 000 250,4 317,2 287 4,00⋅10 −3 2,0335⋅10 −5 4,01⋅10 −3
50 000 270,7 329,8 80 1,03⋅10 −3 7,9125⋅10 −5 0,0166
60 000 247 315,1 22 3,00⋅10 −4 2,6238⋅10 −4 0,0511
80 000 198,6 282,5 1 1,85⋅10 −5 4,4020⋅10 −3 0,716
100 000 196,6 3,19⋅10 −2 5,55⋅10 −7 1,4393⋅10 −1
150 000 627,6 4,49⋅10 −4 2,00⋅10 −9 3,2584⋅10 1
200 000 854,4 8,53⋅10 −5 2,52⋅10 −10 2,3361⋅10 2
300 000 970,4 8,72⋅10 −6 1,92⋅10 −11 2,5966⋅10 3
500 000 997,9 3,02⋅10 −7 5,21⋅10 −13 7,7181⋅10 4
700 000 1000 3,19⋅10 −8 3,07⋅10 −14 7,3088⋅10 5
1 000 000 1000 7,51⋅10 −9 3,56⋅10 −15 3,1055⋅10 6

Какое давление на высоте 2 км?

Ст. Находим значение атмосферного давления на высоте 2 км. Ответ: на высоте 2 км атмосферное давление составит 549,5 мм рт. ст.

Какое давление на высоте 3000 метров?

1) 3000 : 10 = 300 (мм. рт. ст.) — давление на высоте 3000 метров.

Какое давление на высоте 2500 метров?

Ст.2) Значит, при подъеме на 2500 м давление понизится на: 2500 м / 100 м * 10 мм рт. ст. = 250 мм рт.

Чем выше тем меньше давление?

Зависимость давления от высоты местности и температуры воздуха. С высотой атмосферное давление падает. Это связано с двумя причинами. Во-первых, чем выше мы находимся, тем меньше высота столба воздуха над нами, и, следовательно, меньший вес на нас давит. Атмосферное давление зависит от высоты местности. Чем выше уровня моря, тем давление воздуха меньше. Он снижается, так как с поднятием уменьшается высота столба воздуха, который давит на земную поверхность. Кроме того, с высотой давление падает еще и потому, что уменьшается плотность самого воздуха.

  1. На высоте 5 км атмосферное давление снижается наполовину по сравнению с нормальным давлением на уровне моря.
  2. В тропосфере с подъемом на каждые 100 м давление уменьшается примерно на 10 мм рт. ст.
  3. Зная, как изменяется давление, можно вычислить и абсолютное и относительное высоту места.
  4. Существует и особый барометр — высотомер, В котором наряду со шкалой атмосферного давления, есть и шкала высот.

Итак, для каждой местности будет характерен свой нормальное давление: на уровне моря — 760 мм рт. века, в горах в зависимости от высоты — ниже. Например, для Киева, лежащей на высотах 140-200 м над уровнем моря, нормальным будет среднее давление 746 мм рт. Атмосферное давление зависит и от температуры воздуха. При нагревании объем воздуха увеличивается, оно становится менее плотным и легким. За этого уменьшается и атмосферное давление. При охлаждении происходят обратные явления. Следовательно, с изменением температуры воздуха непрерывно меняется и давление.

В течение суток он дважды повышается (утром и вечером) и дважды снижается (После полудня и после полуночи). Зимой, когда воздух холодный и тяжелое, давление выше, чем летом, когда оно более теплое и легкое. Итак, за изменением давления можно предсказать изменения погоды. Снижение давления указывает на осадки, повышение — на сухую погоду.

Изменение атмосферного давления влияет и на самочувствие людей. Читать подробнее: Зависимость давления от высоты местности и температуры воздуха.

Что происходит с человеком на высоте 10000 метров?

Высотная болезнь
МКБ-10 T 70.2
МКБ-10-КМ T70.2
МКБ-9 993.2
DiseasesDB 8375
MedlinePlus 000133
MeSH D000532
Медиафайлы на Викискладе

Высо́тная боле́знь (высо́тная гипокси́я) — болезненное состояние, связанное с кислородным голоданием вследствие понижения парциального давления кислорода во вдыхаемом воздухе, которое возникает высоко в горах, а также при полётах на летательных аппаратах, не оснащённых герметичной кабиной, в которой поддерживается давление воздуха близкое или немного ниже нормального атмосферного давления (например, парапланах, дельтапланах, воздушных шарах с негерметичной гондолой, самолётах), начиная примерно с 2000 метров и выше над уровнем океанов,

Разновидностью высотной болезни является го́рная боле́знь ( альпинистское жаргонное — горня́шка), в возникновении которой наряду с недостатком кислорода играют также роль такие усугубляющие факторы, как физическое утомление, охлаждение, обезвоживание организма, ультрафиолетовая радиация, тяжёлые погодные условия (например, частые ливни), резкие перепады температур в течение дня (от +30 °C днём до −20 °C ночью ).

Но основным патологическим фактором горной болезни является гипоксия, Человек способен адаптироваться к высотной гипоксии, спортсмены специально тренируют свою способность к адаптации для того, чтобы повысить спортивные достижения. Предельно возможными для длительной адаптации (часы — десятки часов) к гипоксии считаются высоты на уровне около 10 000 метров.

Какая температура на высоте 500 км?

Переходный слой между стратосферой и мезосферой называют стратопаузой. Между высотами 80 и 800 км располагается термосфера. На высоте около 100 км (рис.21) температура переходит через 0 o С, в слое 150-200 км она доходит до 500 o С, а на высотах 500 -600 км превышает 1500 o С.

Чем выше над уровнем моря тем?

Б) Чем выше над уровнем моря, тем плотность воздуха и тем давление воздуха.

Какая температура воздуха на высоте 4 км?

Температура на высоте 4 км составит 0 градусов по Цельсию.

Какое атмосферное давление на высоте 1500 метров?

740 — 143 = 597 мм. рт. ст. составит давление на высоте 1500 метров.

Какое давление воды на высоте 1 метр?

Высота водяного столба = Глубина погружения в воду Давление
метров=м=m футов=ft psi
Высота водяного столба = Глубина погружения в воду Давление
метров=м=m футов=ft psi
360,00 1 181,10 522,00

Что происходит на высоте 5000 метров?

Необходимы дополнения. Из курса физики хорошо известно, что с повышением высоты над уровнем моря атмосферное давление падает. Если до высоты 500 метров никаких значительных изменений этого показателя не наблюдается, то при достижении 5000 метров атмосферное давление уменьшается почти вдвое.

Барометрическое давление в мм 760 720 480 432 385 335 288 240
Высота, соответствующая давлению в мм 500 3500 4500 5400 6500 7700 8900
Давление кислорода в мм 160 152 100 90 80 70 60 50
Насыщенность крови кислородом в % 100 96 94 93 92 90 88 82

До высоты в 3500 — 4000 метров организм сам компенсирует нехватку кислорода, поступающего в лёгкие, за счёт учащения дыхания и увеличения объёма вдыхаемого воздуха (глубина дыхания). Дальнейший набор высоты, для полной компенсации негативного воздействия, требует использования лекарственных средств и кислородного оборудования ( кислородный баллон ).

Кислород необходим всем органам и тканям человеческого тела при обмене веществ. Его расход прямо пропорционален активности организма. Нехватка кислорода в организме может привести к развитию горной болезни, которая в предельном случае — отёке мозга или лёгких — может привести к смерти. Горная болезнь проявляется в таких симптомах, как: головная боль, отдышка, учащённое дыхание, у некоторых болезненные ощущения в мышцах и суставах, снижается аппетит, беспокойный сон и т.д.

Переносимость высоты очень индивидуальный показатель, определяемый особенностями обменных процессов организма и тренированностью. Большую роль в борьбе с негативным влиянием высоты играет акклиматизация, в процессе которой организм учится бороться с недостатком кислорода.

Первой реакцией организма на понижение давления является учащение пульса, повышение кровяного давления и гипервентиляция лёгких, наступает расширение капилляров в тканях. В кровообращение включается резервная кровь из селезёнки и печени (7 — 14 дней).

Вторая фаза акклиматизации заключается в повышение количества производимых костным мозгом эритроцитов практически вдвое (от 4,5 до 8,0 млн. эритроцитов в мм3 крови), что приводит к лучшей переносимости высоты.

Благотворное влияние на высоте оказывает употребление витаминов, особенно витамина С. Интенсивность развития горной болезни в зависимости от высоты.

Высота, м Признаки
800—1000 Высота переносится легко, однако у некоторых людей наблюдаются небольшие отклонения от нормы.
1000—2500 Физически нетренированные люди испытывают некоторую вялость, возникает легкое головокружение, учащается сердцебиение. Симптомов горной болезни нет.
2500—3000 Большинство здоровых неакклиматизированных людей ощущает действие высоты, однако ярко выраженных симптомов горной болезни у большинства здоровых людей нет, а у некоторых наблюдаются изменения в поведении: приподнятое настроение, излишняя жестикуляция и говорливость, беспричинное веселье и смех.
3000—5000 Проявляется острая и тяжело протекающая (в отдельных случаях) горная болезнь. Резко нарушается ритм дыхания, жалобы на удушье. Нередко возникает тошнота и рвота, начинаются боли в области живота. Возбужденное состояние сменяется упадком настроения, развивается апатия, безразличие к окружающей среде, меланхоличность. Ярко выраженные признаки заболевания обычно проявляются не сразу, а в течение некоторого времени пребывания на этих высотах.
5000—7000 Ощущается общая слабость, тяжесть во всем теле, сильная усталость. Боль в висках. При резких движениях — головокружение. Губы синеют, повышается температура, часто из носа и легких выделяется кровь, а иногда начинается и желудочное кровотечение. Возникают галлюцинации.

Источники: 1. www.tropa.dp.ua 2. Рототаев П.С. Р79 Покоренные гиганты. Изд.2-е, перераб. и доп.М., «Мысль», 1975.283 с. с карт.; 16 л. ил.

Как чувствуют себя гипертоники в горах?

Особенности путешествий по высокогорным районам Первое ощущение человека, поднявшегося на большую высоту – это головная боль. Нередки также случаи потери сна, аппетита, расстройства желудка, рвота, ощущение слабости и др. Это связано с тем, что из-за низкого уровня кислорода на высоте возникает отек мозга, что в свою очередь вызывает повышение внутричерепного давления.

  • Накапливаемая в межклеточном пространстве жидкость оказывает давление на мозг, из-за чего ухудшается работа всех остальных органов.
  • Очень важно набирать высоту постепенно, чтобы организм успел акклиматизироваться.
  • Иначе в последствие человек начнет терять равновесие, перестанет трезво мыслить и будет казаться пьяным.

В случае появления таких симптомов необходимо как можно скорее спуститься приблизительно на 100- метров вниз, в противном случае в течение 2-4 суток может наступить смерть человека. Горная болезнь возникает также из-за отека легких. В связи с низким содержанием кислорода в крови и физической нагрузкой в кровеносных сосудах легких увеличивается давление.

Растет артериальное давление, что приводит к тому, что начинают течь сосуды. В данной статье рассказывается об основных аспектах путешествий по высокогорным районам для тех участников, которые путешествует с нашим клубом в горные района Непала, Тибета, Северной Индии, Алтая, Киргизии, Узбекистана, Африки и др.

(высота 3000-6000 метров над уровнем моря). Данную статью можно назвать кратким ликбезом для всех любителей горных походов. Из-за чего в высокогорных районах ухудшается самочувствие? Плохое самочувствие на большой высоте обусловлено несколькими причинами.

  • На низких высотах атмосферное давление обычно составляет 1 атм.
  • С повышением высоты давление начинает снижаться.
  • При низком атмосферном давлении человек начинает ощущать нехватку кислорода, это связано с тем, что значительно увеличивается расстояние между молекулами О 2, и кислород просто становится труднее извлечь из воздуха.

На большой высоте концентрация О 2 в воздухе остается такой же как и на уровне моря, но из-за более низкого давления кислород занимает больший объем и человеку гораздо труднее получить весь необходимый для него кислород. Человек начинает дышать чаще, но все же наступает момент, когда недостаток кислорода будет сильно ощутим.

  1. Для каждого человека высота, на которой снижается насыщение кислородом, различна (приблизительно 1800 метров над уровнем моря).
  2. Кислородное голодание – это стресс для организма, и необходимо чтобы организм привык к такому режиму работы.
  3. Именно поэтому обязательным условием нахождения в высокогорье является акклиматизация, занимающая некоторое время.

Посоветуйтесь с Вашим врачем. Возможно есть противопоказания именно для Вас. Что такое горная болезнь? Каковы признаки начала акклиматизации организма в высокогорье? Горная болезнь – это ухудшение самочувствия связанное с недостатком кислорода в организме человека, физическими нагрузками, обезвоживанием организма, физическим утомлением и другими факторами.

Горная болезнь — это резкое и опасное для здоровья человека состояние, оно приводит к отеку легких и головного мозга. Именно поэтому очень важно соблюдать правила акклиматизации. Также не стоит отправляться в высокогорные районы, если у Вас имеются противопоказания к пребыванию на больших высотах. Если находясь в высокогорном районе, Вы начинаете ощущать вялость, появляется одышка, Вы начинаете отставать от всей группы, то, скорее всего, у Вас начался отек.

Постепенно начинает появляться сухой кашель, который со временем становится влажным. Чтобы избежать данных неприятных моментов необходимо, чтобы организм прошел постепенную акклиматизацию. Правила акклиматизации Чтобы процесс акклиматизации происходил правильно необходимо: 1) пить больше жидкости, 2) не спешить, 3) исключить во время восхождения спиртное, жирную пищу и тяжелые физнагрузки Первый пункт говорит о том, что нужно пить как можно больше чистой питьевой воды (минимум 4 литра в сутки).

Это связано с тем, что на большой высоте организм теряет большое количество воды, именно поэтому нужно восстанавливать баланс воды в организме. Пить нужно горячую воду с лимоном, каркаде, имбирем, шиповником или с другими тонизирующими и кислыми продуктами. Второй пункт говорит о том, что нужно не только постепенно набирать высоту, но и идти нужно медленно, ни в коем случае не стоит суетиться.

Тем не менее, стоит отметить, что, к примеру, при пешем походе по высокогорью, физнагрузки заставляют Вас хорошо пропотеть, что в свою очередь способствует снижению артериального давления. Третий пункт говорит о том, что для хорошей акклиматизации в высокогорье нужно придерживаться сухого закона.

Не стоит употреблять черный чай, курить и есть жирную тяжелую пищу. Можно использовать медикаменты для ускорения процесса акклиматизации? Для того чтобы акклиматизация прошла правильно не нужно принимать никакие медицинские препараты, нужно только время. Со временем организм привыкнет к пониженному атмосферному давлению и недостатку кислорода.

Оптимально если Вы будете набирать высоту постепенно: около 300-400 метров в день, отдых нужно устраивать на каждый 3-4 день подъема. Если во время подъема у Вас начинает болеть голова, то не стоит мучать организм и продолжать восхождение. В этом случае нужно просто отдохнуть.

Если Вы хотите принять какое-либо лекарство, то можете обратить внимание на гомеопатию и препарат «Диамокс», который способствует стимуляции мозга, почек и учащает дыхание. Прием данного препарата нужно начать за сутки до подъема и закончить спустя сутки после спуска. Рекомендованная дневная доза 500 мг, принимать препарат нужно два раза в день.

Чтобы избавиться от головной боли можно выпить парацетамол, ибупрофен, спазган. Но самое главное во время восхождения не стоит спешить. Медпрепараты можно принимать для лечения симптомов, но ни в коем случае не для ускорения процесса акклиматизации!!! Противопоказания для пребывания в высокогорных районах Существует целый перечень медицинских противопоказаний для пребывания на высокогорье.

Во-первых, стоит сказать, что человек может идти в горы, если у него нет никаких серьезных заболеваний. Людям с хроническим пониженным давлением и проблемами с сердечно-сосудистой системой строго противопоказано нахождение на высоте более 3-3,5 тыс. метров. Негативные последствия может вызвать пребывание на высокогорье у подростков и беременных женщин.

Чаще всего физподготовка и возраст участников восхождения не влияет на процесс акклиматизации. Как облегчить процесс акклиматизации? 1) Небольшими глотками пейте горячей напиток из термоса (не кофе или черный чай) или простую подкисленную питьевую воду.

Отлично помогает пройти процесс акклиматизации горячий напиток с медом, лимоном и имбирем.2) В каждой индивидуальной аптечке должны быть увлажняющие капли для носа и для глаз, гигиеническая помада с SPF фактором и крем для рук. Данные предметы помогут Вам легче перенести сухость воздуха в высокогорье.3) Пребывая в горах, регулярно принимайте комплекс витаминов, причем в первые 3-4 дня в горах, дозировку витаминов можно увеличить вдвое.

Также в качестве БАДа можно принимать «Микрогидрин», облегчающий симптомы акклиматизации.4) Зачастую во время акклиматизации снижается аппетит. Но, все же отправляясь в высокогорье нужно взять с собой сухофрукты, орехи, горький шоколад, сыр, сало и другие высококалорийные продукты, которые помогут Вам восстановить силы.5) Не забывайте глубоко дышать! материал подготовил Алексей Приманов использование статьи без разрешения автора запрещено

Какая температура на высоте 12 км?

Температура атмосферы (воздуха) на различной высоте над землей.

Высота, км °K °C
10 223,25 -49,9
12 216,65 -56,5
15 216,65 -56,5
20 216,65 -56,5

Какое давление воды на высоте 1 метр?

Высота водяного столба = Глубина погружения в воду Давление
метров=м=m футов=ft psi
Высота водяного столба = Глубина погружения в воду Давление
метров=м=m футов=ft psi
360,00 1 181,10 522,00

Какое атмосферное давление в горах на высоте 2000 м?

Высота вашего населенного пункта-2000 метров над уровнем моря.высчитайте атмосферное давление на этой высоте? Принимаем нормальное значение атмосферного давления на поверхности моря (0 метров), при температуре 15 градусов по Цельсию как 760 мм.рт.ст. Поскольку давление снижается на 1 мм.рт.ст. на каждые 10 метров (более точное значение 10,5 метров), разница давления составит: 2000 / 10 = 200 мм.рт.ст.

Копировать с других сайтов запрещено. Стикеры и подарки за такие ответы не начисляются. Используй свои знания. :)Публикуются только развернутые объяснения. Ответ не может быть меньше 50 символов!

Читать подробнее: Высота вашего населенного пункта-2000 метров над уровнем моря.высчитайте атмосферное давление на этой высоте?

Как определить атмосферное давление на высоте?

Определите атмосферное давление на вершине горы, если давление у её подножия равно 740 мм, а высота горы 3150 м. Нам известно, что гора высотой 3150 м, а её давление снизу равняется 740 миллиметров ртутного столба. Также мы знаем, что давление уменьшается на 1 миллиметр каждые 10 метров.

  1. Для того, чтобы найти уровень давления наверху (вершина), разделим высоту горы на 10 метров, получим 315.
  2. На столько миллиметров ртутного столба у нас упадет давление при подъеме в гору.
  3. Теперь мы вычислим, какое именно оно будет на вершине: 740-315=425 миллиметров ртутного столба.Ответ: 425 мм.рт.ст.

Знаешь ответ? Как написать хороший ответ? Будьте внимательны!

Копировать с других сайтов запрещено. Стикеры и подарки за такие ответы не начисляются. Используй свои знания. :)Публикуются только развернутые объяснения. Ответ не может быть меньше 50 символов!

Читать подробнее: Определите атмосферное давление на вершине горы, если давление у её подножия равно 740 мм, а высота горы 3150 м.

Какое атмосферное давление на уровне моря?

Атмосферное давление
Размерность L −1 MT −2
Единицы измерения
СИ Па
СГС дин · см -2
Примечания
скаляр

Атмосфе́рное давле́ние — давление атмосферы, действующее на все находящиеся в ней предметы и на земную поверхность, равное модулю силы, действующей в атмосфере, на единицу площади поверхности по нормали к ней, В покоящейся стационарной атмосфере давление равно отношению веса вышележащего столба воздуха к площади его поперечного сечения.

  1. Атмосферное давление является одним из термодинамических параметров состояния атмосферы, оно изменяется в зависимости от места и времени,
  2. Давление — величина скалярная, имеющая размерность L −1 MT −2, измеряется барометром,
  3. Единицей измерения в Международной системе единиц (СИ) является паскаль (русское обозначение: Па; международное: Pa).

Кроме того, в Российской Федерации в качестве внесистемных единиц давления допущены к использованию бар, миллиметр ртутного столба, миллиметр водяного столба, метр водяного столба, килограмм-сила на квадратный сантиметр и атмосфера техническая, Атмосферное давление, равное давлению столба ртути высотой 760 мм при температуре 0 °C, называется нормальным атмосферным давлением ( 101 325 Па ),

Атмосферное давление

Атмосферное давление — это сила, с которой давит на единицу земной поверхности столб воздуха, простирающийся от поверх­ности земли до верхней границы атмосферы. Атмосферное давле­ние является одной из важнейших характеристик состояния ат­мосферы и одним из основных физических свойств воздуха, свя­занных с его плотностью и температурой.

Плотность есть отношение массы вещества к его объему. Так, 1 м3 воды при температуре 4°С имеет массу 1 т, а 1 м3 воздуха при 0°С и нормальном давлении имеет массу 1,293 кг. Следова­тельно, при указанных условиях плотность воды составляет 1000 кг/м3, а плотность воздуха 1,293 кг/м3. Таким образом, плот­ность воздуха примерно в 800 раз меньше плотности воды.

Плотность атмосферы быстро уменьшается с высотой. Полови­на всей массы атмосферы сосредоточена в <нижнем ее слое до высоты около 5,5 «м. На высоте 300 км плотность ее уже в 4-Ю10 раз меньше, чем на уровне моря. С дальнейшим увеличением вы­соты разреженность газов продолжает увеличиваться, и без четко выраженной верхней границы атмосфера постепенно переходит в межпланетное пространство.

Атмосферное давление обычно измеряется высотой ртутного столба в трубке барометра. Давление атмосферы удерживает столб ртути в трубке на определенной высоте. На уровне моря высота ртутного столба в трубке в среднем около 760 мм. При этом масса ртутного столба сечением в 1 см2 составляет пример­но 76-13,6=1,0336 кг. Это означает, что атмосферное давление на уровне моря обычно около 1,033 кг/см2.

Атмосферное давление долгое время выражали в миллимет­рах (мм) ртутного столба, т. е. линейной мерой измеряли силу. Чтобы измерять давление в единицах силы, в 1930 г. была уста­новлена новая международная единица давления — бар (от древ­негреческого барос — тяжесть), равная давлению 1 млн. дин на площадь 1 см2, что соответствует 750,1 мм рт. ст. В практике в качестве единицы давления использовалась тысячная часть ба­ра —миллибар. С 1980 г. в качестве международной единицы для измерения атмосферного давления принят паскаль (Па) —давле­ние, вызываемое силой в 1 ньютон на площадь 1 м2:

1 Па = 1 Н/м2 = Ю-5 бар = 0,01 мбар.

Для практических целей используют гектопаскаль (гПа). По­скольку до сих пор шкала приборов для измерения атмосферного давления градуирована в миллиметрах или миллибарах (мбар), то надо знать их соотношение:

1 гПа = 1 мбар =0,75 мм рт. ст.

Ускорение свободного падения на земном шаре увеличивается от экватора к полюсам и уменьшается с высотой. Чтобы исклю­чить зависимость высоты ртутного столба, уравновешивающего атмосферное давление, от этих факторов, измеренное атмосферное давление приводят к ускорению свободного падения на широте 45° и на уровне моря. Давление, равное массе ртутного столба высотой 760 мм, имеющего температуру 0,0 °С и находящегося на широте 45° и на уровне моря, называют нормальным атмосферным давлением. Оно округленно составляет 1013 гПа.

Рекомендуемые материалы

Для измерения атмосферного давления применяют барометры. На наземных метеорологических станциях используют станцион­ные чашечные барометры, а для полевых, экспедиционных, судо­вых, самолетных и тому подобных измерений предназначены ба­рометры-анероиды. Для непрерывной записи атмосферного давле­ния предназначен барограф.

Изменение давления с высотой. Барическая ступень

Непосредственные наблюдения и теоретические соображения показывают, что плотность и давление воздуха уменьшаются с высотой. Если на уровне моря давление составляет в среднем1 примерно 1013 гПа, то на высоте 5,5 км оно уже около 500 гПа, а на высоте 20 км — менее 50 гПа.

Изменение давления с высотой характеризуют барической сту­пенью. Барическая ступень есть то расстояние по вертикали, на котором давление меняется на 1 гПа. Барическая ступень может быть вычислена по формуле:

/г = 8291(1+0,0040 м/гПа,

где р — давление (в гПа) и Iтемпература (в °С) в той же точ­ке, для которой вычисляется барическая ступень.

Допустим, что давление составляет 1000 гПа, температура 5° С. Тогда

*    я

=        — (1 + 0,004 • 5) = 8,0 (1 + 0,02) « 8 м/гПа.

Следовательно, при заданных исходных условиях давление уменьшается на 1 гПа при подъеме примерно на 8 м.

Вместе с этой лекцией читают «8 Организация интерфейса МП».

Как видно из формулы, барическая ступень несколько изменя­ется при изменении температуры и давления воздуха (табл. 2) . Например, при давлении 1000 гПа и изменении температуры от — 40 до 40° С барическая ступень возрастает на 2,6 м/гПа. При 0° С ее значение равно 8 м/гПа.

Зная барическую ступень, атмосферное давление, температуру воздуха и высоту над уровнем моря в одном из двух пунктов, лежащих на разной высоте, можно по разности давлений в этих пунктах определить разность их высот, а отсюда найти и высоту второго пункта над уровнем моря. Этот способ определения вы­соты пункта называется барометрическим, нивелированием.. Баро­метрическое нивелирование бывает необходимо при экспедицион­ных исследованиях в горных местностях для приближенного оп­ределения высоты различных форм рельефа.

Изменчивость давления на поверхности Земли. Горизонтальный барический градиент

Атмосферное давление в разных точках земной поверхности в один и тот же момент неодинаково, так как оно зависит от сте­пени нагревания или охлаждения воздуха над этими точками, от характера имеющихся над ними воздушных течений и ряда дру­гих причин. Информацию об атмосферном давлении дают метео­рологические станции. Поскольку они расположены на разных высотах, а давление зависит от высоты места, то его значения, измеренные на разных станциях, нельзя непосредственно сравни­вать между собой. Их нужно сначала привести к какой-либо одинаковой высоте. За такую высоту принят уровень моря.

Чтобы получить наглядное представление о распределении давления по земному шару, на географическую карту наносят давление, измеренное в одно и то же время в разных пунктах и приведенное к уровню моря. Затем пункты, в которых давление одинаково, соединяют плавными линиями. Эти линии называют изобарами. Описанный способ картирования распределения дав­ления по территории позволяет устанавливать расположение об­ластей пониженного и повышенного давления на земном шаре! (рис. 2) и наблюдать за их передвижением, что имеет важное значение для прогноза погоды.

Изменение давления вдоль горизонтали, направленной перпен­дикулярно к изобарам в сторону от высокого давления к низкому, приходящееся на расстояние в 100 км, называют горизонтальным, барическим градиентом. Эта величина обычно составляет около 1—2 гПа/100 км. Горизонтальный барический градиент вызывает горизонтальное движение воздуха, т. е. ветер.

Как определить атмосферное давление

Наверняка почти каждый день, когда вы смотрите или слушаете прогноз погоды, то обращаете внимание только на температуру воздуха и возможные осадки. Но синоптики упоминают еще несколько немаловажных параметров и атмосферное давление среди них. В общем случае атмосферное давление — это давление атмосферы на земную поверхность и все предметы на ней. На тело человека действует такое давление, которое эквивалентно давлению 15-тонного груза. Но мы его не ощущаем, так как в нашем теле тоже есть воздух.

Как определить атмосферное давление

Вам понадобится

  • ртутный барометр или барометр-анероид. А если вам необходимо непрерывно снимать показания давления, то следует использовать барограф.

Инструкция

Ртутный барометр, как правило, показывает атмосферное давление в миллиметрах ртутного столба. Просто посмотрите по шкале уровень ртути в колбе – и вот уже вы знаете атмосферное давление в вашем помещении. Как правило, это значение составляет 760±20 мм.рт.ст. Если требуется узнать давление в паскалях, то воспользуйтесь простой системой перевода: 1 мм.рт.ст. = 133,3 Па. Например, 760 мм.рт.ст. = 133,3*760 Па = 101308 Па. Это давление считается нормальным на уровне моря при 15°С.

Снимать показания давления со шкалы барографа тоже очень просто. Этот прибор основан на действии анероидной коробки, которая реагирует на изменение давления воздуха. Если давление повышается – стенки этой коробки прогибаются внутрь, если давление снижается – стенки выпрямляются. Вся эта система соединена со стрелкой, и вам лишь надо посмотреть, какое значение атмосферного давления стрелка показывает на шкале прибора. Не пугайтесь, если шкала будет в таких единицах как гПа – это гектопаскаль: 1 гПа = 100 Па. А для перевода в более привычные мм.рт.ст. просто воспользуйтесь равенством из предыдущего пункта.

А найти атмосферное давление на какой-то определенной высоте можно даже без использования прибора, если вам известно давление на уровне моря. Понадобятся лишь некоторые математические навыки. Воспользуйтесь вот этой формулой:P=P0 * e^(-Mgh/RT).В этой формуле:P – искомое давление на высоте h;
P0 – это давление на уровне моря в паскалях;
M – это молярная масса воздуха, равная 0.029 кг/моль;
g – земное ускорение свободного падения, примерно равное 9.81 м/с²;
R – это универсальная газовая постоянная, принимается за 8.31 Дж/моль К;
T – температура воздуха в Кельвинах (для перевода из °C в К воспользуйтесь формулой
T = t + 273, где t – температура °C);
h – высота над уровнем моря, где находим давление, измеряется в метрах.

Полезный совет

Как видите, даже необязательно быть в конкретном месте, чтобы измерить атмосферное давление. Его можно запросто рассчитать. Посмотрите на последнюю формулу – чем выше мы поднимаемся над землей, тем будет ниже атмосферное давление. И уже на высоте 4000 метров вода будет кипеть при температуре не 100°C, как мы привыкли, а примерно при 85°C, так как давление там не 100 500 Па, а около 60 000 Па. Поэтому процесс приготовления пищи на такой высоте становится более продолжительным.

Источники:

  • как найти атмосферное давление

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Понравилась статья? Поделить с друзьями:
  • Как исправить ошибки с обновлением windows 7
  • Памятка как составить исторический портрет 6 класс
  • Как найти фильм про фантастику
  • Как составить письмо просим вас
  • Как найти тебя средь суеты