Как найти атомный состав элементов

Вспомните:

  • что такое атом;
  • из чего состоит атом;
  • изменяется ли атом в химических реакциях?

АТОМ — это электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов.

Число электронов в ходе химических процессов может изменяться, но заряд ядра всегда остается неизменным. Зная распределение электронов в атоме (строение атома), можно предсказать многие свойства данного химического элемента, а также простых и сложных веществ, в состав которых этот элемент входит.

Содержание

  • Структура Периодической системы Менделеева
  • Ядро атома. Изотопы
  • Распределение электронов в поле ядра атома
  • Строение атома и свойства элементов
  • Выводы

Структура Периодической системы Менделеева

Строение атома, т. е. состав ядра, распределение электронов вокруг ядра, несложно определить по положению элемента в Периодической системе. В Периодической системе Менделеева химические элементы располагаются в определённой последовательности. Эта последовательность тесно связана со строением атома этих элементов. Каждому химическому элементу в системе присвоен порядковый номер, кроме того, для него можно указать:

  • номер периода;
  • номер группы;
  • вид подгруппы.

Зная точный «адрес» химического элемента, т. е. его группу, подгруппу и номер периода, можно однозначно определить строение его атома.

Период — это горизонтальный ряд химических элементов. В современной Периодической системе семь периодов. Первые три — малые, так как они содержат 2 или 8 элементов:

  • 1-й период — Н, Не — 2 элемента;
  • 2-й период — Li…Nе — 8 элементов;
  • 3-й период — Na…Аr — 8 элементов.

Остальные периоды — большие. Каждый из них содержит 2–3 ряда элементов:

  • 4-й период (2 ряда) — К…Кr — 18 элементов;
  • 6-й период (3 ряда) — Сs…Rn — 32 элемента. В этот период входит ряд лантаноидов.

Группа — вертикальный ряд химических элементов. Всего групп восемь. Каждая группа состоит из двух подгрупп: главной подгруппы и побочной подгруппы (см. рис. 5).

Главную подгруппу (подгруппу А) образуют химические элементы малых периодов и больших периодов. На рисунке 5 показано, что главную подгруппу пятой группы составляют элементы малых периодов (N, P) и больших периодов (As, Sb, Bi).

Побочную подгруппу (подгруппу Б) образуют химические элементы только больших периодов. В нашем случае это V, Nb, Ta.

Визуально эти подгруппы различить легко: главная подгруппа «высокая», начинается с первого или второго периода. Побочная подгруппа — «низкая», начинается с 4-го периода.

Итак, каждый химический элемент Периодической системы имеет свой адрес:

  • период;
  • группу;
  • подгруппу;
  • порядковый номер.

Например, ванадий (V) — это химический элемент 4-го периода, V группы, побочной подгруппы, порядковый номер 23.

Задание 3.1. Укажите период, группу и подгруппу для химических элементов с порядковыми номерами 8, 26, 31, 35, 54.

Задание 3.2. Укажите порядковый номер и название химического элемента, если известно, что он находится:

  1. в 4-м периоде, VI группе, побочной подгруппе;
  2. в 5-м периоде, IV группе, главной подгруппе.

Каким образом можно связать эти сведения об элементе со строением его атома?

Ядро атома. Изотопы

Атом состоит из ядра, которое имеет положительный заряд, и электронов, которые имеют отрицательный заряд. В целом атом электронейтрален.

Положительный заряд ядра атома равен порядковому номеру химического элемента.

Ядро атома — сложная частица. В ней сосредоточена почти вся масса атома. Поскольку химический элемент — совокупность атомов с одинаковым зарядом ядра, то около символа элемента указывают (рис. 6).

По этим данным можно определить состав ядра. Ядро состоит из протонов и нейтронов.

  • Протон (р) имеет массу, равную 1 (1,0073 а. е. м.) и заряд, равный +1.
  • Нейтрон (n) заряда не имеет (нейтрален), а масса его приблизительно равна массе протона (1,0087 а. е. м.).

Какие частицы определяют заряд ядра? Протоны! Причём число протонов равно (по величине) заряду ядра атома, т. е. порядковому номеру:

Число нейтронов определяют по разности между величинами: «масса ядра» и «порядковый номер».

Задание 3.3. Определите состав ядер атомов, если химический элемент находится в:

  1. 3-м периоде, VII группе, главной подгруппе;
  2. 4-м периоде, IV группе, побочной подгруппе;
  3. 5-м периоде, I группе, главной подгруппе.

Обратите внимание, что при определении массового числа ядра атома приходится округлять атомную массу, указанную в Периодической системе! Почему? Ведь массы протона и нейтрона практически целочисленны, а массой электронов можно пренебречь.

Для того,чтобы ответить на этот вопрос, нужно понять:

  1. Что происходит с атомом в ходе химических процессов;
  2. Что такое «химический элемент».

В химических процессах обязательно изменяется распределение электронов вокруг ядра или даже изменяется их число. В последнем случае атом отдаёт или принимает электроны и превращается в заряженную частицу — ион. Но в химических реакциях никогда не меняется состав ядра атома, его заряд. Поэтому заряд ядра атома является своеобразным «паспортом» химического элемента.

Химический элемент — совокупность атомов или ионов с одинаковым зарядом ядра.

Для того чтобы разобраться, попробуйте определить, какие из ядер, состав которых указан ниже, принадлежат одному и тому же химическому элементу:

Атомам одного химического элемента принадлежат ядра А и В, так как они содержат одинаковое число протонов, т. е. заряд этих ядер одинаковый. Но ведь у них разная масса! Исследования показывают, что масса атома не оказывает существенного влияния на его химические свойства. Поэтому атомы одного и того же химического элемента (одинаковое число протонов), но с разной массой (разное число нейтронов) являются ИЗОТОПАМИ* этого элемента.

* Слово «изотоп» означает по смыслу «одно место», т. е. все изотопы данного химического элемента находятся в одной клетке ПСХЭ.

В таблице Менделеева указана средняя атомная масса всех природных изотопов данного элемента (Аr). Изотопы и их химические соединения отличаются друг от друга по физическим свойствам, но химические свойства у изотопов одного химического элемента одинаковы. Так, изотоп углерода-14 (14С) имеет такие же химические свойства, как и углерод-12 (12С), который входит в ткани любого живого организма, отличаясь от него только радиоактивностью. Поэтому изотопы применяют для диагностики и лечения различных заболеваний, для научных исследований.

Элемент «водород» встречается в природе в виде трёх изотопов:

Химический элемент «кислород» также представлен тремя природными изотопами:

Задание 3.4. Укажите состав ядер этих изотопов водорода и кислорода.

Если разные вещества содержат атомы одного и того же химического элемента, это не означает, что эти вещества имеют одни те же свойства. Например, химический элемент «хлор» в виде атомарного хлора Cl разрушает метан, а также атмосферный озон. Тот же элемент в виде молекулярного хлора Cl2 ядовит, активно реагирует с водой, многими металлами, а ионы хлора (химический элемент — тот же!) в составе NaCl химически инертен, а с биологической точки зрения не только безвреден, но и полезен для нас. Эти ионы являются макроэлементами нашей пищи, которые входят в состав крови, желудочного сока. Суточная потребность — до 6 граммов.

Но вернемся к описанию строения атома.

Распределение электронов в поле ядра атома

Как известно, ядро атома в химических процессах не меняется. А что меняется? Общее число электронов и распределение электронов. Общее число электронов определить несложно: оно равно порядковому номеру, т. е. заряду ядра атома:

Электроны имеют отрицательный заряд –1, а масса их ничтожна: 1/1840 от массы протона.

Отрицательно заряженные электроны отталкиваются и поэтому находятся на разных расстояниях от ядра. При этом электроны, имеющие приблизительно равный запас энергии, образуют энергетический уровень.

Число энергетических уровней в атоме равно номеру периода, в котором находится химический элемент. Энергетические уровни условно обозначают так (рис. 7).

Задание 3.5. Определите число энергетических уровней в атомах кислорода, магния, кальция, свинца.

На каждом энергетическом уровне может находиться ограниченное число электронов:

  • на первом энергетическом уровне не более 2 электронов;
  • на втором энергетическом уровне не более 8 электронов;
  • на третьем энергетическом уровне не более 18 электронов.

ЗАПОМНИТЕ ЭТИ ЧИСЛА!

Они показывают, что, например, на втором энергетическом уровне может находиться 2 или 5 или 7 электронов, но не может быть 9 или 12 электронов.

Важно знать, что, независимо от номера энергетического уровня, на внешнем (последнем) уровне не может быть больше восьми электронов. Внешний восьмиэлектронный энергетический уровень является наиболее устойчивым и называется завершённым. Такие энергетические уровни имеются у самых неактивных элементов — благородных газов.

Как определить число электронов на внешнем уровне остальных атомов? Для этого существует простое правило – число внешних электронов равно:

  • для элементов главных подгрупп — номеру группы;
  • для элементов побочных подгрупп — оно не может быть больше двух (рис. 8).

Например:

Задание 3.6. Укажите число внешних электронов для химических элементов с порядковыми номерами 15, 25, 30, 53.

Задание 3.7. Найдите в Периодической системе химические элементы, в атомах которых имеется завершённый внешний уровень.

Очень важно правильно определять число внешних электронов, так как именно с ними связаны важнейшие свойства атома. Так, в химических реакциях атомы стремятся «приобрести» устойчивый, завершённый внешний уровень (8ē). Для этого атомы, на внешнем уровне которых мало электронов, «предпочитают» их отдать.

Химические элементы, атомы которых способны только отдавать электроны, относятся к МЕТАЛЛАМ. Очевидно, что на внешнем уровне атома металла должно быть мало электронов: 1, 2, 3.

Если на внешнем энергетическом уровне атома много электронов, то такие атомы стремятся принять электроны до завершения внешнего энергетического уровня, т. е. до восьми электронов. Такие элементы относятся к НЕМЕТАЛЛАМ.

Вопрос. К каким элементам (металлам или неметаллам) относятся химические элементы побочных подгрупп? Почему?

Металлы и неметаллы главных подгрупп в таблице Менделеева отделяет линия, которую можно провести от бора к астату. Выше этой линии (и на линии) располагаются неметаллы, ниже — металлы.

Задание 3.8. Определить, к металлам или неметаллам относятся: фосфор, ванадий, кобальт, селен, висмут. Вывод сделайте, определив положение элемента в Периодической системе химических элементов и число электронов на внешнем уровне.

Для того чтобы составить распределение электрона по остальным уровням и подуровням, следует воспользоваться следующим АЛГОРИТМОМ:

  1. Определить общее число электронов в атоме (по порядковому номеру).
  2. Определить число энергетических уровней (по номеру периода).
  3. Определить число внешних электронов (по виду подгруппы и номеру группы).
  4. Указать число электронов на всех уровнях, кроме предпоследнего.
  5. Рассчитать число электронов на предпоследнем уровне.

Например, согласно пунктам 1…4 для атома марганца определено:

Получили распределение электронов в атоме марганца (рис. 9):

Задание 3.9. Отработайте алгоритм, составив схемы строения атомов для элементов № 16, 26, 33, 37. Укажите: металлы это или неметаллы? Ответ поясните.

Составляя вышеприведенные схемы строения атома, мы не учитывали, что электроны в атоме занимают не только определённые уровни, но и определённые подуровни каждого уровня. Вид подуровня обозначается латинской буквой: s, p, d.

Число возможных подуровней равно номеру уровня, т. е.

  • первый уровень состоит из одного s-подуровня;
  • второй уровень состоит из двух подуровней: s и р и т. д.

На каждом подуровне может находиться строго ограниченное число электронов:

  • на s-подуровне — не больше 2ē;
  • на р-подуровне — не больше 6ē;
  • на d-подуровне — не больше 10ē.

Подуровни одного уровня заполняются в строго определённом порядке:

Таким образом, р-подуровнь не может начать заполняться, если не заполнен s-подуровень данного энергетического уровня и т. д. Исходя из этого правила, несложно составить электронную конфигурацию атома марганца (рис. 10).

В целом электронная конфигурация атома марганца выглядит так:

Здесь и далее приняты обозначения (рис. 11).

Задание 3.10. Составьте электронные конфигурации атомов для химических элементов № 16, 26, 33, 37.

Для чего необходимо составлять электронные конфигурации атомов? Для того чтобы определять свойства этих химических элементов!

Для этого следует помнить: в химических процессах участвуют только валентные электроны.

Валентные электроны находятся на внешнем энергетическом уровне и незавершённом d-подуровне предвнешнего уровня.

Определим число валентных электронов для марганца:

или сокращённо:

Строение атома и свойства элементов

Мы получили краткую электронную формулу атома марганца, которая отражает распределение его валентных электронов. Что можно определить по этой формуле?

1. Какие свойства — металла или неметалла — преобладают у этого элемента? Ответ: марганец — металл, так как на внешнем (четвёртом) уровне 2 электрона.

2. Какой процесс характерен для металла? Ответ: всегда только отдача электронов.

3. Какие электроны и сколько их будет отдавать атом марганца? Ответы: 

  • два внешних электрона (они дальше всех от ядра и слабее притягиваются им);
  • семь (2+5) валентных электронов (так как в этом случае на третьем уровне атома останется восемь электронов, т. е. образуется завершённый уже внешний уровень).

Все эти рассуждения и заключения можно отразить при помощи схемы (рис. 12).

Полученные условные заряды атома называются степенью окисления.

Рассматривая строение атомов кислорода и водорода и рассуждая аналогично, можно показать, что типичными степенями окисления для кислорода является –2, а для водорода +1.

Вопрос. С каким из этих химических элементов может образовывать соединения марганец, если учесть полученные выше степени окисления его?

Только с кислородом, так как его атом имеет противоположную по заряду (знаку) степень окисления. В этом случае несложно составить формулы соответствующих оксидов марганца (здесь степени окисления соответствуют валентностям этих химических элементов):

Строение атома марганца подсказывает, что большей степени окисления, чем +7, у марганца быть не может, так как в этом случае пришлось бы затрагивать устойчивый, теперь уже завершённый предвнешний уровень. Поэтому степень окисления +7 является высшей, а соответствующий оксид Мn2О7высшим оксидом марганца.

Для закрепления всех этих понятий рассмотрим строение атома теллура и некоторые его свойства (см. рис. 13). Этот рисунок показывает, что теллур относится к неметаллам, так как, во-первых, у него на внешнем уровне шесть электронов и, во-вторых, его символ находится в главной подгруппе выше линии В — At. Поэтому его атом может и принимать (до завершения внешнего уровня, и отдавать электроны. В результате, в отличие от металлов, неметалл теллур может проявлять низшую степень окисления (–2) и образовывать летучие водородные соединения с водородом (Н2Те). Высшая степень окисления атома теллура (+6), как и у металлов соответствует номеру группы и, находясь в этой степени окисления, теллур образует высший оксид ТеО3.

Задание 3.11. Изобразить электронные конфигурации атомов Nа, Rb, Сl, I, Si, Sn. Определить свойства этих химических элементов, формулы их простейших соединений (с кислородом и с водородом).

Сделаем выводы.

  1. В химических реакциях участвуют только валентные электроны, которые могут находиться только на последних двух уровнях.
  2. Атомы металлов могут только отдавать эти электроны (все или несколько), принимая положительные степени окисления.
  3. Атомы неметаллов могут принимать (недостающие до восьми) электроны, получая при этом отрицательные степени окисления, и отдавать валентные электроны (все или несколько), принимая при этом положительные степени окисления.

Возникает вопрос: как составить краткую электронную формулу (распределение валентных электронов), сразу, не составляя длинных электронных конфигураций? Для этого нужно помнить несколько простых правил.

1. Номер периода соответствует числу энергетических уровней у атомов химических элементов этого периода.

2. Номер группы, как правило, совпадает с числом валентных электронов, (исключение составляют только подгруппы меди и железа).

3. Подгруппа (главная или побочная) включает химические элементы, у которых имеется одинаковое распределение валентных электронов, причём в атомах элементов главной и побочной подгруппы электроны распределяются по-разному.

3.1. У элементов главных подгрупп все валентные электроны находятся на внешнем уровне, например:

V группа, главная 5 валентных электронов

Поэтому для всех химических элементов главной подгруппы пятой группы (пять валентных электронов) распределение этих электронов следующее:

3.2. У элементов побочных подгрупп число внешних электронов не превышает двух, например:

5 валентных электронов ← V группа, побочная → 2 электрона на внешнем уровне*.

* За счёт «провала электрона» число внешних электронов может быть меньше. Но число валентных электронов при этом не меняется, поэтому свойства элемента будут такими же. Эти случаи рассмотрены в Самоучителе второго уровня, часть 1.

Для большинства химических элементов побочных подгрупп, у которых на внешнем энергетическом уровне два электрона, остальные (N – 2) валентные электроны будут находиться на d-подуровне предвнешнего уровня (N – номер группы), например:

Вопрос. Для элементов какой группы составлена такая запись?

Задание 3.12. Составьте краткие электронные формулы для атомов химических элементов № 35 и 42, а затем составьте распределение электронов в этих атомах по алгоритму. Убедитесь, что ваше «предсказание» сбылось.

Сравним теперь свойства химических элементов одной подгруппы, например:

Что общего в строении атомов этих элементов? На внешнем уровне каждого атома по одному электрону — это активные металлы. Металлическая активность связана со способностью отдавать электроны: чем легче отдает электроны атом, тем сильнее выражены его металлические свойства.

Что удерживает электроны в атоме? Притяжение их к ядру. Чем ближе электроны к ядру, тем сильнее они притягиваются ядром атома, тем труднее их «оторвать».

Исходя из этого, сделаем вывод: какой элемент — или Rb — легче отдает внешний электрон? Какой из них является более активным металлом? Очевидно, рубидий, так как его валентные электроны находятся дальше от ядра (и слабее удерживаются ядром).

Вывод. В главных подгруппах сверху вниз металлические свойства усиливаются, так как возрастает радиус атома и валентные электроны слабее притягиваются к ядру.

Сравним свойства:

Оба химических элемента — неметаллы, так как до завершения внешнего уровня не хватает одного электрона, и эти атомы будут активно притягивать недостающий электрон. При этом, чем сильнее притягивает атом неметалла недостающий электрон, тем сильнее проявляются его неметаллические свойства (способность принимать электроны).

За счёт чего происходит притяжение электрона? За счёт положительного заряда ядра атома. Но в таком случае чем ближе электрон к ядру, тем сильнее их взаимное притяжение, тем активнее неметалл.

Сделаем вывод, у какого элемента сильнее выражены неметаллические свойства: у хлора или у йода? Очевидно, у хлора, так как его валентные электроны ближе к ядру.

Вывод. Активность неметаллов в подгруппах сверху вниз убывает, так как возрастает радиус атома и все труднее притянуть недостающие электроны.

Сравним свойства кремния и олова:

На внешнем уровне обоих атомов по четыре электрона. Тем не менее эти элементы в Периодической системе находятся по разные стороны от линии, соединяющей бор и астат (см. правило в уроке 2.1.). Поэтому:

  • у кремния, символ которого находится выше линии В–At, сильнее проявляются неметаллические свойства;
  • у олова, символ которого находится ниже линии В–At, сильнее проявляются металлические свойства;

Почему? Потому что в атоме олова четыре валентных электрона находятся так далеко от ядра, что присоединение недостающих четырех электронов затруднено, в то время как отдача электронов с пятого энергетического уровня происходит достаточно легко. Для кремния возможны оба процесса, причём первый (приём электронов) — преобладает.

Выводы:

  • чем меньше электронов в атоме и чем дальше они от ядра, тем сильнее проявляются металлические свойства;
  • чем больше внешних электронов в атоме, чем ближе они к ядру, тем сильнее проявляются неметаллические свойства.

Сравним строение атомов и свойства химических элементов одного периода:

Вопрос. О каком периоде и каких элементах идёт речь?

Видно, что металлические свойства убывают, так как увеличивается число внешних электронов, а неметаллические свойства — возрастают. Если речь идёт о большом периоде, где большинство элементов имеет 2 электрона на внешнем уровне (элементы побочных подгрупп), то в этом случае главной причиной убывания металлических свойств в периоде является уменьшение радиуса атома. Дело в том, что за счёт увеличения заряда ядра в периоде увеличивается сила притяжения электронов к нему и уменьшается радиус атома:

Сравните: r (Ca) = 0,197 нм и r (Zn) = 0,139 нм

Вопрос. Какой из металлов более активен?

Основываясь на этих и других выводах, сформулированных в этой главе, можно для любого химического элемента Периодической системы составить алгоритм описания свойств химического элемента по его положению в Периодической системе.

1. Составить схему строения атома, т. е. определить состав ядра, распределение электронов по энергетическим уровням и подуровням:

  • определить общее число электронов в атоме (по порядковому номеру);
  • определить число энергетических уровней (по номеру периода);
  • определить число внешних электронов (по виду подгруппы и номеру группы);
  • указать число электронов на всех энергетических уровнях, кроме предпоследнего;
  • рассчитать число электронов на предпоследнем уровне.

2. Определить число валентных электронов и число внешних электронов.

3. Определить, какие свойства — металла или неметалла — сильнее проявляются у данного химического элемента (по положению в ПСХЭ).

4. Определить число отдаваемых (принимаемых) электронов.

5. Определить высшую и низшую степени окисления химического элемента.

6. Составить для этих степеней окисления химические формулы простейших соединений с кислородом и водородом.

7. Определить характер оксида (см. урок 2.1.) и составить уравнения его реакции с водой.

8. Для указанных (пункт 6) веществ составить уравнения характерных реакций (см. урок 2).

Задание 3.13. Составить по данной схеме описания атомов серы, селена, кальция и стронция и свойства этих химических элементов. Какие общие свойства имеют их оксиды? Гидроксиды?

Если вы выполнили упражнения 3.11 и 3.12, то легко заметить, что не только атомы элементов одной подгруппы, но и их соединения имеют общие свойства и похожий состав. Это отражено в Периодическом законе Менделеева: Свойства химических элементов, а также свойства простых и сложных веществ, образованных ими, находятся в периодической зависимости от ЗАРЯДА ЯДЕР ИХ АТОМОВ.

Физический смысл Периодического закона ясен: свойства химических элементов периодически повторяются потому, что периодически повторяются конфигурации валентных электронов (распределение электронов внешнего и предпоследнего уровней).

Так, у химических элементов одной и той же подгруппы одинаковое распределение валентных электронов и, значит, похожие свойства.

Выводы

Строение атома связано с положением элемента в Периодической системе. Зная строение атома, можно предсказать свойства элемента и его соединений. Эти свойства находятся в периодической зависимости от заряда ядер атомов элементов, в соответствии с Периодическим законом Менделеева.


Загрузить PDF


Загрузить PDF

Протоны, нейтроны и электроны – основные частицы, из которых состоит атом. Протоны заряжены положительно, электроны – отрицательно, а нейтроны и вовсе не имеют заряда.[1]
Масса электронов очень мала, а масса протонов и нейтронов практически одинакова.[2]
На самом деле, найти в атоме количество протонов, нейтронов и электронов довольно просто, нужно только научиться ориентироваться по периодической таблице химических элементов Д.И.Менделеева.

  1. Изображение с названием Find the Number of Protons, Neutrons, and Electrons Step 1

    1

    Возьмите периодическую таблицу элементов. Это система, в которой элементы организованы в зависимости от их атомной структуры. Цветное одно- или двухбуквенное сокращение – это название элемента в сокращенном виде. В таблице также представлена информация об атомном номере элемента и атомной массе.[3]

    • Таблицу Менделеева можно найти в учебнике по химии или в Интернете.
    • Во время контрольных работ периодическую таблицу обычно предоставляют.
  2. Изображение с названием Find the Number of Protons, Neutrons, and Electrons Step 2

    2

    Найдите в таблице нужный вам элемент. Каждый элемент в таблице располагается под своим номером. Все элементы можно разделить на металлы, неметаллы и метоллоиды (полуметаллы). В этих группах элементы классифицируются еще на несколько групп: щелочные металлы, галогены, инертные газы.[4]

    • Группы (столбцы) и периоды (строки) нужны для систематизации, по ним легко найти нужный вам элемент.
    • Если вы ничего не знаете о нужном вам элементе, просто найдите его в таблице.
  3. Изображение с названием Find the Number of Protons, Neutrons, and Electrons Step 3

    3

    Найдите атомный номер элемента. Атомный номер обозначает число протонов в ядре атома.[5]
    Атомный номер располагается над символом элемента, обычно в левом верхнем углу клетки. Он покажет вам, сколько протонов содержится в одном атоме элемента.

    • Например, Бор (В) обозначен в таблице под номером 5, поэтому у него 5 протонов.
  4. Изображение с названием Find the Number of Protons, Neutrons, and Electrons Step 4

    4

    Определите количество электронов. Протоны — это положительно заряженные частицы в ядре атома. Электроны представляют собой частицы, которые несут отрицательный заряд. Поэтому когда элемент находится в нейтральном состоянии, то есть его заряд будет равен нулю, число протонов и электронов будет равным.

    • Например, Бор (В) обозначен в таблице под номером 5, поэтому можно смело утверждать, что у него 5 электронов и 5 протонов.
    • Однако если элемент содержит отрицательный или положительный ион, то протоны и электроны не будут одинаковыми. Вам придется вычислить их. Число ионов выглядит как маленький, верхний индекс после элемента.
  5. Изображение с названием Find the Number of Protons, Neutrons, and Electrons Step 5

    5

    Найдите атомную массу элемента. Чтобы найти число нейтронов, вам сначала нужно вычислить атомную массу элемента. Атомная масса – это средняя масса атомов данного элемента, ее нужно рассчитывать. Имейте в виду, что у изотопов атомная масса отличается.[6]
    . Атомная масса указана под символом элемента.

    • Округляйте атомную массу до ближайшего целого числа. Например, атомная масса бора = 10,811, соответственно, ее можно округлить до 11.
  6. Изображение с названием Find the Number of Protons, Neutrons, and Electrons Step 6

    6

    Вычтите из атомной массы атомный номер. Чтобы определить количество нейтронов, нужно вычесть атомный номер из атомной массы. Помните, что атомный номер — это число протонов, которое вы уже определили.[7]

    • Возьмем наш пример с бором: 11 (атомная масса) – 5 (атомный номер) = 6 нейтронов.

    Реклама

  1. Изображение с названием Find the Number of Protons, Neutrons, and Electrons Step 7

    1

    Определите число ионов. Ион — это атом, состоящий из положительно заряженного ядра, в котором находятся протоны и нейтроны, и отрицательно заряженных электронов. Атом несет нейтральный заряд, но заряд может быть положительным и отрицательным из-за электронов, которые атом может отдавать и принимать.[8]
    Поэтому число протонов в атоме не меняется, а число электронов в ионе может меняться.

    • Электрон несет отрицательный заряд, поэтому если атом отдает электроны, то сам становится заряженным положительно. Когда атом принимает электроны, он становится отрицательно заряженным ионом.
    • Например, у N3- заряд -3, а у Ca2+ заряд +2.
    • Помните, если число ионов не указано в таблице, вам не нужно делать подобные вычисления.
  2. Изображение с названием Find the Number of Protons, Neutrons, and Electrons Step 8

    2

    Вычтите заряд из атомного номера. Если ион положительно заряжен, нужно вычесть из атомного номера заряд. Если у иона положительный заряд, значит, он отдал электроны. Чтобы подсчитать оставшееся число электронов, нужно вычесть заряд от атомного номера. Если ион заряжен положительно, значит, в нем больше протонов, чем электронов.

    • Например, у Ca2+ заряд +2, поэтому можно сказать, что он отдал два электрона. Атомный номер кальция = 20, поэтому у его иона 18 электронов (20-2=18).
  3. Изображение с названием Find the Number of Protons, Neutrons, and Electrons Step 9

    3

    Если ион заряжен отрицательно, чтобы узнать число электронов, нужно добавить заряд к атомному номеру. Потому что ион стал отрицательным из-за того, что принял лишние электроны. Так что нужно просто прибавить заряд к атомному номеру, тогда вы получите число электронов. Разумеется, если ион заряжен отрицательно, то электронов в нем больше, чем протонов.

    • Например, у N3- заряд -3, значит, азот получил три дополнительных электрона. Атомный номер азота 7, поэтому число электронов у азота = 10. (то есть 7+3=10).

    Реклама

Об этой статье

Эту страницу просматривали 956 052 раза.

Была ли эта статья полезной?

Е.Н.ФРЕНКЕЛЬ

Самоучитель по химии

Пособие для тех, кто не знает, но хочет
узнать и понять химию

Продолжение. Начало см. в № 13, 18, 23/2007

Глава 3. Элементарные сведения о
строении атома.
Периодический закон Д.И.Менделеева

В с п о м н и т е, что такое атом, из чего состоит
атом, изменяется ли атом в химических
реакциях.

Атом – это электронейтральная частица,
состоящая из положительно заряженного ядра и
отрицательно заряженных электронов.

Число электронов в ходе химических процессов
может изменяться, но заряд ядра всегда остается
неизменным
. Зная распределение электронов в
атоме (строение атома), можно предсказать многие
свойства данного атома, а также свойства простых
и сложных веществ, в состав которых он входит.

Строение атома, т.е. состав ядра и распределение
электронов вокруг ядра, несложно определить по
положению элемента в периодической системе.

В периодической системе Д.И.Менделеева
химические элементы располагаются в
определенной последовательности. Эта
последовательность тесно связана со строением
атомов этих элементов. Каждому химическому
элементу в системе присвоен порядковый номер,
кроме того, для него можно указать номер периода,
номер группы, вид подгруппы.

Спонсор публикации статьи интернет-магазин «Мегамех». В магазине Вы найдёте изделия из меха на любой вкус — куртки, жилетки и шубы из лисы, нутрии, кролика, норки, чернобурки, песца. Компания также предлагает Вам приобрести элитные меховые изделия и воспользоваться услугами индивидуального пошива. Меховые изделия оптом и в розницу — от бюджетной категории до класса люкс, скидки до 50%, гарантия 1 год, доставка по Украине, России, СНГ и странам Евросоюза, самовывоз из шоу-рума в г.Кривой Рог, товары от ведущих производителей Украины, России, Турции и Китая. Посмотреть каталог товаров, цены, контакты и получить консультацию Вы сможете на сайте, который располагается по адресу: «megameh.com».

Зная точный «адрес» химического элемента –
группу, подгруппу и номер периода, можно
однозначно определить строение его атома.

Период – это горизонтальный ряд химических
элементов. В современной периодической
системе семь периодов. Первые три периода – малые,
т.к. они содержат 2 или 8 элементов:

1-й период – Н, Не – 2 элемента;

2-й период – Li … Nе – 8 элементов;

3-й период – Na … Аr – 8 элементов.

Остальные периоды – большие. Каждый из них
содержит 2–3 ряда элементов:

4-й период (2 ряда) – K … Kr – 18 элементов;

6-й период (3 ряда) – Сs … Rn – 32 элемента. В этот
период входит ряд лантаноидов.

Группа – вертикальный ряд химических
элементов. Всего групп восемь. Каждая группа
состоит из двух подгрупп: главной подгруппы и
побочной подгруппы
. Например:

Главную подгруппу образуют химические
элементы малых периодов (например, N, P) и больших
периодов (например, As, Sb, Bi).

Побочную подгруппу образуют химические
элементы только больших периодов (например, V, Nb,
Ta).

Визуально эти подгруппы различить легко.
Главная подгруппа «высокая», она начинается с
1-го или 2-го периода. Побочная подгруппа –
«низкая», начинается с 4-го периода.

Итак, каждый химический элемент периодической
системы имеет свой адрес: период, группу,
подгруппу, порядковый номер.

Например, ванадий V – это химический элемент
4-го периода, V группы, побочной подгруппы,
порядковый номер 23.

Задание 3.1. Укажите период, группу и
подгруппу для химических элементов с
порядковыми номерами 8, 26, 31, 35, 54.

Задание 3.2. Укажите порядковый номер и
название химического элемента, если известно,
что он находится:

а) в 4-м периоде, VI группе, побочной подгруппе;

б) в 5-м периоде, IV группе, главной подгруппе.

Каким образом можно связать сведения о
положении элемента в периодической системе со
строением его атома?

Атом состоит из ядра (оно имеет положительный
заряд) и электронов (они имеют отрицательный
заряд). В целом атом электронейтрален.

Положительный заряд ядра атома равен
порядковому номеру химического элемента.

Ядро атома – сложная частица. В ядре
сосредоточена почти вся масса атома. Поскольку
химический элемент – совокупность атомов с
одинаковым зарядом ядра, то около символа
элемента указывают следующие его координаты:

По этим данным можно определить состав ядра.
Ядро состоит из протонов и нейтронов.

Протон p имеет массу 1 (1,0073 а. е. м.) и заряд +1.
Нейтрон n заряда не имеет (нейтрален), а масса
его приблизительно равна массе протона (1,0087 а. е.
м.).

Заряд ядра определяют протоны. Причем число
протонов равно
(по величине) заряду ядра
атома
, т.е. порядковому номеру.

Число нейтронов N определяют по разности
между величинами: «масса ядра» А и
«порядковый номер» Z. Так, для атома алюминия:

N = АZ = 27 –13 = 14n,

Задание 3.3. Определите состав ядер атомов,
если химический элемент находится в:

а) 3-м периоде, VII группе, главной подгруппе;

б) 4-м периоде, IV группе, побочной подгруппе;

в) 5-м периоде, I группе, главной подгруппе.

Внимание! При определении массового числа ядра
атома приходится округлять атомную массу,
указанную в периодической системе. Так поступают
потому, что массы протона и нейтрона практически
целочисленны, а массой электронов можно
пренебречь.

Определим, какие из приведенных ниже ядер
принадлежат одному и тому же химическому
элементу:

А (20р + 20n),

Б (19р + 20n),

В (20р + 19n).

Атомам одного химического элемента
принадлежат ядра А и В, поскольку они
содержат одинаковое число протонов, т. е. заряды
этих ядер одинаковые. Исследования показывают,
что масса атома не оказывает существенного
влияния на его химические свойства.

Изотопами называют атомы одного и того же
химического элемента (одинаковое число
протонов), различающиеся массой (разное число
нейтронов).

Изотопы и их химические соединения отличаются
друг от друга по физическим свойствам, но
химические свойства у изотопов одного
химического элемента одинаковы. Так, изотопы
углерода-14 (14С) имеют такие же химические
свойства, как и углерода-12 (12С), которые
входят в ткани любого живого организма. Отличие
проявляется только в радиоактивности (изотоп 14С).
Поэтому изотопы применяют для диагностики и
лечения различных заболеваний, для научных
исследований.

Вернемся к описанию строения атома.
Как известно, ядро атома в химических
процессах не изменяется. А что изменяется?
Переменным оказывается общее число электронов в
атоме и распределение электронов. Общее число
электронов в нейтральном атоме
определить
несложно – оно равно порядковому номеру, т.е.
заряду ядра атома:

Электроны имеют отрицательный заряд –1, а масса
их ничтожна: 1/1840 от массы протона.

Отрицательно заряженные электроны
отталкиваются друг от друга и находятся на
разных расстояниях от ядра. При этом электроны,
имеющие приблизительно равный запас энергии,
находятся на приблизительно равном расстоянии
от ядра и образуют энергетический уровень.


Число энергетических уровней в атоме равно
номеру периода, в котором находится химический
элемент. Энергетические уровни условно
обозначают так (например, для Al):

Задание 3.4. Определите число энергетических
уровней в атомах кислорода, магния, кальция,
свинца.

На каждом энергетическом уровне может
находиться ограниченное число электронов:

• на первом – не более двух электронов;

• на втором – не более восьми электронов;

• на третьем – не более восемнадцати
электронов.

Эти числа показывают, что, например, на втором
энергетическом уровне может находиться 2, 5 или 7
электронов, но не может быть 9 или 12 электронов.

Важно знать, что независимо от номера
энергетического уровня на внешнем уровне
(последнем) не может быть больше восьми
электронов. Внешний восьмиэлектронный
энергетический уровень является наиболее
устойчивым и называется завершенным.
Такие
энергетические уровни имеются у самых
неактивных элементов – благородных газов.

Как определить число электронов на внешнем
уровне остальных атомов? Для этого существует
простое правило: число внешних электронов
равно:

• для элементов главных подгрупп – номеру
группы;

• для элементов побочных подгрупп оно не может
быть больше двух.

Например (рис. 5):

Рис. 5. Схема определения числа внешних электронов атомов
Рис. 5.
Схема определения числа
внешних электронов атомов

Задание 3.5. Укажите число внешних
электронов для химических элементов с
порядковыми номерами 15, 25, 30, 53.

Задание 3.6. Найдите в периодической системе
химические элементы, в атомах которых имеется
завершенный внешний уровень.

Очень важно правильно определять число внешних
электронов, т.к. именно с ними связаны важнейшие
свойства атома. Так, в химических реакциях атомы
стремятся приобрести устойчивый, завершенный
внешний уровень (8е). Поэтому атомы, на внешнем
уровне которых мало электронов, предпочитают их
отдать.

Химические элементы, атомы которых способны
только отдавать электроны, называют металлами.
Очевидно, что на внешнем уровне атома металла
должно быть мало электронов: 1, 2, 3.

Если на внешнем энергетическом уровне атома
много электронов, то такие атомы стремятся
принять электроны до завершения внешнего
энергетического уровня, т. е. до восьми
электронов. Такие элементы называют неметаллами.

В о п р о с.  К металлам или неметаллам
относятся химические элементы побочных
подгрупп? Почему?

О т в е т.  Металлы и неметаллы главных
подгрупп в таблице Менделеева отделяет линия,
которую можно провести от бора к астату. Выше
этой линии (и на линии) располагаются неметаллы,
ниже – металлы. Все элементы побочных подгрупп
оказываются ниже этой линии.

Задание 3.7. Определите, к металлам или
неметаллам относятся: фосфор, ванадий, кобальт,
селен, висмут. Используйте положение элемента в
периодической системе химических элементов и
число электронов на внешнем уровне.

Для того, чтобы составить распределение
электронов по остальным уровням и подуровням,
следует воспользоваться следующим а л г о р и т м
о м.

1. Определить общее число электронов в атоме (по
порядковому номеру).

2. Определить число энергетических уровней (по
номеру периода).

3. Определить число внешних электронов (по виду
подгруппы и номеру группы).

4. Указать число электронов на всех уровнях,
кроме предпоследнего.

5. Рассчитать число электронов на предпоследнем
уровне.

Например, согласно пунктам 1–4 для атома
марганца определено:

Всего 25е; распределили (2 + 8 + 2) = 12e;
значит, на третьем уровне находится: 25 – 12 = 13e.

Получили распределение электронов в атоме
марганца:

Задание 3.8. Отработайте алгоритм, составив
схемы строения атомов для элементов № 16, 26, 33, 37.
Укажите, металлы это или неметаллы. Ответ
поясните.

Составляя приведенные выше схемы строения
атома, мы не учитывали, что электроны в атоме
занимают не только уровни, но и определенные подуровни
каждого уровня. Виды подуровней обозначаются
латинскими буквами: s, p, d.

Число возможных подуровней равно номеру
уровня.
Первый уровень состоит из одного
s-подуровня. Второй уровень состоит из двух
подуровней – s и р. Третий уровень – из
трех подуровней – s, p и d.

На каждом подуровне может находиться строго
ограниченное число электронов:

на s-подуровне – не больше 2е;

на р-подуровне – не больше 6е;

на d-подуровне – не больше 10е.

Подуровни одного уровня заполняются в строго
определенном порядке: s p d.

Таким образом, р-подуровнь не может начать
заполняться, если не заполнен s-подуровень
данного энергетического уровня, и т.д. Исходя из
этого правила, несложно составить электронную
конфигурацию атома марганца:

В целом электронная конфигурация атома марганца
записывается так:

25Мn 1s22s22p63s23p63d54s2.

Здесь и далее приняты следующие обозначения:


Задание 3.9. Составьте электронные
конфигурации атомов для химических элементов №
16, 26, 33, 37.

Для чего необходимо составлять электронные
конфигурации атомов? Для того, чтобы
определять свойства этих химических элементов.
Следует помнить, что в химических процессах
участвуют только валентные электроны.

Валентные электроны находятся на внешнем
энергетическом уровне и незавершенном
d-подуровне предвнешнего уровня.

Определим число валентных электронов для
марганца:

или сокращенно: Мn … 3d54s2.

Что можно определить по формуле электронной
конфигурации атома?

1. Какой это элемент – металл или неметалл?

Марганец – металл, т.к. на внешнем (четвертом)
уровне находится два электрона.

2. Какой процесс характерен для металла?

Атомы марганца в реакциях всегда только отдают
электроны.

3. Какие электроны и сколько будет отдавать атом
марганца?

В реакциях атом марганца отдает два внешних
электрона (они дальше всех от ядра и слабее
притягиваются им), а также пять предвнешних d-электронов.
Общее число валентных электронов – семь (2 + 5).
В этом случае на третьем уровне атома
останется восемь электронов, т.е. образуется
завершенный внешний уровень.

Все эти рассуждения и заключения можно
отразить при помощи схемы (рис. 6):

Рис. 6. Схема отдачи электронов атомом марганца
Рис. 6.
Схема отдачи электронов атомом марганца

Полученные условные заряды атома
называют степенями окисления.

Рассматривая строение атома, аналогичным
способом можно показать, что типичными степенями
окисления для кислорода является –2, а для
водорода +1.

В о п р о с.  С каким из химических
элементов может образовывать соединения
марганец, если учесть полученные выше степени
его окисления?

О т в е т.  Только с кислородом, т.к. его атом
имеет противоположную по заряду степень
окисления. Формулы соответствующих оксидов
марганца (здесь степени окисления соответствуют
валентностям этих химических элементов):

Строение атома марганца подсказывает, что
большей степени окисления у марганца быть не
может, т.к. в этом случае пришлось бы
затрагивать устойчивый, теперь уже завершенный
предвнешний уровень. Поэтому степень окисления +7
является высшей, а соответствующий оксид Мn2О7
– высшим оксидом марганца.

Для закрепления всех этих понятий рассмотрим
строение атома теллура и некоторые его свойства:

Как неметалл, атом Te может принять 2 электрона
до завершения внешнего уровня и отдать «лишние» 6
электронов:

Задание 3.10. Изобразите электронные
конфигурации атомов Nа, Rb, Cl, I, Si, Sn. Определите
свойства этих химических элементов, формулы их
простейших соединений (с кислородом и водородом).

Практические выводы

1. В химических реакциях участвуют только
валентные электроны, которые могут находиться
только на двух последних уровнях.

2. Атомы металлов могут только отдавать
валентные электроны (все или несколько), принимая
положительные степени окисления.

3. Атомы неметаллов могут принимать электроны
(недостающие – до восьми), приобретая при этом
отрицательные степени окисления, и отдавать
валентные электроны (все или несколько), при этом
они приобретают положительные степени
окисления.

Сравним теперь свойства химических элементов
одной подгруппы, например натрия и рубидия:
Nа …3s1 и Rb …5s1.

Что общего в строении атомов этих элементов?
На внешнем уровне каждого атома по одному
электрону – это активные металлы. Металлическая
активность
связана со способностью отдавать
электроны: чем легче атом отдает электроны, тем
сильнее выражены его металлические свойства.

Что удерживает электроны в атоме? Притяжение их
к ядру. Чем ближе электроны к ядру, тем сильнее
они притягиваются ядром атома, тем труднее их
«оторвать».

Исходя из этого, ответим на вопрос: какой
элемент – Nа или Rb – легче отдает внешний
электрон? Какой из элементов является более
активным металлом? Очевидно, рубидий, т.к. его
валентные электроны находятся дальше от ядра (и
слабее удерживаются ядром).

Вывод. В главных подгруппах сверху вниз
металлические свойства усиливаются
, т.к.
возрастает радиус атома, и валентные электроны
слабее притягиваются к ядру.

Сравним свойства химических элементов VIIa
группы: Cl …3s23p5 и I …5s25p5.

Оба химических элемента – неметаллы, т.к. до
завершения внешнего уровня не хватает одного
электрона. Эти атомы будут активно притягивать
недостающий электрон. При этом чем сильнее
притягивает атом неметалла недостающий
электрон, тем сильнее проявляются его
неметаллические свойства (способность принимать
электроны).

За счет чего происходит притяжение электрона?
За счет положительного заряда ядра атома.
Кроме того, чем ближе электрон к ядру, тем сильнее
их взаимное притяжение, тем активнее неметалл.

В о п р о с.  У какого элемента сильнее
выражены неметаллические свойства: у хлора или
йода?

О т в е т.  Очевидно, у хлора, т.к. его валентные
электроны расположены ближе к ядру.

Вывод. Активность неметаллов в подгруппах
сверху вниз убывает
, т.к. возрастает радиус
атома и ядру все труднее притянуть недостающие
электроны.

Сравним свойства кремния и олова: Si …3s23p2
и Sn …5s25p2.

На внешнем уровне обоих атомов по четыре
электрона. Тем не менее эти элементы в
периодической системе находятся по разные
стороны от линии, соединяющей бор и астат.
Поэтому у кремния, символ которого находится
выше линии В–At, сильнее проявляются
неметаллические свойства. Напротив, у олова,
символ которого находится ниже линии В–At,
сильнее проявляются металлические свойства. Это
объясняется тем, что в атоме олова четыре
валентных электрона удалены от ядра. Поэтому
присоединение недостающих четырех электронов
затруднено. В то же время отдача электронов
с пятого энергетического уровня происходит
достаточно легко. Для кремния возможны оба
процесса, причем первый (прием электронов)
преобладает.

Выводы по главе 3. Чем меньше внешних
электронов в атоме и чем дальше они от ядра, тем
сильнее проявляются металлические свойства.

Чем больше внешних электронов в атоме и чем
ближе они к ядру, тем сильнее проявляются
неметаллические свойства.

Основываясь на выводах, сформулированных в
этой главе, для любого химического элемента
периодической системы можно составить
«характеристику».

Алгоритм описания свойств
химического элемента по его положению
в периодической системе

1. Составить схему строения атома, т.е.
определить состав ядра и распределение
электронов по энергетическим уровням и
подуровням:

• определить общее число протонов, электронов
и нейтронов в атоме (по порядковому номеру и
относительной атомной массе);

• определить число энергетических уровней (по
номеру периода);

• определить число внешних электронов (по виду
подгруппы и номеру группы);

• указать число электронов на всех
энергетических уровнях, кроме предпоследнего;

• рассчитать число электронов на
предпоследнем уровне.

2. Определить число валентных электронов.

3. Определить, какие свойства – металла или
неметалла – сильнее проявляются у данного
химического элемента.

4. Определить число отдаваемых (принимаемых)
электронов.

5. Определить высшую и низшую степени окисления
химического элемента.

6. Составить для этих степеней окисления
химические формулы простейших соединений с
кислородом и водородом.

7. Определить характер оксида и составить
уравнение его реакции с водой.

8. Для указанных в пункте 6 веществ составить
уравнения характерных реакций (см. главу 2).

Задание 3.11. По приведенной выше схеме
составить описания атомов серы, селена, кальция и
стронция и свойства этих химических элементов.
Какие общие свойства проявляют их оксиды и
гидроксиды?

Если вы выполнили упражнения 3.10 и 3.11, то
легко заметить, что не только атомы элементов
одной подгруппы, но и их соединения имеют общие
свойства и похожий состав.

Периодический закон Д.И.Менделеева:
свойства химических элементов, а также свойства
простых и сложных веществ, образованных ими,
находятся в периодической зависимости от заряда
ядер их атомов.


Физический смысл периодического закона: свойства
химических элементов периодически повторяются
потому, что периодически повторяются
конфигурации валентных электронов
(распределение электронов внешнего и
предпоследнего уровней).

Так, у химических элементов одной и той же
подгруппы одинаковое распределение валентных
электронов и, значит, похожие свойства.

Например, у химических элементов пятой группы
пять валентных электронов. При этом в атомах
химических элементов главных подгрупп – все
валентные электроны находятся на внешнем уровне:
ns2np3, где n – номер
периода.

У атомов элементов побочных подгрупп на
внешнем уровне находятся только 1 или 2 электрона,
остальные – на d-подуровне предвнешнего
уровня: … (n – 1)d3ns2, где n
– номер периода.

Задание 3.12. Составьте краткие электронные
формулы для атомов химических элементов № 35 и 42,
а затем составьте распределение электронов в
этих атомах по алгоритму. Убедитесь, что ваше
предсказание сбылось.

Упражнения к главе 3


1. Сформулируйте определения понятий
«период», «группа», «подгруппа». Что общего у
химических элементов, которые составляют: а)
период; б) группу; в) подгруппу?

2. Что такое изотопы? Какие свойства –
физические или химические – совпадают у
изотопов? Почему?

3. Сформулируйте периодический закон
Д.И.Менделеева. Поясните его физический смысл и
проиллюстрируйте примерами.

4. В чем проявляются металлические
свойства химических элементов? Как они
изменяются в группе и в периоде? Почему?

5. В чем проявляются неметаллические
свойства химических элементов? Как они
изменяются в группе и в периоде? Почему?

6. Составьте краткие электронные формулы
химических элементов № 43, 51, 38. Подтвердите свои
предположения описанием строения атомов этих
элементов по приведенному выше алгоритму.
Укажите свойства этих элементов.

7. По кратким электронным формулам

а) …4s24p1;

б) …4d15s2;

в) …3d54s1

определите положение соответствующих
химических элементов в периодической системе
Д.И.Менделеева. Назовите эти химические элементы.
Свои предположения подтвердите описанием
строения атомов этих химических элементов по
алгоритму. Укажите свойства этих химических
элементов.

Продолжение следует

Строение атома. Состав атомных ядер. Изотопы. Химический элемент

С помощью данного урока вы узнаете, из чего состоит атом, а также познакомитесь с историей появления и развития представлений о сложном строении атома. На уроке рассматриваются результаты некоторых физических опытов, которые позволили установить состав и строение атома.

I. Атом: термин и эволюция понятия

Идея о том, что все вещества состоят из мелких, невидимых частиц возникла у людей еще до нашей эры в Древней Индии и Древней Греции. Известный греческий философ Демокрит, будучи одним из первых материалистов, впервые ввел термин «атом» (от греч.atomos- неделимый). Последователь идей Демокрита, Эпикур (341-270 г. до н.э.) впервые высказал предположение об атомном весе.

  

Согласно его теории атом — неделимая частица, которая существует вечно. По теории Демокрита:

  • все тела состоят из бесчисленного количества сверхмалых, невидимых глазом, неделимых частиц-атомов;
  • атомы непрерывно двигаются в пустоте;
  • атомы никто  не создавал, они были всегда;
  • никто не может уничтожить атомы;
  • атомы материальны: имеют вес, размеры, форму;
  • одни атомы имеют крючочки, другие петельки с помощью которых соединяются друг с другом.

Дальнейшее развитие атомизм, как теория, получил в философии и науке Средних веков и Нового времени. В середине XVII в. французский философ и физик Пьер Гассенди (1592—1655) заново пересказал учение Демокрита и Эпикура, дополнив его новым понятием «молекула» для обозначения различного сочетания атомов друг с другом. 

Р. Бойль (1627-1691 г.г.) написал знаменитую книгу «Химик-скептик», в которой доказал нереальность «начал» Аристотеля и ввел представление о химических элементах как о веществах, не поддающихся дальнейшему разложению. Определив задачей химии изучение элементов и их соединений. Р. Бойль поставил ее на научную основу.

Далее атомистическая теория получила свое логическое развитие в работах Ломоносова, Лавуазье, Дальтона и оформилась в атомно-молекулярное учение.

II. Модель Дж. Томсона («сливовый пудинг» или «булочка с изюмом»). Открытие электрона

До 1897 г атом считался мельчайшей неделимой частицей (элементарной). Именно этот год считается датой открытия электрона, первой субатомной частицы. Во второй половине 19 в. многие физики занимались исследованием так называемых  «катодных лучей» — лучей, исходящих с поверхности катода при пропускании электрического разряда между катодом и анодом в стеклянной трубке с сильно разреженным газом.

В своих опытах по отклонению катодных лучей в электрических и магнитных полях, Томсон убедительно показал, что эти лучи представляют собой поток заряженных частиц, а самое главное, ему удалось измерить удельный заряд (e/m) этих частиц. (Он оказался примерно в 2000 раз меньше удельного заряда иона водорода, известного из опытов по электролизу.) Томсон сразу же предположил, что электроны входят в состав атомов – откуда еще им было взяться? Дальнейшие работы ученых-физиков подтвердили это предположение. Таким образом, к концу 19 века электрон считался элементарной заряженной частицей, масса которой в 2000 раз меньше массы атома водорода.

После открытия электрона Томпсон предложил модель строения атома, которую обычно называют «сливовый пудинг» (или «пудинг с изюмом») или на русский манер «булочка с изюмом». Согласно Томпсону атом представляет собой положительно заряженную сферу, в которую вкраплены (как изюм в булочке) отрицательно заряженные электроны. Однако, эта модель была опровергнута опытом Резерфорда.

     

Так по­яви­лась одна из пер­вых мо­де­лей стро­е­ния атома, ко­то­рую пред­ло­жил ан­глий­ский физик Джо­зеф Том­сон (Рис. 1). В со­от­вет­ствии с этой мо­де­лью, атом пред­став­ля­ет собой шар, со­сто­я­щий из по­ло­жи­тель­но за­ря­жен­но­го ве­ще­ства с вкрап­ле­ни­я­ми от­ри­ца­тель­но за­ря­жен­ных элек­тро­нов (на­по­до­бие изюма в биск­ви­те).

Модель строения атома, предложенная Дж. Томсоном

Рис. 1. Мо­дель стро­е­ния атома, пред­ло­жен­ная Дж. Том­со­ном

Осо­бен­ность мо­де­ли Том­со­на за­клю­ча­лась в пред­по­ло­же­нии того, что по­ло­жи­тель­ный заряд «раз­мыт» внут­ри атома и не «вы­ле­та­ет» из него, т. к. об­ла­да­ет зна­чи­тель­но боль­шей мас­сой по срав­не­нию с элек­тро­на­ми.

III. Модель Э. Резерфорда

Сле­ду­ю­щим уди­ви­тель­ным экс­пе­ри­мен­таль­ным фак­том было от­кры­тие Бек­ке­ре­лем в 1896 г. яв­ле­ния ра­дио­ак­тив­но­сти. Было об­на­ру­же­но, что атомы неко­то­рых эле­мен­тов са­мо­про­из­воль­но рас­па­да­ют­ся с об­ра­зо­ва­ни­ем новых ато­мов, элек­тро­нов и α-ча­стиц. Также уста­но­ви­ли, что α-ча­сти­цы имеют по­ло­жи­тель­ный заряд и от­но­си­тель­но боль­шую массу.

В 1911 г англ. учёный Э. Резерфорд доказал  нa опыте, что в центре атома имеется положительно заряженное ядро. 

Например, модель атома азота

С по­мо­щью α-ча­стиц Эр­нест Ре­зер­форд и его уче­ни­ки про­ве­ли экс­пе­ри­мент, ре­зуль­та­ты ко­то­ро­го опро­верг­ли мо­дель стро­е­ния атома Дж. Том­со­на. Ан­гли­ча­нин Эр­нест Ре­зер­форд и его уче­ни­ки по­ста­ви­ли сле­ду­ю­щий экс­пе­ри­мент: на­прав­ля­ли быст­рый поток α-ча­стиц на тон­кую зо­ло­тую фоль­гу. Ока­за­лось, что боль­шин­ство α-ча­стиц про­хо­дит через фоль­гу бес­пре­пят­ствен­но, неболь­шая часть от­кло­ня­ет­ся на раз­лич­ные углы, а при­мер­но 1 на 10 000 ча­стиц от­ска­ки­ва­ет в об­рат­ном на­прав­ле­нии (Рис. 2).

Схема опыта Э. Резерфорда

Рис. 2. Схема опыта Э. Ре­зер­фор­да

Ре­зуль­та­ты опыта про­ти­во­ре­чи­ли мо­де­ли Том­со­на. Ча­сти­ца с боль­шой мас­сой и по­ло­жи­тель­ным за­ря­дом может от­ско­чить назад, если толь­ко встре­тит в ка­че­стве пре­пят­ствия боль­шой по­ло­жи­тель­ный заряд, скон­цен­три­ро­ван­ный в одном месте.

По­ло­жи­тель­ный заряд, скон­цен­три­ро­ван­ный в цен­тре атома, Ре­зер­форд на­звал ядром и пред­ло­жил свою мо­дель стро­е­ния атома: в цен­тре атома на­хо­дит­ся по­ло­жи­тель­но за­ря­жен­ное ядро, во­круг ко­то­ро­го вра­ща­ют­ся от­ри­ца­тель­но за­ря­жен­ные элек­тро­ны (Рис.3). При этом ос­нов­ная масса атома со­сре­до­то­че­на в ядре, масса элек­тро­нов очень мала.

Сум­мар­ный заряд ядра и элек­тро­нов дол­жен быть равен нулю, т. к. атом в целом элек­тро­ней­тра­лен.

Мо­дель Ре­зер­фор­да на­по­ми­на­ет Сол­неч­ную си­сте­му, по­это­му ее на­зва­ли «пла­не­тар­ной».

Планетарная модель атома, предложенная Резерфордом

Рис. 3. Пла­не­тар­ная мо­дель атома, пред­ло­жен­ная Ре­зер­фор­дом

III. Модель Бора (планетарная модель)

В 1913 Нильсом Бором была предложена модель строения атома, известная как «планетарная модель».  По Бору электроны вращаются по орбитам расположены на строго определенном удалении от атомного ядра, точно также как планеты Солнечной системы вращаются вокруг солнца (отсюда и название модели). Эти орбиты (сейчас всем известны как энергетические уровни)- стационарные и вне их электрон существовать не может. К сожалению, объяснить это утверждение Бору на тот момент не удалось. Кроме того, предложенная модель Бора противоречила законам физики:

В начале прошлого века на смену планетарной модели строения атома пришла волновая модель, которая разрешила возникшие противоречия и  на сегодняшний момент считается общепринятой.

Современное представление о строении атома было бы невозможно без открытия явления радиоактивности, элементарных частиц (электрона, протона и нейтрона). Решающий вклад в установлении строения атома внесли Дальтон, Дж.Дж. Томпсон (или Томсон), Э. Резерфорд, Н. Бор, Э. Шредингер, М. Планк, Люис, Паули.

История развития представлений о строении атома условно изображена на схеме ниже:

IV. Современное строение атома

Атом — электронейтрален, то есть количество положительно заряженных частиц в нем равно количеству отрицательно заряженных частиц.

Долгое время считалось, что протоны и нейтроны являются элементарными (то есть неделимыми) частицами. Но на сегодняшний момент признано, что они имеют сложное строение и состоят из кварков. Электрон же до сих пор считается элементарной частицей. Положительно и нейтрально заряженные частицы (протоны и нейтроны, соответственно) сосредоточены в ядре, чья масса составляет около 99,97% от массы атома. Радиус атома, как правило, составляет несколько ангстрем (10−10 м), радиус ядра в 10 000 раз меньше радиуса атома.

Ядро — самая тяжелая и самая маленькая часть атома.

Заряд ядра равен порядковому номеру химического элемента

Из курса физики вам известно, что вокруг положительного ядра находятся отрицательно заряженные частицы электроны — е— . В электронейтральном атоме число электронов должно быть равно заряду ядра и, следовательно, порядковому номеру элемента. Масса электрона очень мала и принимается равной нулю, таким образом, масса атома сосредоточена в ядре, в котором расположены протоны – p+ и нейтроны – n0.

Заряд ядра атома = Порядковому номеру = Числу протонов = Число электронов

Число нейтронов = Атомная масса (Ar) – Порядковый номер

Например, определите состав атома бора?

Бор

N (порядковый номер) – 5

Ar(B) = 11

e=5

p+=5

n0= 11 – 5 = 6

Например:

  1. Изотопы хлора
  2. Изотопы природного водорода: Протий 11 H, Дейтерий 12Н, Тритий 13Н
  3. Модели изотопов водорода

Изотопы одного и того же химического элемента имеют разную массу, так как в ядрах содержится разное количество нейтронов.

Задача:

Какое количество электронов, протонов и нейтронов содержится в изотопах углерода 12 и 13?

Решение:

Дано: 612C и 613C

Для изотопа углерода 12:  

Z→6A→12, порядковый номер N=6, массовое число  A=12

N=N(e¯)=N(p^+)=6 

N(n0) = A — Z = 12 — 6 = 6

Углерод-12 содержит 6 электронов, 6 протонов и 6 нейтронов

Для изотопа углерода 13:

Z→6A→13C, порядковый номер N=6, массовое число  A=13

N=N(e¯)=N(p^+)=6 

N(n0) = A — Z = 13 — 6 = 7

Углерод-13 содержит 6 электронов, 6 протонов и 7 нейтронов

V. Химический элемент

Химический элемент – это вид атомов с одинаковым зарядом ядра.

В природе химические элементы существуют в виде смесей изотопов. Изотопный состав одного и того же химического элемента выражают в атомных долях (ωат.), которые указывают какую часть составляет число атомов данного изотопа от общего числа атомов всех изотопов данного элемента, принятого за единицу или 100%.

Например:

ωат (35Сl) = 0,754 или 75,4%

ωат (37Сl) = 0,246 или 24,6%

В таблице Менделеева приведены средние значения относительных атомных масс химических элементов с учётом их изотопного состава. Поэтому Ar , указанные в таблице являются дробными.

Ar средняя=  ωат.(1) ∙ Ar(1)  + … +  ωат.(n) ∙ Ar(n)

Например:  

Arсредняя (Cl) = 0,754 ∙ 35 + 0,246 ∙ 37 = 35,453

VI. Задания для закрепления

Задание №1. Определите атомный состав изотопов хлора 35Cl и 37Сl. Почему изотопы хлора имеют разное массовое число?

Задание №2. Определите относительную атомную массу элемента кремния, если известно, что он состоит из трёх изотопов: 28Si (атомная доля 92,3%), 29Si (4,7%), 30Si (3%).

ЦОРы

Видео: “Строение атома”

Урок 26. Строение атома. Состав атомных ядер. Изотопы

Строение атома. Состав атомных ядер. Изотопы

К девяностым годам XIX века периодический закон Д. И. Менделеева приобрёл всеобщее научное признание. Созданная периодическая система устанавливала связи между элементами и позволяла предсказывать ещё неоткрытые химические элементы, но не могла объяснить, почему свойства элементов изменяются. Сам Менделеев писал: «Легко предположить, но ныне пока нет ещё возможности доказать, что атомы простых тел суть сложные существа, образованные сложением некоторых ещё меньших частей, что назы-ваемое нами неделимым – неделим только химическими силами, как частицы неделимы в обычных условиях физическими силами… Выставленная мною периодическая зависи-мость между свойствами и весом, по-видимому, подтверждает такое предчувствие».
Предчувствие Менделеева подтвердилось уже на рубеже XIX и XX веков. Открытие радиоактивности Анри Беккерелем и получение радиоактивных химических элемен-тов супругами Кюри показали способность атома к распаду. Джон Джозеф Томпсон открывает электрон – отрицательно заряженную частицу и предлагает модель атома. Эрнест Резерфорд доказывает существование положительного атомного ядра и предлагает планетарную модель атома. Позднее было установлено, что ядра атомов состоят из протонов и нейтронов. Работы Нильса Бора дополнили планетарную модель.
Сегодня мы можем сказать, что атом состоит из ядра и электронной оболочки. В ядре находятся нуклоны – протоны и электроны. Заряд ядра атома определяется числом протонов и совпадает с порядковым номером химического элемента в периодической системе. Заряд ядра атома определяет принадлежность атома к химическому элементу. Атом – электронейтральная частица. Нейтрон и протон имеют приблизительно одинаковую относительную массу, равную 1. Суммарная масса протонов и нейтронов в ядре – это массовое число (A). n0 = A – p+. Состав атома принято указывать с использованием специальной формы записи, где m – массовое число, p – заряд ядра атома, а Э – химический знак элемента
Например, массовое число атома водорода равно единице, заряд ядра атома равен плюс одному
Но существуют другие атомы водорода: дейтерий – тяжелый водород с массовым числом 2 и зарядом ядра плюс один , и сверхтяжёлый – тритий . Все эти разновид-ности являются атомами одного химического элемента – водорода. Они называются изо-топы.
Изотопы – это разновидности атомов одного и того же химического элемента, имеющие одинаковое количество протонов, но разное число нейтронов в ядре.
Изотопы химических элементов применяются в разных областях человеческой деятельности.


  • 1

  • 2

Понравилась статья? Поделить с друзьями:
  • Как составить жалобу на питание в детском саду
  • Как найти свой талисман на удачу
  • Как найти tfc tvc
  • Ошибка 0x80070003 0xa001b windows 10 как исправить
  • Как найти карточку от школы