Как найти базис линейного пространства онлайн

Базисом
в
-мерном пространстве называется упорядоченная система из

линейно-независимых векторов.

Введём также некоторые дополнительные понятия, необходимые для дальнейшего изложения.

Выражение вида:

, где

некоторые числа и

называется
линейной комбинацией
векторов
.

Если существуют такие числа

из которых хотя бы одно не равно нулю (например
) и при этом выполняется равенство:

, то система векторов

является
линейно-зависимой.

Если же указанное равенство выполняется лишь при условии, что все числа
,
тогда система векторов

является
линейно-независимой.

Базис
может образовывать только
линейно-независимая
система векторов. Понятие линейной зависимости/независимости системы векторов, тесно связано с понятием
ранга матрицы.

Наш онлайн калькулятор позволяет проверить образует ли система векторов
базис.
При этом калькулятор выдаёт подробное решение на русском языке.

© 2011-2023 Довжик Михаил
Копирование материалов запрещено.

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Если Вы хотите связаться со мной, имеете вопросы, предложения или хотите помочь развивать сайт OnlineMSchool пишите мне support@onlinemschool.com

This calculator will orthonormalize the set of vectors, i.e. find the orthonormal basis, using the Gram-Schmidt process, with steps shown.

Your Input

Orthonormalize the set of the vectors $$$mathbf{vec{v_{1}}} = left[begin{array}{c}0\3\4end{array}right]$$$, $$$mathbf{vec{v_{2}}} = left[begin{array}{c}1\0\1end{array}right]$$$, $$$mathbf{vec{v_{3}}} = left[begin{array}{c}1\1\3end{array}right]$$$ using the Gram-Schmidt process.

Solution

According to the Gram-Schmidt process, $$$mathbf{vec{u_{k}}} = mathbf{vec{v_{k}}} — sum_{j=1}^{k — 1} text{proj}_{mathbf{vec{u_{j}}}}left(mathbf{vec{v_{k}}}right)$$$, where $$$text{proj}_{mathbf{vec{u_{j}}}}left(mathbf{vec{v_{k}}}right) = frac{mathbf{vec{u_{j}}}cdot mathbf{vec{v_{k}}}}{mathbf{leftlvertvec{u_{j}}rightrvert}^{2}} mathbf{vec{u_{j}}}$$$ is a vector projection.

The normalized vector is $$$mathbf{vec{e_{k}}} = frac{mathbf{vec{u_{k}}}}{mathbf{leftlvertvec{u_{k}}rightrvert}}$$$.

Step 1

$$$mathbf{vec{u_{1}}} = mathbf{vec{v_{1}}} = left[begin{array}{c}0\3\4end{array}right]$$$

$$$mathbf{vec{e_{1}}} = frac{mathbf{vec{u_{1}}}}{mathbf{leftlvertvec{u_{1}}rightrvert}} = left[begin{array}{c}0\frac{3}{5}\frac{4}{5}end{array}right]$$$ (for steps, see unit vector calculator).

Step 2

$$$mathbf{vec{u_{2}}} = mathbf{vec{v_{2}}} — text{proj}_{mathbf{vec{u_{1}}}}left(mathbf{vec{v_{2}}}right) = left[begin{array}{c}1\- frac{12}{25}\frac{9}{25}end{array}right]$$$ (for steps, see vector projection calculator and vector subtraction calculator).

$$$mathbf{vec{e_{2}}} = frac{mathbf{vec{u_{2}}}}{mathbf{leftlvertvec{u_{2}}rightrvert}} = left[begin{array}{c}frac{5 sqrt{34}}{34}\- frac{6 sqrt{34}}{85}\frac{9 sqrt{34}}{170}end{array}right]$$$ (for steps, see unit vector calculator).

Step 3

$$$mathbf{vec{u_{3}}} = mathbf{vec{v_{3}}} — text{proj}_{mathbf{vec{u_{1}}}}left(mathbf{vec{v_{3}}}right) — text{proj}_{mathbf{vec{u_{2}}}}left(mathbf{vec{v_{3}}}right) = left[begin{array}{c}- frac{3}{17}\- frac{4}{17}\frac{3}{17}end{array}right]$$$ (for steps, see vector projection calculator and vector subtraction calculator).

$$$mathbf{vec{e_{3}}} = frac{mathbf{vec{u_{3}}}}{mathbf{leftlvertvec{u_{3}}rightrvert}} = left[begin{array}{c}- frac{3 sqrt{34}}{34}\- frac{2 sqrt{34}}{17}\frac{3 sqrt{34}}{34}end{array}right]$$$ (for steps, see unit vector calculator).

Answer

The set of the orthonormal vectors is $$$left{left[begin{array}{c}0\frac{3}{5}\frac{4}{5}end{array}right], left[begin{array}{c}frac{5 sqrt{34}}{34}\- frac{6 sqrt{34}}{85}\frac{9 sqrt{34}}{170}end{array}right], left[begin{array}{c}- frac{3 sqrt{34}}{34}\- frac{2 sqrt{34}}{17}\frac{3 sqrt{34}}{34}end{array}right]right}approx left{left[begin{array}{c}0\0.6\0.8end{array}right], left[begin{array}{c}0.857492925712544\-0.411596604342021\0.308697453256516end{array}right], left[begin{array}{c}-0.514495755427527\-0.685994340570035\0.514495755427527end{array}right]right}.$$$A

Примеры решений. Линейные пространства

В этом разделе вы найдете бесплатные решения задач о линейных пространствах по темам: проверка линейности подпространства, базис пространства и подпространства, ортогональное подпространство, размерность.

Спасибо за ваши закладки и рекомендации

Решения задач: линейные пространства

Задача 1. Образует ли линейное подпространство пространства $R^4$ множество $V$, заданное по правилу:

$$
V={(x_1, x_2, x_3, x_4): x_1-2x_3=0 };quad V={(x_1, x_2, x_3, x_4): x_3+x_4=1 }.
$$

Задача 2. Даны векторы $e_1, e_2, e_3, e_4$ и $a$ в стандартном базисе пространства $R^4$.
Требуется:
а) убедиться, что векторы $e_1, e_2, e_3, e_4$ образуют базис пространства $R^4$;
б) найти разложение вектора $a$ по этому базису;
в) найти угол между векторами $e_1$ и $e_2$.

$$
e_1=(1,0,-2,3); e_2=(0,1,3,2); e_3=(1,0,0,1); e_4=(2,3,12,2); a=(9,12,5,8).
$$

Задача 3.Найти ортогональный базис подпространства $L$, заданного системой уравнений, и базис подпространства $L^{perp}$

$$
left{
begin{aligned}
x_1+x_2+x_3+x_4+x_5&=0,\
x_1-2x_2+2x_3+x_4-2x_5&=0.\
end{aligned}
right.
$$

Задача 4. Для каждого из следующих множеств геометрических векторов определить, будет ли это множество линейным подпространством пространства $V_3$ :
1) радиус-векторы точек данной плоскости;
2) векторы, образующие с данным ненулевым вектором $overline{a}$ угол $alpha$;
3) множество векторов, удовлетворяющих условию $|overline{x}|=1$ .

Задача 5. Пусть $L$ — множество многочленов степени не выше 2, удовлетворяющих условию $p(1)+p'(1)+p»(1)=0$. Доказать, что $L$ — линейное подпространство в пространстве $P_2$. Найти его базис и размерность. Дополнить базис подпространства до базиса всего пространства.

Задача 6. Образуют ли многочлены $p_1(x)=x^3+x^2-1$, $p_2(x)=x^2-2x$, $p_3(x)=x^3+x$, $p_4(x)=x^2-3$ базис в пространстве $P_3$?

Задача 7. Доказать, что матрицы вида
$$
begin{pmatrix}
2a & a+3b-2c\
b & 5c\
end{pmatrix}
$$
образуют линейное подпространство в пространстве матриц $M_{22}$. Найти его базис и размерность. Дополнить базис подпространства до базиса всего пространства.

Не получаются задачи? Решим подробно и понятно

Размерность и базис линейного пространства

Определения размерности и базиса

Линейное пространство V называется n-мерным, если в нем существует система из n линейно независимых векторов, а любая система из большего количества векторов линейно зависима. Число n называется размерностью (числом измерений) линейного пространства V и обозначается operatorname{dim}V. Другими словами, размерность пространства — это максимальное число линейно независимых векторов этого пространства. Если такое число существует, то пространство называется конечномерным. Если же для любого натурального числа п в пространстве V найдется система, состоящая из n линейно независимых векторов, то такое пространство называют бесконечномерным (записывают: operatorname{dim}V=infty). Далее, если не оговорено противное, будут рассматриваться конечномерные пространства.

Базисом n-мерного линейного пространства называется упорядоченная совокупность n линейно независимых векторов (базисных векторов).

Теорема 8.1 о разложении вектора по базису. Если mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n — базис n-мерного линейного пространства V, то любой вектор mathbf{v}in V может быть представлен в виде линейной комбинации базисных векторов:

mathbf{v}=mathbf{v}_1cdot mathbf{e}_1+mathbf{v}_2cdot mathbf{e}_2+ldots+mathbf{v}_ncdot mathbf{e}_n

(8.4)

и притом единственным образом, т.е. коэффициенты mathbf{v}_1, mathbf{v}_2,ldots, mathbf{v}_n определяются однозначно. Другими словами, любой вектор пространства может быть разложен по базису и притом единственным образом.

Действительно, размерность пространства V равна n. Система векторов mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n линейно независима (это базис). После присоединения к базису любого вектора mathbf{v}, получаем линейно зависимую систему mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n, mathbf{v} (так как это система состоит из (n+1) векторов n-мерного пространства). По свойству 7 линейно зависимых и линейно независимых векторов получаем заключение теоремы.

Следствие 1. Если mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n — базис пространства V, то V=operatorname{Lin} (mathbf{e}_1,mathbf{e}_2, ldots,mathbf{e}_n), т.е. линейное пространство является линейной оболочкой базисных векторов.

В самом деле, для доказательства равенства V=operatorname{Lin} (mathbf{e}_1,mathbf{e}_2, ldots, mathbf{e}_n) двух множеств достаточно показать, что включения Vsubset operatorname{Lin}(mathbf{e}_1,mathbf{e}_2, ldots,mathbf{e}_n) и operatorname{Lin}(mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n)subset V выполняются одновременно. Действительно, с одной стороны, любая линейная комбинация векторов линейного пространства принадлежит самому линейному пространству, т.е. operatorname{Lin}(mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n)subset V. С другой стороны, любой вектор пространства по теореме 8.1 можно представить в виде линейной комбинации базисных векторов, т.е. Vsubset operatorname{Lin}(mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n). Отсюда следует равенство рассматриваемых множеств.

Следствие 2. Если mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n — линейно независимая система векторов линейного пространства V и любой вектор mathbf{v}in V может быть представлен в виде линейной комбинации (8.4): mathbf{v}=v_1mathbf{e}_1+ v_2mathbf{e}_2+ldots+v_nmathbf{e}_n, то пространство V имеет размерность n, а система mathbf{e}_1,mathbf{e}_2, ldots,mathbf{e}_n является его базисом.

В самом деле, в пространстве V имеется система n линейно независимых векторов, а любая система mathbf{u}_1,mathbf{u}_2,ldots,mathbf{u}_n из большего количества векторов (k>n) линейно зависима, поскольку каждый вектор из этой системы линейно выражается через векторы mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n. Значит, operatorname{dim} V=n и mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n — базис V.


Теорема 8.2 о дополнении системы векторов до базиса. Всякую линейно независимую систему k векторов n-мерного линейного пространства (1leqslant k<n) можно дополнить до базиса пространства.

В самом деле, пусть mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_k — линейно независимая система векторов n-мерного пространства V~(1leqslant k<n). Рассмотрим линейную оболочку этих векторов: L_k=operatorname{Lin}(mathbf{e}_1,mathbf{e}_2,ldots, mathbf{e}_k). Любой вектор mathbf{v}in L_k образует с векторами mathbf{e}_1,mathbf{e}_2,ldots, mathbf{e}_k линейно зависимую систему mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_k,mathbf{v}, так как вектор mathbf{v} линейно выражается через остальные. Поскольку в n-мерном пространстве существует n линейно независимых векторов, то L_kne V и существует вектор mathbf{e}_{k+1}in V, который не принадлежит L_k. Дополняя этим вектором линейно независимую систему mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_k, получаем систему векторов mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_k,mathbf{e}_{k+1}, которая также линейно независимая. Действительно, если бы она оказалась линейно зависимой, то из пункта 1 замечаний 8.3 следовало, что mathbf{e}_{k+1}in operatorname{Lin}(mathbf{e}_1, mathbf{e}_2, ldots,mathbf{e}_k)=L_k, а это противоречит условию mathbf{e}_{k+1}notin L_k. Итак, система векторов mathbf{e}_1,mathbf{e}_2,ldots, mathbf{e}_k, mathbf{e}_{k+1} линейно независимая. Значит, первоначальную систему векторов удалось дополнить одним вектором без нарушения линейной независимости. Продолжаем аналогично. Рассмотрим линейную оболочку этих векторов: L_{k+1}=operatorname{Lin} (mathbf{e}_1, mathbf{e}_2,ldots, mathbf{e}_k, mathbf{e}_{k+1}). Если L_{k+1}=V, то mathbf{e}_1,mathbf{e}_2, ldots,mathbf{e}_k, mathbf{e}_{k+1} — базис и теорема доказана. Если L_{k+1}ne V, то дополняем систему mathbf{e}_1,mathbf{e}_2, ldots,mathbf{e}_k,mathbf{e}_{k+1} вектором mathbf{e}_{k+2}notin L_{k+1} и т.д. Процесс дополнения обязательно закончится, так как пространство V конечномерное. В результате получим равенство V=L_n=operatorname{Lin} (mathbf{e}_1,ldots,mathbf{e}_k,ldots,mathbf{e}_n), из которого следует, что mathbf{e}_1,ldots,mathbf{e}_k,ldots,mathbf{e}_n — базис пространства V. Теорема доказана.


Замечания 8.4

1. Базис линейного пространства определяется неоднозначно. Например, если mathbf{e}_1,mathbf{e}_2, ldots, mathbf{e}_n — базис пространства V, то система векторов lambda mathbf{e}_1,lambda mathbf{e}_2,ldots,lambda mathbf{e}_n при любом lambdane0 также является базисом V. Количество базисных векторов в разных базисах одного и того же конечномерного пространства, разумеется, одно и то же, так как это количество равно размерности пространства.

2. В некоторых пространствах, часто встречающихся в приложениях, один из возможных базисов, наиболее удобный с практической точки зрения, называют стандартным.

3. Теорема 8.1 позволяет говорить, что базис — это полная система элементов линейного пространства, в том смысле, что любой вектор пространства линейно выражается через базисные векторы.

4. Если множество mathbb{L} является линейной оболочкой operatorname{Lin}(mathbf{v}_1,mathbf{v}_2,ldots,mathbf{v}_k), то векторы mathbf{v}_1,mathbf{v}_2,ldots,mathbf{v}_k называют образующими множества mathbb{L}. Следствие 1 теоремы 8.1 в силу равенства V=operatorname{Lin} (mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n) позволяет говорить, что базис — это минимальная система образующих линейного пространства V, так как нельзя уменьшить количество образующих (удалить хотя бы один вектор из набора mathbf{e}_1, mathbf{e}_2,ldots,mathbf{e}_n) без нарушения равенства V=operatorname{Lin}( mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n).

5. Теорема 8.2 позволяет говорить, что базис — это максимальная линейно независимая система векторов линейного пространства, так как базис — это линейно независимая система векторов, и ее нельзя дополнить каким-либо вектором без потери линейной независимости.

6. Следствие 2 теоремы 8.1 удобно применять для нахождения базиса и размерности линейного пространства. В некоторых учебниках оно берется за определение базиса, а именно: линейно независимая система mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n векторов линейного пространства называется базисом, если любой вектор пространства линейно выражается через векторы mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n. Количество базисных векторов определяет размерность пространства. Разумеется, что эти определения эквивалентны приведенным выше.


Примеры базисов линейных пространств

Укажем размерность и базис для примеров линейных пространств, рассмотренных выше.

1. Нулевое линейное пространство {mathbf{o}} не содержит линейно независимых векторов. Поэтому размерность этого пространства полагают равной нулю: dim{mathbf{o}}=0. Это пространство не имеет базиса.

2. Пространства V_1,,V_2,,V_3 имеют размерности 1, 2, 3 соответственно. Действительно, любой ненулевой вектор пространства V_1, образует линейно независимую систему (см. пункт 1. замечаний 8.2), а любые два ненулевых век тора пространства V_1 коллинеарны, т.е. линейно зависимы (см. пример 8.1). Следовательно, dim{V_1}=1, а базисом пространства V_1 является любой ненулевой вектор. Аналогично доказывается, что dim{V_2}=2 и dim{V_3}=3. Базисом пространства V_2 служат любые два неколлинеарных вектора, взятые в определенном порядке (один из них считается первым базисным вектором, другой — вторым). Базисом пространства V_3 являются любые три некомпланарных (не лежащих в одной или параллельных плоскостях) вектора, взятые в определенном порядке. Стандартным базисом в V_1 является единичный вектор vec{i} на прямой. Стандартным базисом в V_2 считается базис vec{i},,vec{j}, со стоящий из двух взаимно перпендикулярных единичных векторов плоскости. Стандартным базисом в пространстве V_3 считается базис vec{i},,vec{j},,vec{k}, составленный из трех единичных попарно перпендикулярных векторов, образующих правую тройку.

3. Пространство mathbb{R}^n содержит не более, чем n, линейно независимых векторов. В самом деле, возьмем k столбцов из mathbb{R}^n и составим из них матрицу размеров ntimes k. Если k>n, то столбцы линейно зависимы по теореме 3.4 о ранге матрицы. Следовательно, dim{mathbb{R}^n}leqslant n. В пространстве mathbb{R}^n не трудно найти п линейно независимых столбцов. Например, столбцы единичной матрицы

mathbf{e}_1=begin{pmatrix}1\0\vdots\0end{pmatrix}!,quad mathbf{e}_2= begin{pmatrix}0\1\vdots\0end{pmatrix}!,quad ldots,quad mathbf{e}_n= begin{pmatrix} 0\0\vdots\1 end{pmatrix}!.

линейно независимы. Следовательно, dim{mathbb{R}^n}=n. Пространство mathbb{R}^n называется n-мерным вещественным арифметическим пространством. Указанный набор векторов считается стандартным базисом пространства mathbb{R}^n. Аналогично доказывается, что dim{mathbb{C}^n}=n, поэтому пространство mathbb{C}^n называют n-мерным комплексным арифметическим пространством.

4. Напомним, что любое решение однородной системы Ax=o можно представить в виде x=C_1varphi_1+C_2varphi_2+ldots+C_{n-r}varphi_{n-r}, где r=operatorname{rg}A, a varphi_1,varphi_2,ldots,varphi_{n-r} — фундаментальная система решений. Следовательно, {Ax=o}=operatorname{Lin} (varphi_1,varphi_2,ldots,varphi_{n-r}), т.е. базисом пространства {Ax=0} решений однородной системы служит ее фундаментальная система решений, а размерность пространства dim{Ax=o}=n-r, где n — количество неизвестных, а r — ранг матрицы системы.

5. В пространстве M_{2times3} матриц размеров 2times3 можно выбрать 6 матриц:

begin{gathered}mathbf{e}_1= begin{pmatrix}1&0&0\0&0&0end{pmatrix}!,quad mathbf{e}_2= begin{pmatrix}0&1&0\0&0&0end{pmatrix}!,quad mathbf{e}_3= begin{pmatrix} 0&0&1\0&0&0end{pmatrix}!,hfill\[5pt] mathbf{e}_4= begin{pmatrix} 0&0&0\1&0&0 end{pmatrix}!,quad mathbf{e}_5= begin{pmatrix}0&0&0\0&1&0end{pmatrix}!,quad mathbf{e}_6= begin{pmatrix}0&0&0\0&0&1end{pmatrix}!,hfill end{gathered}

которые линейно независимы. Действительно, их линейная комбинация

alpha_1cdot mathbf{e}_1+alpha_2cdot mathbf{e}_2+alpha_3cdot mathbf{e}_3+ alpha_4cdot mathbf{e}_4+alpha_5cdot mathbf{e}_5+alpha_6cdot mathbf{e}_6= begin{pmatrix}alpha_1&alpha_2&alpha_3\ alpha_4&alpha_5&alpha_6end{pmatrix}

(8.5)

равна нулевой матрице только в тривиальном случае alpha_1=alpha_2= ldots= alpha_6=0. Прочитав равенство (8.5) справа налево, заключаем, что любая матрица из M_{2times3} линейным образом выражается через выбранные 6 матриц, т.е. M_{2times}= operatorname{Lin} (mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_6). Следовательно, dim{M_{2times3}}=2cdot3=6, а матрицы mathbf{e}_1, mathbf{e}_2,ldots,mathbf{e}_6 являются базисом (стандартным) этого пространства. Аналогично доказывается, что dim{M_{mtimes n}}=mcdot n.

6. Для любого натурального n в пространстве P(mathbb{C}) многочленов с комплексными коэффициентами можно найти п линейно независимых элементов. Например, многочлены mathbf{e}_1=1, mathbf{e}_2=z, mathbf{e}_3=z^2,,ldots, mathbf{e}_n=z^{n-1} линейно независимы, так как их линейная комбинация

a_1cdot mathbf{e}_1+a_2cdot mathbf{e}_2+ldots+a_ncdot mathbf{e}_n= a_1+a_2z+ldots+a_nz^{n-1}

равна нулевому многочлену (o(z)equiv0) только в тривиальном случае a_1=a_2=ldots=a_n=0. Поскольку эта система многочленов линейно независима при любом натуральном л, пространство P(mathbb{C}) бесконечномерное. Аналогично делаем вывод о бесконечной размерности пространства P(mathbb{R}) многочленов с действительными коэффициентами. Пространство P_n(mathbb{R}) многочленов степени не выше, чем n, конечномерное. Действительно, векторы mathbf{e}_1=1, mathbf{e}_2=x, mathbf{e}_3=x^2,,ldots, mathbf{e}_{n+1}=x^n образуют базис (стандартный) это го пространства, так как они линейно независимы и любой многочлен из P_n(mathbb{R}) можно представить в виде линейной комбинации этих векторов:

a_nx^n+ldots+a_1x+a_0=a_0cdot mathbf{e}_1+a_1 mathbf{e}_2+ldots+a_ncdot mathbf{e}_{n+1}. Следовательно, dim{P_n(mathbb{R})}=n+1.

7. Пространство C(mathbb{R}) непрерывных функций является бесконечно мерным. Действительно, для любого натурального n многочлены 1,x,x^2,ldots, x^{n-1}, рассматриваемые как непрерывные функции, образуют линейно независимые системы (см. предыдущий пример).

В пространстве T_{omega}(mathbb{R}) тригонометрических двучленов (частоты omegane0) с действительными коэффициентами базис образуют одночлены mathbf{e}_1(t)=sinomega t,~mathbf{e}_2(t)=cosomega t. Они линейно независимы, так как тождественное равенство asinomega t+bcosomega tequiv0 возможно только в тривиальном случае (a=b=0). Любая функция вида f(t)=asinomega t+bcosomega t линейно выражается через базисные: f(t)=a,mathbf{e}_1(t)+b,mathbf{e}_2(t).

8. Пространство mathbb{R}^X действительных функций, определенных на множестве X, в зависимости от области определения X может быть конечномерным или бесконечномерным. Если X — конечное множество, то пространство mathbb{R}^X конечномерное (например, X={1,2,ldots,n}). Если X — бесконечное множество, то пространство mathbb{R}^X бесконечномерное (например, пространство mathbb{R}^N последовательностей).

9. В пространстве mathbb{R}^{+} любое положительное число mathbf{e}_1, не равное единице, может служить базисом. Возьмем, например, число mathbf{e}_1=2. Любое положительное число r можно выразить через mathbf{e}_1, т.е. представить в виде alpha_1cdot mathbf{e}_1colon~ r=2^{log_2r}=log_2rast2=alpha_1ast mathbf{e}_1, где alpha_1=log_2r. Следовательно, размерность этого пространства равна 1, а число mathbf{e}_1=2 является базисом.

10. Пусть mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n — базис вещественного линейного пространства V. Определим на V линейные скалярные функции mathcal{E}_1, mathcal{E}_2,ldots, mathcal{E}_n, положив:

mathcal{E}_i(mathbf{e}_j)=begin{cases}1,&i=j,\ 0,&ine j.end{cases}

При этом, в силу линейности функции mathcal{E}_i, для произвольного вектора mathbf{v}=v_1 mathbf{e}_1+v_2 mathbf{e}_2+ldots+v_n mathbf{e}_n получаем mathcal{E}(mathbf{v})=sum_{j=1}^{n}v_j mathcal{E}(mathbf{e}_j)=v_i.

Итак, определены n элементов (ковекторов) mathcal{E}_1, mathcal{E}_2, ldots, mathcal{E}_n сопряженного пространства V^{ast}. Докажем, что mathcal{E}_1, mathcal{E}_2,ldots, mathcal{E}_n — базис V^{ast}.

Во-первых, покажем, что система mathcal{E}_1, mathcal{E}_2,ldots, mathcal{E}_n линейно независима. В самом деле, возьмем линейную комбинацию этих ковекторов (alpha_1 mathcal{E}_1+ldots+alpha_nmathcal{E}_n)(mathbf{v})= и приравняем ее нулевой функции

mathbf{o}(mathbf{v})~~ (mathbf{o}(mathbf{v})=0~ forall mathbf{v}in V)colon~ alpha_1mathcal{E}_1(mathbf{v})+ldots+alpha_nmathcal{E}_n(mathbf{v})= mathbf{o}(mathbf{v})=0~~forall mathbf{v}in V.

Подставляя в это равенство mathbf{v}=mathbf{e}_i,~ i=1,ldots,n, получаем alpha_1=alpha_2cdot= alpha_n=0. Следовательно, система элементов mathcal{E}_1,mathcal{E}_2,ldots,mathcal{E}_n пространства V^{ast} линейно независима, так как равенство alpha_1mathcal{E}_1+ldots+ alpha_nmathcal{E}_n =mathbf{o} возможно только в тривиальном случае.

Во-вторых, докажем, что любую линейную функцию fin V^{ast} можно представить в виде линейной комбинации ковекторов mathcal{E}_1, mathcal{E}_2,ldots, mathcal{E}_n. Действительно, для любого вектора mathbf{v}=v_1 mathbf{e}_1+v_2 mathbf{e}_2+ldots+v_n mathbf{e}_n в силу линейности функции f получаем:

begin{aligned}f(mathbf{v})&= f(v_1 mathbf{e}_1+ldots+v_n mathbf{e}_n)= v_1 f(mathbf{e}_1)+ldots+v_n f(mathbf{e}_n)= f(mathbf{e}_1)mathcal{E}_1(mathbf{v})+ ldots+ f(mathbf{e}_n)mathcal{E}_n(mathbf{v})=\[2pt] &=(f(mathbf{e}_1)mathcal{E}_1+ldots+ f(mathbf{e}_n)mathcal{E}_n)(mathbf{v})=  (beta_1mathcal{E}_1+ ldots+beta_nmathcal{E}_n) (mathbf{v}),end{aligned}

т.е. функция f представлена в виде линейной комбинации f=beta_1 mathcal{E}_1+ldots+beta_nmathcal{E}_n функций mathcal{E}_1,mathcal{E}_2,ldots, mathcal{E}_n (числа beta_i=f(mathbf{e}_i) — коэффициенты линейной комбинации). Следовательно, система ковекторов mathcal{E}_1, mathcal{E}_2,ldots, mathcal{E}_n является базисом сопряженного пространства V^{ast} и dim{V^{ast}}=dim{V} (для конечномерного пространства V).

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Понравилась статья? Поделить с друзьями:
  • Как составить информационный лист
  • Как составить план хорошей статьи
  • Как найти паралельную линию
  • Как найти наличие товара в магазине
  • Как найти свой потерянный телефон дома