Как найти биссектрису в подобных треугольниках

Подобные треугольники

3 октября 2022

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.

Подобные треугольники — ключевая тема геометрии 8 класса. Они будут преследовать нас до самого конца школы. И сегодня мы разберём всё, что нужно знать о них.

План такой:

  1. Основное определение
  2. Лемма о подобных треугольниках
  3. Свойства подобных треугольников
  4. Разбор задач

1. Основное определение

Определение. Треугольники называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.

Рассмотрим треугольники $ABC$ и $MNK$:

Подобные треугольники коэффициент подобия

У них есть равные углы: $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. И пропорциональные стороны:

[frac{AB}{MN}=frac{BC}{NK}= frac{AC}{MK}= frac{color{red}{3}}{color{red}{2}}]

Следовательно, треугольники $ABC$ и $MNK$ подобны. Записывается это так:

[Delta ABCsim Delta MNK]

Число $k={color{red}{3}}/{color{red}{2}};$ называется коэффициентом подобия. К нему мы ещё вернёмся.

Пропорциональные стороны подобных треугольников (например, $AB$ и $MN$, либо $BC$ и $NK$) в некоторых учебниках называют сходственными. На практике этот термин применяется редко. Мы будем говорить просто «соответственные стороны».

Дальше идёт очень важное замечание.

1.1. Обозначение подобных треугольников

В геометрии один и тот же треугольник можно называть по-разному. Например, $Delta ABC$, $Delta BCA$ или $Delta CAB$ — это всё один и тот же треугольник. То же самое касается и углов.

Но в подобных треугольниках есть негласное правило:

При обозначении подобных треугольников порядок букв выбирают так, чтобы равные углы перечислялись в одной и той же последовательности.

Вернёмся к нашим треугольникам $ABC$ и $MNK$:

Подобные треугольники ABC и MNK

Поскольку $anglecolor{red}{A}=anglecolor{red}{M}$ и $anglecolor{blue}{B}=anglecolor{blue}{N}$, можно записать $Deltacolor{red}{A}color{blue}{B}Csim Deltacolor{red}{M}color{blue}{N}K$. Или $Delta Ccolor{red}{A}color{blue}{B}sim Delta Kcolor{red}{M}color{blue}{N}$. Но никак не $Deltacolor{red}{A}color{blue}{B}Csim Delta Kcolor{red}{M}color{blue}{N}$.

Да, это негласное правило. И если вы нарушите последовательность букв, это не ошибка. Никто не снизит вам за это баллы. А если снизит — добро пожаловать на апелляцию.

Правильная запись позволяет быстро и безошибочно выписывать пропорциональные стороны треугольников. Рассмотрим два подобных треугольника:

[Delta ABCsim Delta MNK]

Берём две первые буквы из каждого треугольника: ${AB}/{MN};$. Затем две последние буквы: ${BC}/{NK};$. Наконец, вычёркиваем «центральную» букву: ${AC}/{MK};$.

Приравниваем полученные три дроби:

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]

Вот и всё! Даже рисунок не нужен! Этот приём настолько прост и эффективен, что его в обязательном порядке изучают на моих занятиях, курсах и вебинарах.

В будущем мы увидим, что подобные треугольники чаще всего ищут как раз для составления таких пропорций.

2. Лемма о подобных треугольниках

Подобные треугольники появляются всякий раз, когда прямая, параллельная стороне треугольника, пересекает его стороны.

Теорема 1. Прямая, пересекающая две стороны треугольника и параллельная третьей стороне, отсекает треугольник, подобный исходному.

Доказательство. Рассмотрим треугольник $ABC$. Пусть прямая $MNparallel AB$ отсекает треугольник $MNC$:

Параллельная прямая отсекает подобный треугольник

Докажем, что $Delta ABCsim Delta MNC$. Рассмотрим треугольники $ABC$ и $MNC$. У них есть общий угол $ACB$.

Углы $ABC$ и $MNC$ — соответственными при $MNparallel AB$ и секущей $BC$. Следовательно, они равны: $angle ABC=angle MNC$.

Аналогично равны углы $BAC$ и $NMC$. Следовательно, треугольники $ABC$ и $MNC$ имеют три соответственно равных угла.

Докажем теперь, что соответственные стороны пропорциональны. Т.е. докажем пропорцию

[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]

Рассмотрим угол $ACB$. Параллельные прямые $AB$ и $MN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:

[frac{AC}{MC}=frac{BC}{NC}]

Это равенство — второе в искомом:

[frac{AB}{MN}= color{red}{frac{BC}{NC}=frac{AC}{MC}}]

Осталось доказать первое равенство. Дополнительное построение: прямая $KNparallel AC$:

Параллельные прямые дополнительное построение

Поскольку $AMparallel KN$ (по построению) и $AKparallel MN$ (по условию), четырёхугольник $AKNM$ — параллелограмм. Поэтому $AK=MN$.

Рассмотрим угол $ABC$. Параллельные прямые $AC$ и $KN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:

[frac{AB}{AK}=frac{BC}{NC}]

Учитывая, что $AK=MN$, получаем

[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]

Итак, соответственные углы треугольников $ABC$ и $MNC$ равны, а их стороны пропорциональны. Следовательно, по определению подобных треугольников

[Delta ABCsim Delta MNC]

Что и требовалось доказать.

Эта лемма — не признак подобия. Это самостоятельная теорема, которая ускоряет решение многих задач.

Признаки подобия разобраны в отдельном уроке — см. «Признаки подобия треугольников».

Частный случай этой леммы — средняя линия. Она отсекает треугольник со сторонами в два раза меньше, чем у исходного:

Средняя линия отсекает подобный треугольник

Оформляется это так. Поскольку $AM=MC$ и $BN=NC$, то $MN$ — средняя линия треугольника $ABC$. Следовательно, прямые $AB$ и $MN$ параллельны, откуда

[Delta ABCsim Delta MNC]

3. Свойства подобных треугольников

Два важнейших свойства: связь периметров и связь площадей.

3.1. Периметры подобных треугольников

Теорема 2. Отношение периметров подобных треугольников равно коэффициенту подобия.

Доказательство. Рассмотрим подобные треугольники $ABC$ и $MNK$:

Подобные треугольники ABC и MNK

Запишем равенство из определения подобия. Поскольку $Delta ABCsimDelta MNK$, стороны этих треугольников пропорциональны:

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]

Здесь число $color{red}{k}$ — коэффициент подобия. Полученное тройное равенство можно переписать так:

[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}; frac{AC}{MK}=color{red}{k}]

Или, что то же самое:

[begin{align}AB&=color{red}{k}cdot MN \ BC &=color{red}{k}cdot NK \ AC &=color{red}{k}cdot MK \ end{align}]

Периметр треугольника $MNK$:

[{{P}_{Delta MNK}}=MN+NK+MK]

Периметр треугольника $ABC$:

[begin{align}{{P}_{Delta ABC}} &=AB+BC+CD= \ &=color{red}{k}cdot MN+color{red}{k}cdot NK+color{red}{k}cdot MK= \ &=color{red}{k}cdot left( MN+NK+MK right)= \ &=color{red}{k}cdot {{P}_{Delta MNK}} end{align}]

Итого получаем равенство

[{{P}_{Delta ABC}}=color{red}{k}cdot {{P}_{Delta MNK}}]

Обычно именно в таком виде это равенство и применяют. Но можно записать его и как отношение:

[frac{{{P}_{Delta ABC}}}{{{P}_{Delta MNK}}}=color{red}{k}]

В любом случае, мы получили отношение, которое и требовалось доказать.

3.2. Площади подобных треугольников

Теорема 3. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Доказательство. Первые шаги очень похожи на доказательство предыдущей теоремы. Вновь рассмотрим подобные треугольники $ABC$ и $MNK$:

Подобные треугольники ABC и MNK

Поскольку $Delta ABCsimDelta MNK$, углы $ABC$ и $MNK$ равны. Следовательно, равны синусы этих углов:

[begin{align}angle ABC &=angle MNK=color{blue}{alpha} \ sin angle ABC &=sin angle MNK=sin color{blue}{alpha} end{align}]

Кроме того, стороны подобных треугольников пропорциональны:

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]

В частности, из этого равенства следует, что

[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}]

Или, что то же самое:

[begin{align}AB &= color{red}{k}cdot MN \ BC &= color{red}{k}cdot NK \ end{align}]

Площадь треугольника $MNK$:

[{{S}_{Delta MNK}}=frac{1}{2}cdot MNcdot NKcdot sin color{blue}{alpha} ]

Площадь треугольника $ABC$:

[begin{align}{{S}_{Delta ABC}} &=frac{1}{2}cdot ABcdot BCcdot sincolor{blue}{alpha} = \ &=frac{1}{2}cdotcolor{red}{k}cdot MNcdotcolor{red}{k}cdot NKcdot sincolor{blue}{alpha} = \ &={color{red}{k}^{2}}cdot frac{1}{2}cdot MNcdot NKcdot sin alpha = \ &={color{red}{k}^{2}}cdot {{S}_{Delta MNK}} end{align}]

Получаем равенство

[{{S}_{Delta ABC}}={color{red}{k}^{2}}cdot {{S}_{Delta MNK}}]

Перепишем в виде отношения:

[frac{{{S}_{Delta ABC}}}{{{S}_{Delta MNK}}}={color{red}{k}^{2}}]

Что и требовалось доказать.

Для доказательства теоремы мы использовали формулу площади треугольника:

[{{S}_{Delta }}=frac{1}{2}absin alpha ]

Тригонометрию проходят после подобия, поэтому мы опираемся на ещё не изученный материал.

Впрочем, ничто не мешает взять уже известную формулу:

[{{S}_{Delta }}=frac{1}{2}ah]

Здесь $a$ — сторона треугольника, $h$ — высота, проведённая к этой стороне. Дело в том, что высоты в подобных треугольниках тоже пропорциональны. И не только высоты. Назовём это Свойством 3.3.:)

3.3. Элементы подобных треугольников

Теорема 4. Отношение высот, биссектрис и медиан, проведённых к соответствующим сторонам подобных треугольников, равно коэффициенту подобия.

Проиллюстрируем это на высотах. Пусть треугольники $ABC$ и $MNK$ подобны:

Подобные треугольники и высоты

В этом случае высоты $CDbot AB$ и $KLbot MN$ относятся как

[frac{CD}{KL}=frac{AB}{MN}= color{red}{k}]

Для доказательства этой теоремы нужно знать признаки подобия. Поэтому оставим его до следующего урока. А сейчас переходим к задачам.

4. Задачи на подобие

Здесь разобрано пять задач на подобие треугольников. Все они довольно простые. За сложными задачами добро пожаловать в задачник.:)

Задача 1. Готовые треугольники

Известно, что треугольники $ABC$ и $MNK$ подобны, причём $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. Кроме того, стороны $AB=6$, $BC=7$, $AC=10$ и $MN=9$. Найдите стороны $NK$ и $MK$.

Решение. Построим треугольники $ABC$ и $MNK$, отметим известные стороны:

Подобные треугольники — задание 1

Из условия $Delta ABCsim Delta MNK$ следует, что верно равенство

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]

Подставим в это равенство всё, что нам известно:

[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}=frac{color{red}{10}}{MK}]

Опустим последнюю дробь и получим пропорцию

[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}]

Найдём сторону $NK$:

[NK=frac{color{red}{9}cdot color{red}{7}}{color{red}{6}}=10,5]

Аналогично, убирая среднюю дробь, получим пропорцию

[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{10}}{MK}]

Найдём сторону $MK$:

[NK=frac{color{red}{9}cdot color{red}{10}}{color{red}{6}}=15]

Ответ: $NK=10,5$, $MK=15$.

Задача 2. Прямая, параллельная стороне

Прямая, параллельная стороне $AC$ треугольника $ABC$, пересекает сторону $AB$ в точке $D$, а сторону $BC$ — в точке $E$. Найдите:

а) Отрезок $BD$, если $AB=16$, $AC=20$, $DE=15$.

б) Отрезок $AD$, если $AB=28$, $BC=63$, $BE=27$.

Решение. Для начала построим рисунок. Он будет общий для обоих пунктов.

Из условия следует, что прямая $DE$ пересекает стороны треугольника $ABC$:

Прямая параллельна стороне треугольника

Поскольку $DEparallel AC$, по лемме о подобных треугольниках прямая $DE$ отсекает от треугольника $ABC$ новый треугольник, подобный исходному:

[Delta ABCsim Delta DBE]

Из подобия треугольников $ABC$ и $DBE$ следует равенство

[frac{AB}{DB}=frac{BC}{BE}=frac{AC}{DE}]

Решаем пункт а). Подставляем в это равенство всё, что нам известно:

[frac{color{red}{16}}{DB}=frac{BC}{BE}=frac{color{red}{20}}{color{red}{15}}]

Вычёркиваем среднюю дробь и получаем пропорцию

[frac{color{red}{16}}{DB}=frac{color{red}{20}}{color{red}{15}}]

Отсюда легко найти $DB$ (или, что то же самое, $BD$):

[DB=frac{color{red}{16}cdotcolor{red}{15}}{color{red}{20}}=12]

Аналогично решаем пункт б). Подставляем в исходное равенство известные величины:

[frac{color{red}{28}}{DB}=frac{color{red}{63}}{color{red}{27}}=frac{AC}{DE}]

Первые две дроби образуют пропорцию, из которой вновь легко найти $DB$:

[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=12]

Осталось найти $AD$:

[begin{align}AD &=AB-BD= \ &=color{red}{28}-color{red}{12}=16 end{align}]

Ответ: а) $BD=12$; б) $AD=16$.

Важное замечание по работе с пропорциями. Ни в коем случае не нужно перемножать числа в числителе.

Напротив: нужно разложить их на множители и сократить!

Взгляните:

[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=frac{4cdotcolor{blue}{7}cdot 3cdotcolor{green}{9}}{color{blue}{7}cdotcolor{green}{9}}=12]

Так вы сэкономите время, избежите умножения столбиком и защитите себя от множества ошибок. Никогда не умножайте большие числа, если дальше их нужно будет сокращать.

Задача 3. Доказательство подобия

Точки $M$ и $K$ — середины сторон $CD$ и $AD$ квадрата $ABCD$ соответственно. Докажите, что треугольники $MDK$ и $BCD$ подобны.

Решение. Сделаем первоначальный рисунок по условию задачи:

Квадрат содержит два подобных треугольника

Здесь нет прямых, параллельных сторонам треугольника, поэтому лемма о подобных треугольниках не поможет. Докажем подобие по определению.

Сначала разберёмся с углами. Поскольку $ABCD$ — квадрат, и $KD=MD$ — половина стороны квадрата, треугольники $MDK$ и $BCD$ — прямоугольные и равнобедренные.

Все острые углы треугольников $MDK$ и $BCD$ равны 45°. Можем записать это так:

[begin{align}angle BCD &=angle MDK={90}^circ \ angle CBD &=angle DMK={45}^circ \ angle CDB &=angle DKM={45}^circ \ end{align}]

Дополнительное построение: диагональ квадрата $color{red}{AC}$:

Квадрат — дополнительное построение диагонали

Рассмотрим треугольник $ACD$. Отрезок $KM$ — средняя линия, поэтому $KM={color{red}{AC}}/{2};$. С другой стороны, $AC=BD$ как диагонали квадрата. Поэтому верно равенство

[frac{KM}{BD}=frac{KM}{color{red}{AC}}=frac{1}{2}]

Но тогда выполняется следующее равенство:

[frac{MD}{BC}=frac{DK}{CD}=frac{MK}{BD}=frac{1}{2}]

А это вместе с равенством углов как раз и означает, что треугольники $MDK$ и $BCD$ подобны:

[Delta MDKsim Delta BCD]

Доказательство завершено.

Мы доказали подобие треугольников по определению. Если пользоваться признаками подобия, всё будет намного быстрее. Но пока мы не вправе пользоваться этими признаками.

Задача 4. Вписанный ромб

В треугольник $ABC$ вписан ромб $BDEK$ так, как показано на рисунке. Найдите сторону ромба, если $AB=10$, $BC=15$.

Решение. Пусть искомая сторона ромба равна $color{red}{x}$. Из условия задачи получим такой рисунок:

Ромб вписан в треугольник

Зная, что $AB=10$ и $BC=15$, выразим $AK$ и $CD$:

[begin{align}AK &=10-color{red}{x} \ CD &=15-color{red}{x} \ end{align}]

Далее рассмотрим треугольник $ABC$. Поскольку $BDEK$ — ромб, то $KEparallel BC$. По лемме о подобных треугольниках имеем:

[Delta ABCsim Delta AKE]

В подобных треугольниках подобные стороны пропорциональны, поэтому

[frac{AB}{AK}=frac{BC}{KE}=frac{AC}{AE}]

Подставим в это равенство всё, что нам известно или выражено через $color{red}{x}$:

[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}=frac{AC}{AE}]

Последняя дробь оказалась бесполезной. Вычеркнем её и получим пропорцию:

[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}]

Применяем основное свойство пропорции и уравнение:

[begin{align}10cdotcolor{red}{x} &=15cdot left( 10- color{red}{x} right) \ 2cdotcolor{red}{x} &=3cdot left( 10- color{red}{x} right) \ &cdots\ color{red}{x} &=6 end{align}]

Это и есть искомая сторона ромба. Она равна $color{red}{x}=6$.

Ответ: $BD=6$.

Задача 5. Свойства биссектрисы

В треугольнике $ABC$ стороны $AB=8$, $BC=12$, угол $ABC={120}^circ $. Отрезок $BD$ — биссектриса. Найдите длину $BD$.

Решение. Из условия задачи можно сделать вот такой рисунок:

Биссектриса в треугольнике

Поскольку $BD$ — биссектриса угла в треугольнике, точка $D$ делит сторону $AC$ на отрезки, пропорциональные сторонам $AB$ и $BC$. Это можно записать так:

[frac{AD}{CD}=frac{AB}{CB}=frac{color{red}{8}}{color{red}{12}}=frac{color{red}{2}}{color{red}{3}}]

Обозначим пропорциональные отрезки переменными. Пусть $AD=color{blue}{2x}$, $CD=color{blue}{3x}$.

Дополнительное построение: прямая $DMparallel AB$:

Дополнительное построение параллельная прямая

Рассмотрим угол $ACB$. Поскольку $DMparallel AB$, по теореме о пропорциональных отрезках получаем, что

[frac{BM}{CM}=frac{AD}{CD}=frac{color{red}{2}}{color{red}{3}}]

Вновь обозначим пропорциональные отрезки переменными. Пусть $BM=color{blue}{2y}$, $CM=color{blue}{3y}$. Но тогда

[BC=BM+MC=color{blue}{5y}=color{red}{12}]

Получаем, что $color{blue}{y}=color{red}{2,4}$. Отсюда легко найти длину $BM$:

[BM=color{blue}{2y}=2cdotcolor{red}{2,4}= color{red}{4,8}]

Далее заметим, что если угол $ABC$ равен 120°, то

[angle ABD=angle CBD={60}^circ ]

С другой стороны, прямые $AB$ и $MD$ параллельны по построению. Прямая $BD$ — секущая для этих параллельных прямых.

Следовательно, углы $ABD$ и $BDM$ — внутренние накрест лежащие, поэтому

[angle BDM=angle ABD={60}^circ ]

Рассмотрим треугольник $BDM$. В нём есть два угла по 60°. Следовательно, это равносторонний треугольник:

[BD=BM=color{red}{4,8}]

Мы нашли длину отрезка $BD$. Задача решена.

Ответ: $BD=4,8$.

Итак, с определением разобрались. В следующем уроке разберём признаки подобия.:)

Смотрите также:

  1. Как применяется теорема косинусов и подобие треугольников для решения широкого класса задач в планиметрии.
  2. Теорема менелая
  3. Комбинаторика в задаче B6: легкий тест
  4. Введение системы координат
  5. Четырехугольная пирамида: как найти координаты вершин
  6. Нестандартная задача B5 на площадь круга

Определение и свойства биссектрисы угла треугольника

В данной публикации мы рассмотрим определение и основные свойства биссектрисы угла треугольника, а также приведем пример решения задачи, чтобы закрепить представленный материал.

Определение биссектрисы угла треугольника

Биссектриса угла – это луч, который берет начала в вершине угла и делит данный угол пополам.

Биссектриса треугольника – это отрезок, соединяющий вершину угла треугольника с противоположной стороной и делящий этот угол на две равные части. Такая биссектриса, также, называется внутренней.

Основание биссектрисы – точка на стороне треугольника, которую пересекает биссектриса. Т.е. в нашем случае – это точка D.

Внешней называется биссектриса угла, смежного с внутренним углом треугольника.

Свойства биссектрисы треугольника

Свойство 1 (теорема о биссектрисе)

Биссектриса угла треугольника делит его противоположную сторону в пропорции, равной отношению прилежащих к данному углу сторон. Т.е. для нашего треугольника (см. самый верхний рисунок):

Свойство 2

Точка пересечения трех внутренних биссектрис любого треугольника (называется инцентром) является центром вписанной в фигуру окружности.

Свойство 3

Все биссектрисы треугольника в точке пересечения делятся в отношении, равном сумме прилежащих к углу сторон, деленной на противолежащую сторону (считая от вершины).

Свойство 4

Если известны длины отрезков, образованных на стороне, которую пересекает биссектриса, а также две другие стороны треугольника, найти длину биссектрисы можно по формуле ниже (следует из теоремы Стюарта):

BD 2 = AB ⋅ BC – AD ⋅ DC

Свойство 5

Внешняя и внутренняя биссектрисы одного и того же угла треугольника перпендикулярны друг к другу.

  • CD – внутренняя биссектриса ∠ACB;
  • CE – биссектриса угла, смежного с ∠ACB;
  • DCE равен 90°, т.е. биссектрисы CD и CE перпендикулярны.

Пример задачи

Дан прямоугольный треугольник с катетами 6 см и 8 см. Найдите длину биссектрисы, проведенной к гипотенузе.

Решение
Нарисуем чертеж согласно условиям задачи.

Применив теорему Пифагора мы можем найти длину гипотенузы (ее квадрат равен сумме квадратов двух катетов).
BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100.
Следовательно, BC = 10 см.

Далее составляем пропорцию согласно Свойству 1, условно приняв отрезок BD на гипотенузе за “a” (тогда DC = “10-a”):

Избавляемся от дробей и решаем получившееся уравнение:
8a = 60 – 6a
14a = 60
a ≈ 4,29

Таким образом, BD ≈ 4,29 см, CD ≈ 10 – 4,29 ≈ 5,71 см.

Теперь мы можем вычислить длину биссектрисы, использую формулу, приведенную в Свойстве 4:
AD 2 = AB ⋅ AC – BD ⋅ DC = 6 ⋅ 8 – 4,29 ⋅ 5,71 ≈ 23,5.

Элементы треугольника. Биссектриса

Биссектриса треугольника – отрезок биссектрисы угла треугольника, заключенный между вершиной треугольника и противолежащей ей стороной.

Свойства биссектрисы

1. Биссектриса треугольника делит угол пополам.

2. Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон ()

3. Точки биссектрисы угла треугольника равноудалены от сторон этого угла.

4. Биссектрисы внутренних углов треугольника пересекаются в одной точке — центре вписанной в этот треугольник окружности.

Некоторые формулы, связанные с биссектрисой треугольника

(доказательство формулы – здесь)
, где
— длина биссектрисы, проведённой к стороне ,
— стороны треугольника против вершин соответственно,
— длины отрезков, на которые биссектриса делит сторону ,

Приглашаю посмотреть видеоурок, в котором демонстрируется применение всех указанных выше свойств биссектрисы.

Задачи, рассматриваемые в видеоролике:
1.В треугольнике АВС со сторонами АВ=2 см, ВС=3 см, АС=3 см проведена биссектриса ВМ. Найти длины отрезков АМ и МС
2. Биссектриса внутреннего угла при вершине А и биссектриса внешнего угла при вершине С треугольника АВС пересекаются в точке М. Найдите угол BMC, если угол В равен 40, угол С – 80 градусов
3. Найти радиус окружности, вписанной в треугольник, считая стороны квадратных клеток равными 1

Возможно, вам будет интересен и этот небольшой видеоурок, где применяется одно из свойств биссектрисы

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Подобие треугольников — признаки и свойства с доказательствами и примерами решения

Содержание:

Теорема Фалеса. Теорема о пропорциональных отрезках

Теорема 11.1 (теорема Фалеса). Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Доказательство. Пусть дан угол АОВ (рис. 112). Известно, что

Докажем, что

Предположим, что Пусть серединой отрезка является некоторая точка Тогда отрезок — средняя линия треугольника

Отсюда
Значит, через точку проходят две прямые, параллельные прямой что противоречит аксиоме параллельности прямых. Мы получили противоречие. Следовательно,

Предположим, что Пусть серединой отрезка является некоторая точка Тогда отрезок — средняя линия трапеции Отсюда Значит, через точку проходят две прямые, параллельные прямой Мы пришли к противоречию. Следовательно,
Аналогично можно доказать, что и т. д.

Определение. Отношением двух отрезков называют отношение их длин, выраженных в одних и тех же единицах измерения.

Фалес Милетский
(ок. 625 — ок. 547 до н. э.)

Древнегреческий философ, ученый, купец и государственный деятель. Родом из Милета — порта в Малой Азии на побережье Эгейского моря.

Если, например, АВ = 8 см, CD = 6 см, то отношение отрезка АВ к отрезку CD равно Записывают:
Если то говорят, что отрезки АВ и CD пропорциональны соответственно отрезкам

Аналогично можно говорить о пропорциональности большего количества отрезков. Например, если то говорят, что отрезки АВ, CD, MN пропорциональны соответственно отрезкам

Теорема 11.2 (теорема о пропорциональных отрезках). Если параллельные прямые пересекают стороны угла, то отрезки, образовавшиеся на одной стороне угла, пропорциональны соответствующим отрезкам, образовавшимся на другой стороне угла.

Доказательство этой теоремы выходит за рамки школьного курса геометрии. Мы приведем доказательство для частного случая.

Пусть стороны угла MON пересечены параллельными прямыми (рис. 113). Докажем, что:
Докажем первое из этих равенств (остальные два можно доказать аналогично).

Пусть для отрезков ОА и АВ существует такой отрезок длиной , который укладывается целое число раз в каждом из них. Имеем: — некоторые натуральные числа.

Тогда отрезки ОА и АВ можно разделить соответственно на равных отрезков, каждый из которых равен .

Через концы полученных отрезков проведем прямые, параллельные прямой
(рис. 114). По теореме Фалеса эти прямые делят отрезки соответственно на равных отрезков. Пусть каждый из этих отрезков равен Отсюда

Имеем: Отсюда Тогда

Почему же приведенные рассуждения нельзя считать полным доказательством теоремы? Дело в том, что не для любых двух отрезков существует отрезок, который укладывается в каждом из них целое число раз. В частности, для отрезков ОА и АВ такой отрезок может и не существовать. Доказательство для этого случая выходит за пределы рассматриваемого курса.

Если рисунок 113 дополнить прямой параллельной прямой (рис. 115), то, рассуждая аналогично, получим, например, что

Теорема 11.2 остается справедливой, если вместо сторон угла взять две любые прямые.

Теорема 11.3. Все три медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины треугольника.

Доказательство. На рисунке 116 медианы треугольника АВС пересекаются в точке М. Докажем, что медиана также проходит через точку М и
Проведем Поскольку то по теореме Фалеса то есть Поскольку

По теореме о пропорциональных отрезках

Таким образом, медиана пересекая медиану делит ее в отношении 2:1, считая от вершины В.
Аналогично можно доказать (сделайте это самостоятельно), что медиана также делит медиану в отношении 2:1, считая от вершины В (рис. 117).

А это означает, что все три медианы треугольника АВС проходят через одну точку. Мы доказали, что эта точка делит медиану в отношении 2:1.

Аналогично можно доказать, что эта точка делит в отношении 2 : 1 также медианы и

На рисунке 118 изображен треугольник АВС. Точка D принадлежит стороне АС. В этом случае говорят, что стороны АВ и ВС прилежат соответственно к отрезкам AD и DC.

Теорема 11.4 (свойство биссектрисы треугольника). Биссектриса треугольника делит его сторону на отрезки, пропорциональные прилежащим к ним сторонам.

Доказательство. На рисунке 119 отрезок BD — биссектриса треугольника АВС. Докажем, что

Через точку С проведем прямую СЕ, параллельную прямой BD. Пусть проведенная прямая пересекает прямую АВ в точке Е. Углы 1 и 2 равны как накрест лежащие при параллельных прямых BD и СЕ и секущей ВС; утлы 3 и 4 равны как соответственные при параллельных прямых BD и СЕ и секущей АЕ. Поскольку BD — биссектриса треугольника АВС, то Отсюда Тогда треугольник СВЕ — равнобедренный с равными сторонами ВС и BE. По теореме о пропорциональных отрезках Поскольку BE = ВС, то

Пример:

Разделите данный отрезок на три равных отрезка.

Решение:

Через конец А данного отрезка АВ проведем луч АС, не принадлежащий прямой АВ (рис. 120). Отметим на луче АС произвольную точку А1. Затем отметим точки так, чтобы Проведем отрезок А2В. Через точки A1 и А2 проведем прямые, параллельные прямой Они пересекут отрезок АВ в точках В1 и В2 соответственно. По теореме Фалеса

Подобные треугольники

На рисунке 128 вы видите уменьшенное изображение обложки учебника по геометрии. Вообще в повседневной жизни часто встречаются объекты, имеющие одинаковую форму, но разные размеры (рис. 129).

Геометрические фигуры, которые имеют одинаковую форму, называют подобными. Например, подобными являются любые две окружности, два квадрата, два равносторонних треугольника (рис. 130).

На рисунке 131 изображены треугольники у которых равны углы:

Стороны лежат против равных углов Такие стороны называют соответственными. Соответственными также являются стороны

Определение. Два треугольника называют подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны соответственным сторонам другого треугольника.

Например, на рисунке 132 изображены треугольники у которых и По определению эти треугольники подобны. Пишут: (читают: «треугольник АВС подобен треугольнику »).

Число 2, которому равно отношение соответственных сторон, называют коэффициентом подобия. Говорят, что треугольник АВС подобен треугольнику с коэффициентом подобия, равным 2.
Пишут:
Поскольку то можно также сказать, что треугольник подобен треугольнику АВС с коэффициентом Пишут:

Из определения равных треугольников следует, что любые два равных треугольника подобны с коэффициентом подобия, равным 1.

Если

Докажите это свойство самостоятельно.

Лемма 1 о подобных треугольниках. Прямая, параллельная стороне треугольника и пересекающая две другие его стороны, отсекает от данного треугольника ему подобный.

1 Леммой называют вспомогательную теорему, которую используют для доказательства других теорем.

Доказательство. На рисунке 133 изображен треугольник АВС, отрезок параллелен стороне АС. Докажем, что

Углы равны как соответственные при параллельных прямых и секущих АВ и СВ соответственно. Следовательно, углы рассматриваемых треугольников соответственно равны.

Покажем, что стороны ВА и ВС пропорциональны соответственно сторонам
Из теоремы о пропорциональных отрезках (теорема 11.2) следует, что Отсюда

Проведем Получаем: По определению четырехугольник — параллелограмм. Тогда Отсюда
Таким образом, мы доказали, что
Следовательно, в треугольниках углы соответственно равны и соответственные стороны пропорциональны. Поэтому по определению эти треугольники подобны.

Пример:

Докажите, что отношение периметров подобных треугольников равно коэффициенту подобия.

Решение:

Пусть треугольник подобен треугольнику АВС с коэффициентом подобия k. Тогда откуда

Пусть Р1 — периметр треугольника Р — периметр треугольника АВС. Имеем: то есть

Первый признак подобия треугольников

Если для треугольников выполняются условия то по определению эти треугольники подобны.

Можно ли по меньшему количеству условий определять подобие треугольников? На этот вопрос отвечают признаки подобия треугольников.

Теорема 13.1 (первый признак подобия треугольников: по двум углам). Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Доказательство. Рассмотрим треугольники , у которых Докажем, что

Если то треугольники равны по второму признаку равенства треугольников, а следовательно, эти треугольники подобны.

Пусть, например, Отложим на стороне ВА отрезок равный стороне Через точку проведем прямую параллельную стороне АС (рис. 140).

Углы — соответственные при параллельных прямых и секущей Отсюда Але Получаем, что Таким образом, треугольники и равны по второму признаку равенства треугольников. По лемме о подобных треугольниках Следовательно,

Пример №1

Средняя линия трапеции равна 24 см, а ее диагонали пересекаются в точке О. Найдите основания трапеции, если АО : ОС = 5:3.

Решение:

Рассмотрим треугольники AOD и СОВ (рис. 141). Углы AOD и ВОС равны как вертикальные, углы CAD и АСВ равны как накрест лежащие при параллельных прямых ВС и AD и секущей АС. Следовательно, треугольники AOD и СОВ подобны по двум углам.
Тогда
Пусть ВС = Зх см, тогда AD = 5х см.
Поскольку средняя линия трапеции равна 24 см, то ВС + AD = 48 см.
Имеем: Зх + 5х = 48. Отсюда х = 6.
Следовательно, ВС = 18 см, AD = 30 см.
Ответ: 18 см, 30 см.

Пример №2 (свойство пересекающихся хорд)

Докажите, что если хорды АВ и CD окружности пересекаются в точке М, то AM • МВ = DM • МС (рис. 142).

Решение:

Рассмотрим треугольники АСМ и DBM. Углы 3 и 4 равны как вертикальные, углы 1 и 2 равны как вписанные углы, опирающиеся на одну и ту же дугу. Следовательно, треугольники АСМ и DBM подобны по первому признаку подобия треугольников.

Тогда
Отсюда AM • МВ = DM • МС.

Пример №3 (свойство касательной и секущей)

Докажите, что если через точку А к окружности проведены касательная AM (М — точка касания) и прямая (секущая), пересекающая окружность в точках В и С (рис. 143), то

Решение:

Рассмотрим треугольники AMВ и АСМ. У них угол А общий. По свойству угла между касательной и хордой (см. ключевую задачу 1 п. 9) Угол МСВ — вписанный угол, опирающийся на дугу МВ, поэтому Отсюда Следовательно, треугольники АМВ и АСМ подобны по первому признаку подобия треугольников. Тогда
Отсюда

Теорема Менелая

Точки, принадлежащие одной прямой, называют коллинеарными. Две точки коллинеарны всегда.

В этом рассказе вы узнаете об одной знаменитой теореме, которая служит критерием коллинеарности трех точек. Эта теорема носит имя древнегреческого математика и астронома Менелая Александрийского ( вв. н. э.).

Теорема Менелая. На сторонах АВ и ВС треугольника АВС отметили соответственно точки а на продолжении стороны АС — точку Для того чтобы точки лежали на одной прямой, необходимо и достаточно, чтобы выполнялось равенство

Доказательство. Сначала докажем необходимое условие коллинеарности: если точки лежат на одной прямой, то выполняется равенство (*).
Из вершин треугольника АВС опустим перпендикуляры AM, BN и СР на прямую (рис. 153, а). Поскольку то треугольники АМС1 и BNC1 подобны по первому признаку подобия треугольников. Отсюда
Из подобия треугольников BNA1 и СРА1 получаем:
Из подобия треугольников следует равенство

Перемножив почленно левые и правые части пропорции

получаем равенство

Теперь докажем достаточное условие коллинеарности: если выполняется равенство (*), то точки лежат на одной прямой.
Пусть прямая пересекает сторону ВС треугольника АВС в некоторой точке A2 (рис. 153, б). Поскольку точки лежат на одной прямой, то из доказанного выше можно записать:

Сопоставляя это равенство с равенством (*), приходим к выводу, что то есть точки делят отрезок ВС в одном и том же отношении, а значит, эти точки совпадают. Отсюда следует, что прямая пересекает сторону ВС в точке
Заметим, что теорема остается справедливой и тогда, когда точки лежат не на сторонах треугольника АВС, а на их продолжениях (рис. 154).

Теорема Птолемея

Теорема Птолемея. Произведение диагоналей вписанного в окружность четырехугольника равно сумме произведений его противолежащих сторон.

Клавдий Птолемей
(ок. 100 — ок. 178)

Древнегреческий математик и астроном. Автор геоцентрической модели мира. Разработал математическую теорию движения планет, позволяющую вычислять
их положение. Создал прообраз современной системы координат.

Доказательство. На рисунке 158 изображен вписанный в окружность четырехугольник ABCD. Докажем, что

На диагонали АС отметим точку К так, что Углы 3 и 4 равны как вписанные углы, опирающиеся на одну и ту же дугу. Следовательно, треугольники АВК и DBC подобны по первому признаку подобия треугольников. Отсюда то есть

Поскольку Углы 5 и 6 равны как вписанные углы, опирающиеся на одну и ту же дугу. Поэтому Отсюда то есть

Сложив равенства (1) и (2), получаем:

Второй и третий признаки подобия треугольников

Теорема 14.1 (второй признак подобия треугольников: по двум сторонам и углу между ними). Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.

Доказательство. Рассмотрим треугольники в которых Докажем, что

Если k = 1, то а следовательно, треугольники равны по первому признаку равенства треугольников, поэтому эти треугольники подобны.

Пусть, например, k > 1, то есть и На сторонах ВА и ВС отметим соответственно точки так, что (рис. 160). Тогда

Покажем, что Предположим, что это не так. Тогда на стороне ВС отметим точку М такую, что
Имеем: тогда то есть
Следовательно, буквами М и С2 обозначена одна и та же точка. Тогда
По лемме о подобных треугольниках получаем, что

Треугольники равны по первому признаку равенства треугольников. Отсюда

Теорема 14.2 (третий признак подобия треугольников: по трем сторонам). Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Доказательство. Рассмотрим треугольники в которых Докажем, что

Если k = 1, то треугольники равны по третьему признаку равенства треугольников, а следовательно, эти треугольники подобны.

Пусть, например, k > 1. На сторонах ВА и ВС отметим соответственно точки такие, что (рис. 161). Тогда

В треугольниках угол В общий, прилежащие к нему стороны пропорциональны. Следовательно, по второму признаку подобия треугольников эти треугольники подобны, причем коэффициент подобия равен k. Тогда

Учитывая, что по условию получаем:
Следовательно, треугольники равны по третьему признаку равенства треугольников. С учетом того, что получаем:

Пример №4

Докажите, что отрезок, соединяющим основания двух высот остроугольного треугольника, отсекает от данного треугольника ему подобный.

Решение:

На рисунке 162 отрезки — высоты треугольника АВС. Докажем, что
В прямоугольных треугольниках острый угол В общий. Следовательно, треугольники подобны по первому признаку подобия треугольников. Отсюда

Тогда Угол В — общий для треугольников Следовательно, треугольники АВС и подобны по второму признаку подобия треугольников.

Прямая Эйлера

Точка пересечения серединных перпендикуляров сторон треугольника — это центр окружности, описанной около треугольника. Обозначим эту точку буквой О.

Точка пересечения биссектрис треугольника — это центр вписанной окружности. Обозначим эту точку буквой J.

Точку пересечения прямых, содержащих высоты треугольника, называют ортоцентром треугольника. Обозначим эту точку буквой Н.

Точку пересечения медиан треугольника называют центроидом треугольника. Обозначим эту точку буквой М.

Точки О, J, Н, М называют замечательными точками треугольника.

Использование такого эмоционального эпитета вполне обосновано. Ведь эти точки обладают целым рядом красивых свойств. Разве не замечательно уже хотя бы то, что они существуют в любом треугольнике?

Рассмотрим одну из многих теорем о замечательных точках треугольника.

Теорема. В любом треугольнике центр описанной окружности, центроид и ортоцентр лежат на одной прямой.

Эту прямую называют прямой Эйлера.

Леонард Эйлер (1707-1783)
Выдающийся математик, физик, механик, астроном.

Доказательство. Для равнобедренного треугольника доказываемое утверждение очевидно.
Если данный треугольник АВС прямоугольный то его ортоцентр — это точка С, центр описанной окружности — середина гипотенузы АВ. Тогда понятно, что все три точки, о которых идет речь в теореме, принадлежат медиане, проведенной к гипотенузе.

Докажем теорему для остроугольного разностороннего треугольника.

Лемма. Если Н — ортоцентр треугольника ABC, — перпендикуляр, опущенный из центра О описанной окружности на сторону ВС, то АН = (рис. 167).

Доказательство. Выполним дополнительное построение, уже знакомое вам из решения ключевой задачи пункта 2: через каждую вершину треугольника АВС проведем прямую, параллельную противолежащей стороне. Получим треугольник (рис. 167). В указанной ключевой задаче было показано, что ортоцентр Н треугольника АВС является центром описанной окружности треугольника . Для этой окружности угол является центральным, а угол — вписанным. Поскольку оба угла опираются на одну и ту же дугу, то Углы ВАС и равны как противолежащие углы параллелограмма поэтому Поскольку то равнобедренные треугольники подобны с коэффициентом подобия 2. Поскольку отрезки АН и — соответственные высоты подобных треугольников, то АН =
Докажем теперь основную теорему.

Поскольку точка М1 — середина стороны ВС, то отрезок AM1 — медиана треугольника АВС (рис. 168). Пусть М — точка пересечения отрезков Поскольку то Углы равны как вертикальные. Следовательно, треугольники подобны по первому признаку подобия треугольников. Отсюда Значит, точка М делит медиану в отношении 2:1, считая от вершины А. Отсюда точка М — центроид треугольника АВС.
Доказательство для случая тупоугольного треугольника аналогично.

Обратим внимание на то, что мы не только установили факт принадлежности точек О, М, Н одной прямой, но и доказали равенство НМ = 2МО,
которое является еще одним свойством замечательных точек треугольника.

Напомню:

Теорема Фалеса

  • Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Теорема о пропорциональных отрезках

  • Если параллельные прямые пересекают стороны угла, то отрезки, образовавшиеся на одной стороне угла, пропорциональны соответствующим отрезкам, образовавшимся на другой стороне угла.

Свойство медиан треугольника

  • Все три медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины треугольника.

Свойство биссектрисы треугольника

  • Биссектриса треугольника делит его сторону на отрезки, пропорциональные прилежащим к ним сторонам.

Подобные треугольники

  • Два треугольника называют подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны соответственным сторонам другого треугольника.

Лемма о подобных треугольниках

  • Прямая, параллельная стороне треугольника и пересекающая две другие его стороны, отсекает от данного треугольника ему подобный.

Первый признак подобия треугольников: по двум углам

  • Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Второй признак подобия треугольников: по двум сторонам и углу между ними

  • Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.

Третий признак подобия треугольников: по трем сторонам

  • Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Обобщенная теорема Фалеса

Напомним, что отношением отрезков и называют отношение их длин, то есть

Говорят, что отрезки и пропорциональные отрезкам и

Например, если

то действительно

Понятие пропорциональности применили и к большему количеству отрезков. Например, три отрезка и пропорциональны трем отрезкам и если

Обобщенная теорема Фалеса (теорема о пропорциональных отрезках). Параллельные прямые, пересекающие стороны угла, отсекают на его сторонах пропорциональные отрезки.

Доказательство:

Пусть параллельные прямые и пересекают стороны угла (рис. 123). Докажем, что

1) Рассмотрим случай, когда длины отрезков и являются рациональными числами (целыми или дробными). Тогда существует отрезок длины который можно отложить целое число раз и на отрезке и на отрезке

Пусть и — рациональные числа. Запишем их в виде дробей с одинаковыми знаменателями: Поэтому

Имеем:

2) Разделим отрезок на равных частей длины а отрезок — на равных частей длины Проведем через точки деления прямые, параллельные прямой (рис. 123). По теореме Фалеса они разобьют отрезок на равных отрезков длины причем будет состоять из таких отрезков, а — из таких отрезков.

Имеем:

3) Найдем отношение и Будем иметь:

и

Следовательно,

Учитывая, что в пропорции средние члены можно поменять местами, из доказанного равенства приходим к следующему.

Следствие 1.

Следствие 2.

Доказательство:

Поскольку то

Прибавим к обеим частям этого равенства по единице:

то есть

Учитывая, что

будем иметь:

Откуда

Рассмотрим, как построить один из четырех отрезков, образующих пропорцию, если известны три из них.

Пример №5

Дано отрезки Постройте отрезок

Решение:

Поскольку то и

Для построения отрезка можно использовать как обобщенную теорему Фалеса, так и одно из ее следствий. Используем, например, следствие 1.

1) Строим неразвернутый угол с вершиной (рис. 124). Откладываем на одной его стороне отрезок а на другой — отрезки и

2) Проведем прямую Через точку параллельно проведем прямую, точку пересечения которой со стороной угла обозначим через то есть

3) По следствию 1 из обобщенной теоремы Фалеса имеем:

откуда Следовательно,

Построенный отрезок называют четвертым пропорциональным отрезков и так как для этих отрезков верно равенство:

Отношения и пропорции в геометрии использовались с давних времен. Об этом свидетельствуют древнеегипетские храмы, детали гробницы Менеса в Накаде и знаменитых пирамид в Гизе (III тысячелетие до н. э.), персидские дворцы, древнеиндийские достопримечательности и другие памятники древности.

В седьмой книге «Начал» Евклид изложил арифметическую теорию учения об отношениях, которую применил только к соразмерным величинам и целым числам. Эта теория создана на основе практики действий с дробями и применялась для исследования свойств целых чисел.

В пятой книге Евклид изложил общую теорию отношений и пропорций, которую примерно за 100 лет до него разработал древнегреческий математик, механик и астроном Евдокс (408 г. — 355 г. до н. э.). Эта теория легла в основу учения о подобии фигур, изложенного Евклидом в шестой книге «Начал», где также была решена и задача о делении отрезка в данном отношении.

Пропорциональность отрезков прямых, пересеченных несколькими параллельными прямыми, была известна еще вавилонским ученым, хотя многие историки-математики заслугу данного открытия приписывают Фалесу Милетскому.

Подобные треугольники

В повседневной жизни нам встречаются предметы одинаковой формы, но разных размеров, например футбольный мяч и металлический шарик, картина и ее фотоснимок, самолет и его модель, географические карты разного масштаба. В геометрии фигуры одинаковой формы принято называть подобными. Так, подобными являются все квадраты, все окружности, все отрезки.

Два треугольника называют подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сторонам другого.

Это значит, что если треугольники и подобны (рис. 127), то

и

Пусть значение каждого из полученных отношений соответствующих сторон равно Число называют коэффициентом подобия треугольника к треугольнику или коэффициентом подобия треугольников и

Подобие треугольников принято обозначать символом В нашем случае Заметим, что из соотношения следует соотношение

Пример №6

Докажите, что отношение периметров подобных треугольников равно отношению соответствующих сторон этих треугольников.

Доказательство:

Пусть и

Тогда

Пример №7

Стороны треугольника относятся как 4 : 7 : 9, а большая сторона подобного ему треугольника равна 27 см. Найдите две другие стороны второго треугольника.

Решение:

Так как по условию и то

Обозначим По условию тогда (см). Имеем:

Ответ. 12 см, 21 см.

Заметим, что подобные треугольники легко создавать с помощью современных компьютерных программ, в частности графических редакторов. Для этого достаточно построенный треугольник растянуть или сжать, «потянув» за один из угловых маркеров.

Одинаковые по форме, но разные по величине фигуры использовались еще в вавилонской и египетской архитектурах. В сохранившейся погребальной камере отца фараона Рамзеса II есть стена, покрытая сеткой квадратиков, с помощью которой на стену перенесены в увеличенном виде рисунки меньших размеров.

Учение о подобии фигур на основе теории отношений и пропорций было создано в Древней Греции в V-IV вв. до н. э. трудами Гиппократа Хиосского, Архита Тарентского, Евдокса Книдского и других. Обобщил эти сведения Евклид в шестой книге «Начал». Начинается теория подобия следующим определением:

«Подобные прямолинейные фигуры — суть те, которые имеют соответственно равные углы и пропорциональные стороны».

Признаки подобия треугольников

Подобие треугольников, как и равенство треугольников, можно установить с помощью признаков.

Прежде чем их рассмотреть, сформулируем и докажем лемму, то есть вспомогательное утверждение, являющееся верным и используемое для доказательства одной или нескольких теорем.

Лемма. Прямая, параллельная стороне треугольника, отрезает от него подобный ему треугольник.

Доказательство:

Пусть прямая пересекает стороны и треугольника соответственно в точках и (рис. 129). Докажем, что

1) — общий для обоих треугольников, (как соответственные углы при параллельных прямых и и секущей (аналогично, но для секущей Следовательно, три угла треугольника равны трем углам треугольника

2) По следствию 2 из обобщенной теоремы Фалеса имеем:

3) Докажем, что

Через точку проведем прямую, параллельную и пересекающую в точке Так как — параллелограмм, то По обобщенной теореме Фалеса:

Прибавим число 1 к обеим частям этого равенства. Получим:

Но Следовательно,

4) Окончательно имеем: и а значит,

Теорема 1 (признак подобия треугольников по двум сторонам и углу между ними). Если две стороны одного треугольника пропорциональны двум сторонам другого и углы, образованные этими сторонами, равны, то треугольники подобны.

Доказательство:

Рассмотрим треугольники и у которых и (рис. 130). Докажем, что

1) Отложим на стороне треугольника отрезок и проведем через прямую, параллельную (рис. 131). Тогда (по лемме).

2) По следствию 2 из обобщенной теоремы Фалеса Но (по построению). Поэтому По условию следовательно, откуда

3) Так как и то (по двум сторонам между ними).

AAjBjCj (по двум сторонам и углу между ними).

4) Но следовательно,

Следствие 1. Два прямоугольных треугольника подобны, если катеты одного пропорциональны катетам другого.

Следствие 2. Если угол при вершине одного равнобедренного треугольника равен углу при вершине другого равнобедренного треугольника, то эти треугольники подобны.

Теорема 2 (признак подобия треугольников по двум углам). Если два угла одного треугольника соответственно равны двум углам другого треугольника, то эти треугольники подобны.

Доказательство:

Рассмотрим треугольники и у которых (рис. 130).

1) Выполним построения, аналогичные тем, что в доказательстве теоремы 1 (рис. 131). Имеем:

2) но Поэтому

3) Тогда (по стороне и двум прилежащим углам).

4) Следовательно,

Следствие 1. Равносторонние треугольники подобны.

Следствие 2. Если угол при основании одного равнобедренного треугольника равен углу при основании другого равнобедренного треугольника, то эти треугольники подобны.

Следствие 3. Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то эти треугольники подобны.

Теорема 3 (признак подобия треугольников по трем сторонам). Если три стороны одного треугольника пропорциональны трем сторонам другого, то эти треугольники подобны.

Доказательство:

Рассмотрим треугольники и у которых (рис. 130).

1) Выполним построения, аналогичные тем, что в доказательстве теоремы 1 (рис. 131). Имеем:

2) Тогда но поэтому

Учитывая, что

имеем:

3) Тогда (по трем сторонам).

4) Следовательно,

Пример №8

Стороны одного треугольника равны 9 см, 15 см и 18 см, а стороны другого относятся как 3:5:6. Подобны ли эти треугольники?

Решение:

Обозначим стороны второго треугольника и Но значит, треугольники подобны (по трем сторонам).

Пример №9

Стороны параллелограмма равны 15 см и 10 см, а высота, проведенная к большей стороне, — 8 см. Найдите высоту, проведенную к меньшей стороне.

Решение:

Пусть — параллелограмм (рис. 132). — высота параллелограмма. Проведем — вторую высоту параллелограмма.

(как прямоугольные с общим острым углом). Тогда то есть откуда

Cредние пропорциональные отрезки в прямоугольном треугольнике

Лемма. Высота прямоугольного треугольника, проведенная из вершины прямого угла, делит треугольник на два подобных друг другу прямоугольных треугольника, каждый из которых подобный данному треугольнику.

Доказательство:

Пусть — прямоугольный треугольник — высота треугольника (рис. 145). Докажем, что и

1) У прямоугольных треугольников и угол — общий. Поэтому (по острому углу).

2) Аналогично -общий, Откуда

3) У треугольников и

Поэтому (по острому углу).

Отрезок называют проекцией катета на гипотенузу а отрезок — проекцией катета на гипотенузу

Отрезок называют средним пропорциональным (или средним геометрическим) отрезков и , если

Теорема (о средних пропорциональных отрезках в прямоугольном треугольнике). 1) Высота прямоугольного треугольника, проведенная из вершины прямого угла, является средним пропорциональным проекций катетов на гипотенузу. 2) Катет прямоугольного треугольника является средним пропорциональным гипотенузы и проекции этого катета на гипотенузу.

Доказательство:

Рассмотрим рисунок 145.

1) (по лемме). Поэтому или

2) (по лемме). Поэтому или

(по лемме). Поэтому или

Пример №10

— высота прямоугольного треугольника

с прямым углом Докажите, что

Доказательство:

Рассмотрим рисунок 145. Так как

то а так как то

Поэтому откуда

Пример №11

Высота прямоугольного треугольника, проведенная к гипотенузе, делит ее на отрезки 9 см и 16 см. Найдите периметр треугольника.

Решение:

Рассмотрим рисунок 145, где

1)

2) то есть Так как то

3) Так как то

4)

При решении задач этого параграфа советуем использовать таблицу квадратов натуральных чисел.

Свойство биссектрисы треугольника

Теорема (свойство биссектрисы треугольника). Биссектриса треугольника делит сторону, к которой она проведена, на отрезки, пропорциональные двум другим сторонам.

Доказательство:

Пусть — биссектриса треугольника (рис. 147). Докажем, что

1) Проведем через точку прямую, параллельную и продлим биссектрису до пересечения с этой прямой в точке Тогда (как внутренние накрест лежащие при параллельных прямых и и секущей

2) — равнобедренный (так как и то а значит,

3) (как вертикальные), поэтому (по двум углам). Следовательно,

Но таким образом

Из пропорции можно получить и такую:

Пример №12

В треугольнике — биссектриса треугольника. Найдите и

Решение:

Рассмотрим (рис. 147). Пусть

тогда Так как имеем уравнение: откуда

Следовательно,

Ответ. 6 см, 3 см.

Пример №13

Медиана равнобедренного треугольника, проведенная к основанию, равна 24 см, а боковая сторона относится к основанию как 3 : 2. Найдите радиус окружности, вписанной в треугольник.

Решение:

Пусть в треугольнике медиана (рис. 148).

Тогда является также высотой и биссектрисой. Поскольку точка — центр вписанной окружности — является точкой пересечения биссектрис треугольника, то — радиус окружности.

Учитывая, что обозначим Так как — середина то

— биссектриса треугольника поэтому

Пусть Тогда Имеем: откуда

Применение подобия треугольников к решению задач

Рассмотрим некоторые интересные свойства геометрических фигур, которые легко получить из подобия треугольников, и применим подобие к решению практических задач.

1. Пропорциональность отрезков хорд.

Теорема 1 (о пропорциональности отрезков хорд). Если хорды и пересекаются в точке то

Доказательство:

Пусть хорды и пересекаются в точке (рис. 150). Рассмотрим и у которых (как вертикальные), (как вписанные углы, опирающиеся на одну и ту же дугу).

Тогда (по двум углам), а значит, откуда

Следствие. Если — центр окружности, — ее радиус, — хорда, то где

Доказательство:

Проведем через точку диаметр (рис. 151). Тогда

Пример №14

AL — биссектриса треугольника Докажите формулу биссектрисы:

Доказательство:

Опишем около треугольника окружность и продлим до пересечения с окружностью в точке (рис. 152).

1) (как вписанные углы, опирающиеся на одну и ту же дугу (по условию). Поэтому (по двум углам).

2) Имеем: откуда

Но по теореме о пропорциональности отрезков хорд:

то есть

2. Пропорциональность отрезков секущей и касательной.

Теорема 2 (о пропорциональности отрезков секущей и касательной). Если из точки лежащей вне круга, провести секущую, пересекающую окружность в точках и и касательную где — точка касания, то

Доказательство:

Рассмотрим рис. 153. (как вписанный угол), , то

есть Поэтому (по двум углам),

значит, Откуда

Следствие 1. Если из точки провести две секущие, одна из которых пересекает окружность в точках и а другая — в точках и то

Так как по теореме каждое из произведений и равно то следствие очевидно.

Следствие 2. Если — центр окружности, — ее радиус, — касательная, — точка касания, то где

Доказательство:

Проведем из точки через центр окружности секущую (рис. 154), и — точки ее пересечения с окружностью. Тогда по теореме:

но поэтому

3. Измерительные работы на местности.

Предположим, что нам необходимо измерить высоту некоторого предмета, например высоту ели (рис. 155). Для этого установим на некотором расстоянии от ели жердь с планкой, которая вращается вокруг точки Направим планку на верхнюю точку ели, как показано на рисунке 155. На земле отметим точку в которой планка упирается в поверхность земли.

Рассмотрим и у них общий, поэтому (по острому углу).

Тогда откуда

Если, например, то

4. Задачи на построение.

Пример №15

Постройте треугольник по двум углам и медиане, проведенной из вершины третьего угла.

Решение:

На рисунке 156 изображены два данных угла и данный отрезок. Построим треугольник, у которого два угла соответственно равны двум данным углам, а медиана, проведенная из вершины третьего угла, равна данному отрезку.

1) Строим некоторый треугольник, подобный искомому. Для этого построим произвольный треугольник у которого углы и равны данным (рис. 157).

2) Проводим медиану треугольника и откладываем на прямой отрезок равный данному.

3) Через точку проводим прямую, параллельную Она пересекает стороны угла в некоторых точках и (рис. 157).

4) Так как то Значит, два угла треугольника равны данным.

Докажем, что — середина

(по двум углам). Поэтому

(по двум углам). Поэтому

Получаем, что то есть Но (по построению), поэтому и

Следовательно, — медиана треугольника и треугольник — искомый.

Подобие треугольников

Геометрия владеет двумя сокровищами: одно из них — это теорема Пифагора, а второе — деление отрезка в среднем и крайнем отношении. Первое можно сравнить с мерой золота, а второе больше напоминает драгоценный камень.

Иоганн Кеплер, немецкий астроном и математик

В этой главе вы начнете знакомиться с подобием фигур. Отношение подобия является одной из важнейших характеристик евклидовой геометрии. Проявления подобия часто встречаются и в повседневной жизни. Например, авиамодели самолетов подобны реальным машинам, а репродукции классических картин подобны оригиналам.

В основе теории подобия лежит обобщение теоремы Фалеса. Благодаря свойствам подобных треугольников устанавливаются важные геометрические соотношения. В частности, с помощью подобия будет доказана знаменитая теорема Пифагора. Правда, такое доказательство не является классическим, ведь во времена Пифагора некоторые геометрические факты, которые мы будем рассматривать, еще не были открыты. Но сегодня даже обычный школьник может овладеть знаниями, неизвестными великому Пифагору.

Определение подобных треугольники

Обобщенная теорема Фалеса

Напомним некоторые понятия, связанные с делением и пропорциями, которые понадобятся нам для дальнейших рассуждений.

Отношением отрезков длиной называется частное их длин, т.е. число

Иначе говоря, отношение показывает, сколько раз отрезок и его части укладываются в отрезке Действительно, если отрезок принять за единицу измерения, то данное отношение будет равняться длине отрезка

Отрезки длиной пропорциональны отрезкам длиной если

Например, отрезки длиной 8 см и 12 см пропорциональны отрезкам длиной 10 см и 15 см, поскольку

Сформулируем обобщенную теорему Фалеса для неравных отрезков, которые отсекаются параллельными прямыми на сторонах угла.

Теорема (о пропорциональных отрезках)

Параллельные прямые, пересекающие стороны угла, отсекают на сторонах этого угла пропорциональные отрезки:

Утверждение теоремы иллюстрирует рисунок 90.

Приведем рассуждения, на которых основывается доказательство этой теоремы.

Отношение показывает, сколько раз отрезок укладывается в отрезке а отношение сколько раз отрезок укладывается в отрезке Теорема Фалеса устанавливает соответствие между процессами измерения отрезков Действительно, прямые, параллельные «переводят» равные отрезки на одной стороне угла в равные отрезки на другой его стороне: отрезок «переходит» в отрезок десятая часть отрезка — в десятую часть отрезка и т.д. Поэтому если отрезок укладывается в отрезке раз, то отрезок укладывается в отрезке также раз.

Полное доказательство этой теоремы представлено в Приложении 1.
Замечание.
Поскольку то и следствие данной теоремы можно записать в виде На такое равенство мы также будем ссылаться как на теорему о пропорциональных отрезках.

Пример №16

Даны отрезки Постройте отрезок

Решение:

Построим произвольный неразвернутый угол и отложим на одной его стороне отрезки и а на другой стороне — отрезок (рис. 91).

Проведем прямую и прямую, которая параллельна проходит через точку и пересекает другую сторону угла в точке По теореме о пропорциональных отрезках откуда Следовательно, отрезок — искомый.

Заметим, что в задаче величина является четвертым членом пропорции Поэтому построенный отрезок называют четвертым пропорциональным отрезком.

Вычисление подобных треугольников

Равные фигуры представляются в нашем воображении как фигуры, имеющие одинаковую форму и одинаковые размеры. Но в повседневной жизни часто встречаются вещи, у которых одинаковая форма, но разные размеры: например, чайное блюдце и тарелка, одинаковые модели обуви разных размеров и т. п. В геометрии фигуры одинаковой формы принято называть подобными. Например, подобными друг другу являются любые два квадрата, любые две окружности. Введем для начала понятие о подобных треугольниках. Определение

Два треугольника называются подобными, если углы одного из них соответственно равны углам другого и соответствующие стороны этих треугольников пропорциональны.

На рисунке 92 изображены подобные треугольники

Подобие этих треугольников кратко обозначают так: В этой записи, как и в записи равенства треугольников, названия треугольников будем записывать так, чтобы вершины равных углов указывались в порядке соответствия. Это означает:

Число равное отношению соответствующих сторон подобных треугольников, называют коэффициентом подобия.

Очевидно, что два равных треугольника являются подобными с коэффициентом подобия 1.

Опорная задача

Отношение периметров подобных треугольников равно коэффициенту подобия. Докажите.

Решение:

Пусть с коэффициентом подобия Это означает, что т.е. Имеем:

Отметим также, что отношение соответствующих линейных элементов (медиан, биссектрис, высот и т.п.) подобных треугольников равно коэффициенту подобия. Докажите это самостоятельно.

Подобие треугольников по двум углам

Для доказательства подобия двух треугольников, как и для доказательства их равенства, не обязательно проверять все соотношения сторон и углов согласно определению — достаточно проверить лишь некоторые из них. Какие именно? Ответ на этот вопрос дают три признака подобия треугольников.

Теорема (признак подобия треугольников по двум углам)

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.

Пусть даны треугольники и в которых , (рис. 99).

Докажем подобие этих треугольников. Из теоремы о сумме углов треугольника очевидно следует, что Отложим на луче отрезок равный и проведем прямую параллельную Тогда как соответственные углы при параллельных прямых, поэтому по второму признаку, откуда По теореме о пропорциональных отрезках следовательно Аналогично доказываем что Таким образом по определению подобных треугольников Теорема доказана.

Пример №17

Точка пересечения диагоналей трапеции делит одну из них на отрезки длиной 4 см и 7 см. Меньшее основание трапеции равно 8 см. Найдите среднюю линию трапеции.

Решение:

Пусть в трапеции диагонали пересекаются в точке (рис. 100).

Рассмотрим треугольники В них углы при вершине равны как вертикальные, как внутренние накрест лежащие при параллельных прямых и секущей Тогда по двум углам. Отсюда следует, что По скольку по условию значит, Тогда
Средняя линия трапеции равна полусумме ее основании, т.е.

Ответ: 11 см.

Подобие треугольников по двум сторонам и углу между ними

Теорема (признак подобия треугольников по двум сторонам и углу между ними)

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.

Пусть даны треугольники в которых (рис. 101).

Докажем подобие этих треугольников. Отложим на луче отрезок равный и проведем прямую параллельную Тогда как соответственные углы при параллельных прямых, поэтому по двум углам. Отсюда а поскольку Тогда по первому признаку равенства треугольников, следовательно, по двум углам. Теорема доказана.

Пример №18

Прямая, пересекающая стороны треугольника делит каждую из них в отношении начиная от вершины Докажите, что эта прямая параллельна

Решение:

Пусть прямая пересекает стороны треугольника в точках соответственно (рис. 102). Поскольку по условию задачи Тогда треугольники подобны по двум сторонам и углу между ними. Из подобия треугольников следует, что Но эти углы являются соответственными при прямых и секущей Следовательно, по признаку параллельности прямых.

Подобие треугольников по трем сторонам

Теорема (признак подобия треугольников по трем сторонам)

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Пусть в треугольниках (рис. 103).

Докажем подобие этих треугольников. Как и в предыдущих теоремах, отложим на луче отрезок равный отрезку и проведем прямую параллельную Тогда как соответственные углы при параллельных прямых, поэтому по двум углам. Отсюда а поскольку то Учитывая, что имеем Аналогично доказываем, что Тогда по третьему признаку равенства треугольников, следовательно, по двум углам. Теорема доказана.

Таким образом, для доказательства всех трех признаков подобия треугольников использован один и тот же подход, а доказательство каждого из признаков подобия основывается на соответствующем признаке равенства треугольников.

В ходе доказательства признаков подобия треугольников мы показали также, что прямая, которая параллельна стороне треугольника и пересекает две другие стороны, отсекает от данного треугольника подобный.

Подобие прямоугольных треугольников

Признаки подобия прямоугольных треугольников:

Признаки подобия прямоугольных треугольников являются следствиями соответствующих признаков подобия произвольных треугольников. Наиболее важным признаком подобия прямоугольных треугольников является следующий.

Если два прямоугольных треугольника имеют по равному острому углу, то такие треугольники подобны.

Действительно, поскольку в прямоугольном треугольнике один угол прямой, этот признак следует из признака подобия треугольников по двум углам.

Другие признаки подобия прямоугольных треугольников сформулируйте и докажите самостоятельно (задачи № 395, 413).

Пример №19

В треугольнике с острым углом проведены высоты (рис. 110). Докажите, что

Решение:

Рассмотрим прямоугольные треугольники и Поскольку они имеют общий острый угол они подобны. Из этого следует, что соответствующие катеты и гипотенузы этих треугольников пропорциональны, т.е.

Рассмотрим теперь треугольники У них также общий угол , а по только что доказанному стороны, прилегающие к этому углу, пропорциональны. Следовательно, по двум пропорциональным сторонам и углу между ними.

Пропорциональные отрезки в прямоугольном треугольнике

Подобие треугольников позволяет установить ряд соотношений между длинами некоторых отрезков в треугольнике и окружности (такие соотношения называют метрическими). Сначала введем несколько вспомогательных понятий.

Отрезок называется средним пропорциональным между отрезками если

В прямоугольном треугольнике с катетами и гипотенузой проведем высоту и обозначим ее (рис. 111).

Отрезки на которые эта высота делит гипотенузу, называют проекциями катетов на гипотенузу. Проекции катетов на гипотенузу обозначают соответственно.

Теорема (метрические соотношения в прямоугольном треугольнике) В прямоугольном треугольнике:

1) высота, проведенная к гипотенузе, является средним пропорциональным между проекциями катетов на гипотенузу:

2) катет является средним пропорциональным между гипотенузой и его проекцией на гипотенузу:

3) высота, проведенная к гипотенузе, равна произведению катетов, деленному на гипотенузу:

По признаку подобия прямоугольных треугольников (у этих треугольников общий острый угол (у этих треугольников общий острый угол и (острые углы этих треугольников равны острым углам треугольника Из подобия треугольников имеем: откуда Аналогично из подобия треугольников и получаем И наконец, из подобия треугольников и имеем откуда Теорема доказана.

В ходе доказательства теоремы мы установили интересный факт: высота прямоугольного треугольника делит его на два подобных треугольника, каждый из которых подобен данному треугольнику. Среди всех видов треугольников такое свойство имеет лишь прямоугольный.

Пример №20

Найдите периметр прямоугольного треугольника, в котором катет равен 15 см, а его проекция на гипотенузу равна 9 см.

Решение:

Пусть в треугольнике (рис. 112).

Из метрического соотношения в треугольнике получаем: откуда тогда Из соотношения имеем: откуда Следовательно,

Ответ: 60 см.

Теорема Пифагора и ее следствия

Сформулируем и докажем одну из важнейших теорем геометрии — теорему Пифагора.

Теорема (Пифагора)

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

Согласно доказанным метрическим соотношениям в прямоугольном треугольнике с катетами и гипотенузой (рис. 117)

Складывая эти равенства почленно, имеем:

Соотношение между катетами и гипотенузой прямоугольного треугольника было известно задолго до Пифагора. Но именно Пифагору удалось доказать его, опираясь на понятие площади (к этому доказательству мы вернемся в следующей главе). Всего же на сегодня известно более 150 способов доказательства теоремы Пифагора. С некоторыми из них вы сможете познакомиться в п. 18.3.

Доказательство, которое мы рассмотрели, является по сути алгебраическим. Собственно, важность теоремы Пифагора заключается, в частности, в том, что она значительно расширяет возможности применения алгебры в геометрии.

С ее помощью можно найти любую сторону прямоугольного треугольника, зная две другие стороны. Например, если то

Теорема Пифагора позволяет использовать для решения геометрических задач и другие алгебраические приемы, например составление уравнений.

Пример №21

Стороны треугольника равны 13 см, 20 см и 21 см. Найдите высоту треугольника, проведенную к наибольшей стороне.

Решение:

Пусть — высота треугольника в котором (рис. 118).

Поскольку — наибольшая сторона треугольника, то точка лежит на этой стороне (докажите это самостоятельно). Примем длину отрезка равной см, тогда По теореме Пифагора из прямоугольного треугольника имеем: а из прямоугольного треугольника имеем: т.е. Приравнивая два выражения для получаем:

Таким образом,

Тогда из треугольника по теореме Пифагора имеем:

Ответ: 12 см.

Теорема, обратная теореме Пифагора

Наряду с теоремой Пифагора не менее важной является обратная теорема. Эту теорему можно рассматривать как признак прямоугольного треугольника.

Теорема (обратная теореме Пифагора)

Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник прямоугольный: если

Пусть в треугольнике (рис. 119, а) Докажем, что угол прямой. Рассмотрим прямоугольный треугольник с прямым углом в котором (рис. 119, б). По теореме Пифагора а с учетом равенства двух сторон рассматриваемых треугольников Тогда по трем сторонам, откуда

Из доказанной теоремы, в частности, следует, что треугольник со сторонами 3, 4 и 5 — прямоугольный: Об этом знали еще древние египтяне: для построения прямых углов на местности они делили бечевку на 12 равных частей, связывали ее концы, а потом с помощью кольев натягивали ее так, чтобы получился прямоугольный треугольник (рис. 120). Именно поэтому прямоугольные треугольники со сторонами, пропорциональными числам 3, 4 и 5, называют египетскими треугольниками. Вообще, тройки чисел для которых выполняется равенство принято называть пифагоровыми тройками, а треугольники, длины сторон которых являются пифагоровыми тройками,— пифагоровыми треугольниками. Попробуйте самостоятельно составить несколько пифагоровых троек чисел (поможет в этом решение задачи № 443).

Перпендикуляр и наклонная

Пусть точка не лежит на прямой — перпендикуляр к этой прямой (рис. 121). Любой отрезок, соединяющий точку с точкой прямой и не совпадающий с перпендикуляром, называют наклонной к прямой На рисунке 121 отрезок — наклонная к прямой точка — основание наклонной. При этом отрезок прямой ограниченный основаниями перпендикуляра и наклонной, называют проекцией наклонной на данную прямую.

Понятия наклонной и ее проекции взаимосвязаны с понятием перпендикуляра к прямой: невозможно указать проекцию данной наклонной, не построив перпендикуляр. Очевидно, что перпендикуляр и наклонная, проведенные из одной точки, вместе с проекцией наклонной образуют прямоугольный треугольник, в котором наклонная является гипотенузой.

Сформулируем свойства перпендикуляра, наклонных и проекций.

Пусть из одной точки к прямой проведены перпендикуляр и наклонные. Тогда:

  1. любая наклонная больше перпендикуляра и больше своей проекции на данную прямую (рис. 122, а):
  2. равные наклонные имеют равные проекции, и наоборот: если проекции двух наклонных равны, то равны и сами наклонные (рис. 122, б);
  3. большая наклонная имеет большую проекцию, и наоборот: из двух наклонных больше та, которая имеет большую проекцию (рис. 122, в).

Все эти свойства следуют из теоремы Пифагора (самостоятельно объясните почему). Но некоторые из них можно также получить и из других свойств прямоугольного треугольника.

Применение подобия треугольников

Свойство биссектрисы треугольника

Теорема (свойство биссектрисы треугольника)

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим к ним сторонам.

По данным рисунка 123 это означает, что

Пусть — биссектриса треугольника Докажем, что

В случае, если утверждение теоремы очевидно, поскольку биссектриса является одновременно и медианой. Рассмотрим случай, когда

Проведем перпендикуляры к прямой (рис. 124). Прямоугольные треугольники подобны, поскольку их острые углы при вершине равны как вертикальные. Из подобия этих треугольников имеем:

С другой стороны, прямоугольные треугольники также подобны, поскольку имеют равные острые углы при вершине Отсюда следует что

Сравнивая это равенство с предыдущем что и требовалось доказать.

Пример №22

Найдите периметр прямоугольного треугольника, если его биссектриса делит гипотенузу на отрезки длиной 15 см и 20 см.

Решение:

Пусть — биссектриса прямоугольного треугольника с гипотенузой (рис. 125).

По свойству биссектрисы треугольника

Тогда если и по теореме Пифагора имеем:

Следовательно,

тогда

Ответ: 84 см.

Метрические соотношения в окружности

Теорема (о пропорциональности отрезков хорд)

Произведения отрезков пересекающихся хорд равны.

По данным рисунка 126 это означает, что

Пусть хорды пересекаются в точке Проведем хорды Треугольники подобны по двум углам: как вписанные углы, опирающиеся на одну и ту же дугу, а углы при вершине равны как вертикальные. Из подобия треугольников следует, что т.е.

Теорема (о пропорциональности отрезков секущей и касательной)

Произведение секущей на ее внешнюю часть равно квадрату отрезка касательной, проведенной из той же точки.

По данным рисунка 127 это означает, что

Пусть из точки к окружности проведены секущая, которая пересекает окружность в точках и касательная — точка касания). Проведем хорды Треугольники подобны по двум углам: у них общий угол а углы и измеряются половиной дуги (см. опорную задачу № 230). Следовательно, из подобия треугольников получаем: т.е.

Следствие

Произведение секущей на ее внешнюю часть для данной окружности и точки вне ее постоянно.

По данным рисунка 128 это означает, что

Метод подобия

Подобие треугольников дает ключ к решению задач на доказательство и вычисление, которые содержат соотношения между произведениями некоторых отрезков. Для этого соответствующие равенства превращают в пропорции, благодаря которым можно доказать подобие соответствующих треугольников.

Пример №23

Диагонали четырехугольника пересекаются в точке Докажите, что

Решение:

Перепишем данное равенство в виде пропорции Элементы этой пропорции являются соответствующими сторонами треугольников и (рис. 129). Поскольку как вертикальные, то эти треугольники подобны по двум пропорциональным сторонам и углу между ними поэтому Но углы внутренние накрест лежащие при прямых и секущей Следовательно, по признаку параллельности прямых

Подобие треугольников может использоваться не только как инструмент геометрических доказательств или вычислений, но и как средство для решения задач на построение. Метод подобия для решения задач на построение заключается в построении вспомогательной фигуры, подобной искомой.

Пример №24

Постройте треугольник по двум углам и биссектрисе, проведенной из вершины третьего угла.

Решение:

Анализ

Обратим внимание на то, что два данных угла (пусть они равны определяют форму искомого треугольника, а длина данной биссектрисы (пусть она равна — его размеры.

При этом искомый треугольник будет подобен любому треугольнику с углами Отсюда следует план построения: строим сначала произвольный треугольник с углами проводим в нем биссектрису и, пользуясь подобием треугольников, строим искомый треугольник (рис. 130).

Построение:

1.Построим треугольник в котором

2.Построим биссектрису угла

3.Отложим на построенной биссектрисе отрезок

4.Проведем через точку прямую, параллельную Пусть — точки ее пересечения со сторонами угла Треугольник искомый.

Поскольку по построению как соответственные углы при параллельных прямых. Значит, в треугольнике — биссектриса и по построению,

Исследование

Задача имеет единственное решение при условии и ни одного, если

Итак, при решении задач на построение методом подобия следует придерживаться следующего плана.

1. Выделить из условий задачи те, которые определяют форму искомой фигуры.

2. Построить по этим данным фигуру, подобную искомой.

3. Используя условия задачи, определяющие размеры искомой фигуры, построить эту фигуру.

Среди задач на построение, связанных с подобием, одной из наиболее интересных является задача деления отрезка на две части таким образом, чтобы одна из них была средним пропорциональным между второй частью и всем отрезком. Такое деление отрезка называют делением в среднем и крайнем отношениях, или золотым сечением. Подробнее о таком делении вы можете узнать в Приложении 2.

Справочный материал по подобию треугольников

Теорема о пропорциональных отрезках

Параллельные прямые, пересекающие стороны угла, отсекают на сторонах этого угла пропорциональные отрезки:

Подобие треугольников

Два треугольника называются подобными, если углы одного из них соответственно равны углам другого и соответствующие стороны этих треугольников пропорциональны

ПРИЗНАКИ ПОДОБИЯ ТРЕУГОЛЬНИКОВ

Признак подобия треугольников по двум углам

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны

Признак подобия треугольников по двум сторонам и углу между ними

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны

Признак подобия треугольников по трем сторонам

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны

Признак подобия прямоугольных треугольников

Если два прямоугольных треугольника имеют по равному острому углу, то такие треугольники подобны

Метрические соотношения в прямоугольном треугольнике

Высота, проведенная к гипотенузе, является средним пропорциональным между проекциями катетов на гипотенузу:

Катет является средним пропорциональным между гипотенузой и его проекцией на гипотенузу: и

Высота, проведенная к гипотенузе, равна произведению катетов, деленному на гипотенузу:

Теорема Пифагора и ее следствия

Теорема Пифагора

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

Теорема, обратная теореме Пифагора

Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник прямоугольный:

если

Перпендикуляр и наклонная

Пусть из одной точки к прямой проведены перпендикуляр и наклонные. Тогда:

  • любая наклонная больше перпендикуляра и больше своей проекции на данную прямую
  • равные наклонные имеют равные проекции, и наоборот: если проекции двух наклонных равны, то равны и сами наклонные
  • большая наклонная имеет большую проекцию, и наоборот: из двух наклонных больше та, которая имеет большую проекцию

Свойство биссектрисы треугольника

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам:

Метрические соотношения в окружности

Произведения отрезков пересекающихся хорд равны:

Произведение секущей на ее внешнюю часть равно квадрату отрезка касательной, проведенной из той же точки:

Произведение секущей на ее внешнюю часть для данной окружности и точки вне ее постоянно:

Теории подобия треугольников посвящен шестой раздел «Начал» Евклида. Интересно, что, например, в геометрии Лобачевского не существует подобных треугольников, которые не были бы равны. Оказывается, что аксиома параллельных прямых в евклидовой геометрии равносильна предположению о существовании подобных, но неравных треугольников. Центральное место в евклидовой геометрии занимает теорема Пифагора. Пифагор Самосский (ок. 580-500 гг. до н. э.) долгое время жил в Египте Евклид и Вавилоне, потом поселился в городе Кротон (греческая

колония на юге Италии) и основал там так называемый пифагорийский союз. Считается, что именно от пифагорейцев происходит слово «математика» (греческое «матема» означает «наука», «познание»). Свойства треугольника со сторонами 3, 4 и 5 были известны древним египтянам и китайским ученым. Пифагор начал исследовать другие прямоугольные треугольники с целочисленными сторонами. Рассмотрев равнобедренный прямоугольный треугольник с единичными катетами, он увидел, что длина его гипотенузы не выражается целым числом — так были открыты иррациональные числа. Вскоре Пифагору удалось доказать, что сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на гипотенузе,— именно так выглядела теорема Пифагора в классической формулировке. По легенде, в честь своего открытия он принес богам в жертву сто быков.

Сегодня нельзя с уверенностью сказать, какие из открытий пифагорейцев принадлежат самому Пифагору, а какие — его ученикам. Вообще, школа Пифагора существовала достаточно закрыто и обособленно от общества. Это породило ненависть к пифагорейцам, и школа была разгромлена, а сам Пифагор вынужден был спасаться бегством, но в дороге был убит. После смерти Пифагора его ученики разбрелись по всей Греции и стали распространять его учение, которое дошло и до наших дней.

Пифагорейский союз был одновременно и философской школой, и научным сообществом, и религиозным братством, и даже политической партией. Исследования пифагорейцев охватывали и арифметику, и философию, и музыку, и астрономию.

Подробно о подобных треугольниках

Вы знаете, что в равных треугольниках равны соответственные стороны и углы. Посмотрите на рисунок 243. Углы равны соответственным углам Δ ABC: . Но стороны в два раза больше соответственных сторон Δ ABC: . Следовательно, треугольник не равен треугольнику ABC. Треугольники и ABC — подобные.

Поскольку = 2АВ, составим отношение этих сторон:

Аналогично получим: . Каждое из этих отношений равно числу 2. Следовательно, их можно приравнять:

Из этого двойного равенства составим три пропорции:

Именно поэтому говорят, что соответственные стороны подобных треугольников пропорциональны. Их называют сходственными.

Два треугольника называются подобными, если в них соответственные углы равны, а сходственные стороны пропорциональны.

Число, которому равно отношение сходственных сторон подобных треугольников, называется коэффициентом подобия. Его обозначают буквой h.

Записываем: и говорим: «Треугольник подобен треугольнику ABC*. Знак заменяет слово «подобный». Если коэффициент подобия треугольников известен, то записываем:

Для подобных треугольников, как и для равных треугольников, имеет значение порядок записи вершин. Для треугольников на рисунке 243 запись — неверна.

Пример №25

Два треугольника на рисунке 244 подобны. Найдите длину их неизвестных сторон.

Решение:

В данных треугольниках: ے A = ے ,N ےB = ے K, ے C= ے P. Составим отношение сходственных сторон:

Подставим известные длины сторон:

Приравняем первое и третье отношения, а затем — второе и третье.

Получаем: , отсюда АВ = 5,6 см;

Для того чтобы составить отношение сходственных сторон подобных треугольников:

  1. определите соответственно равные углы треугольников;
  2. выясните, какие их стороны являются сходственными;
  3. запишите равенство трёх дробей, в их числителях — стороны одного треугольника, а в знаменателях — сходственные стороны другого.

Может ли коэффициент подобия быть равным 1? Да, может. В этом случае подобные треугольники имеют равные стороны, следовательно, они равны.

Равенство треугольников — это частный случай подобия треугольников с коэффициентом k = 1.

Пример №26

Отношение периметров подобных треугольников равно отношению их сходственных сторон. Докажите это.

Решение:

Пусть треугольники АВС и (рис. 245) подобны с коэффициентом k.

Докажем, что

Поскольку то

Запишем периметры подобных треугольников АВС и

1. Слово «подобный» означает «имеющий общие черты с кем-либо, чем-либо; похожий на кого-либо, что-либо». Этот термин часто используют в быту, науке, производстве. Например, эскиз треугольной косынки в масштабе 1: 10 и её выкройка в натуральную величину — это подобные треугольники. А вот выкройка и сама косынка — равные треугольники.

2. Древнегреческие математики вместо термина «подобный» употребляли слово «похожий». В отечественной математической литературе русский термин «подобие» используется с 1739 г. Знак ввёл в 1679 г. немецкий математик Готфрид Лейбниц (1646 — 1716).

3. На рисунке 246 вы видите подобные треугольники АВС и НТР. Они расположены так, что их стороны параллельны, а прямые АН, ВТ и CP, проходящие через соответственные вершины, пересекаются в одной точке О. Говорят, что такие подобные треугольники ABC и НТР имеют перспективное расположение.

Понятие перспективы известно с древности, но собственно научная теория начинает интенсивно развиваться только в эпоху Возрождения. Посредством перспективы художники достигали эффекта объёмности своих холстов. Первым, кому это удалось сделать, был выдающийся флорентийский художник Джотто ди Бон-доне (1266 — 1337). Одновременно начинается поиск научных основ перспективы. Здесь первенство принадлежит также флорентийцу Филиппо Брунеллески (1377 — 1446). Учение о перспективе развивали и активно использовали в своём творчестве выдающиеся художники Леонардо да Винчи (Италия, 1452 — 1519), Альбрехт Дюрер (Германия, 1471 — 1528) и другие. Со временем из первых геометрических ростков учения о перспективе возникла новая наука — проективная геометрия. Её основателем был французский геометр, архитектор и инженер Жерар Дезарг (1591 — 1661), а развил до уровня стройной математической теории французский математик Жан Виктор Понселе (1788 — 1867).

Обобщённая теорема Фалеса

В теореме Фалеса утверждается, что параллельные прямые отсекают на сторонах угла соответственно равные отрезки. Обобщённым является случай, когда параллельные прямые отсекают на сторонах угла пропорциональные отрезки (рис. 253). Соответствующая теорема называется обобщённой теоремой Фалеса. Приведём её без доказательства.

Теорема (обобщённая теорема Фалеса). Параллельные прямые, пересекающие стороны угла, отсекают на его сторонах пропорциональные отрезки.

Обобщённую теорему Фалеса иначе называют теоремой о пропорциональных отрезках.

Следствие. Прямая, параллельная любой стороне треугольника, отсекает от него подобный треугольник.

Действительно, в треугольниках ABC и MNC (рис. 254) общий угол С. Его пересекают параллельные прямые АВ и MN. С секущей АС они образуют равные соответственные углы CAB и CMN. Третьи углы треугольников также равны. Докажем пропорциональность сторон треугольников.

Из обобщенной теоремы Фалеса,

поэтому

Проводим прямую NK || АС, аналогично получаем: . Но КА = MN, поэтому

Итак, в треугольниках ABC и MNC соответственные углы равны, а сходственные стороны пропорциональны: ‘ Данные треугольники подобны по определению.

Для того чтобы доказать подобие треугольников:

  1. докажите равенство соответственных углов данных треугольников;
  2. докажите пропорциональность сходственных сторон данных треугольников;
  3. сделайте вывод: треугольники подобны по определению.

1. Может возникнуть вопрос: Как доказать обобщённую теорему Фалеса? Разделим отрезок АВ на п равных отрезков (рис. 255).

Пусть длина каждого из них равна d. Тогда АВ = dn. Отложим от точки В на луче ВМ отрезки длиной d. Через все точки деления проведём прямые, параллельные ВС. Из теоремы Фалеса следует, что эти прямые отсекают равные отрезки и на стороне АС данного угла. Обозначим их длины На отрезке АС их будет одинаковое количество п, поэтому АС = n. Пусть на отрезке ВМ помещается целое количество m таких отрезков (рис. 255). На отрезке CN их также будет m. Тогда ВМ = dm, a CN = m. Найдём отношение отрезков на двух сторонах угла:

Мы видим, что два отношения равны одному и тому же числу

Следовательно, их можно приравнять:

Пусть на отрезке ВМ помещаются т отрезков длиной dn остаётся отрезок меньшей длины, чем d (рис. 256). Это означает, что отрезок из m частей длиной d меньше отрезка ВМ, а отрезок из m + 1 частей длиной d — больше этого отрезка. Пришли к неравенству: dm ے А = ے Ау Тогда стороны АВ и АС будут лежать соответственно на лучах . Прямые ВС и cообразуют с секущей равные соответственные углы: Из признака параллельности прямых следует, что,

По следствию из обобщённой теоремы Фалеса, прямая ВС параллельная стороне , отсекает от треугольника подобный треугольник. Поэтому

Следствие. Равносторонние треугольники подобны. Действительно, в равносторонних треугольниках все углы — по 60′. Поэтому треугольники подобны по двум углам.

Пример №27

В трапеции ABCD диагонали АС и BD пересекаются в точке О (рис. 274). Докажите, что ∆АОВ

Решение:

Рассмотрим треугольники АОВ и COD. В них: ے АОВ = ے COD как вертикальные, ے ОАВ = ے OCD как внутренние разносторонние при параллельных прямых АВ и CD и секущей АС. Следовательно, ∆АОВ

∆COD по двум углам.

Для того чтобы доказать подобие двух треугольников:

  1. выделите их на рисунке;
  2. докажите равенство двух пар соответственных углов;
  3. сделайте вывод: треугольники подобны по двум углам.

1. На свойствах подобных треугольников базируется принцип построения номограммы — специального чертежа, при помощи которого, не выполняя расчётов, можно найти корни некоторого уравнения. Рассмотрим задачу.

Пример №28

К заданному отрезку АВ в его концах и с М одной стороны от него проведены два перпендикуляра AM = а и BN = by а также отрезки MB и NA, пересекающиеся в точке О. Расстояние от О до АВ равно х. Найдите зависимость х от а и b.

Решение:

Пусть точка К (рис. 275) — основание перпендикуляра, проведённого из точки О к прямой АВ. По условию задачи, . Тогда:

Получили уравнение, выражающее искомую зависимость. Для его приближённого решения можно на листе в клеточку или миллиметровой бумаге построить (аналогично рис. 275) отрезки о и b заданной длины и измерить расстояние х— это и будет искомый корень уравнения. Такие номограммы можно использовать в задачах по физике, в частности в разделе «Оптика».

Второй и трети и признаки подобия треугольников

Вы уже знаете, что равенство треугольников можно установить по двум сторонам и углу между ними либо по трём сторонам. Признаки подобия треугольников аналогичны. Но в данном случае нужно определить не равенство, а пропорциональность соответственных сторон двух треугольников.

Теорема (признак подобия треугольников по двум сторонам и углу между ними).

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.

Дано:

Доказать:

Доказательство. Пусть . Отложим на стороне треугольника отрезок = АВ = с (рис. 288). Через точку В2 проведём прямую Имеем треугольник , который по следствию из теоремы Фалеса, подобен треугольнику .

Следовательно, Отсюда

Подставим в эту пропорцию известные длины сторон и сократим полученные дроби.

Имеем: . Отсюда Из равенства треугольников подобия треугольников следует, что .

Пример №29

В каждом из треугольников ABC и /?5Г(рис. 291) медиана, проведённая к большей стороне, равна половине этой стороны. Подобны ли заданные треугольники, если АС = 9, АК= 7,5, RT = б, MR = 5?

Решение:

Медианы СK и ТМ отсекают от треугольников АВС и RSТсоответственно ∆АСК и ∆RTM. В каждом из них известны три стороны: АС= 9, АК= КС— 7,5; RT= 6, RM= МТ= 5.

Выясним, пропорциональны ли сходственные стороны этих треугольников:

Следовательно, AACK ARTM по трём сторонам. Из подобия этих треугольников следует, что ے A = ے R.

Рассмотрим ∆АВС и ∆RST. У них: ے A= ے R,

∆RSTno двум сторонам и углу между ними.

Решая задачи, помните:

  1. если на рисунке нет нужной пары треугольников, то для их получения проведите вспомогательные отрезки;
  2. иногда необходимо доказать подобие нескольких треугольников.

1. Вы, наверное, заметили, что признаки подобия и признаки равенства треугольников имеют много общего.

Пользуясь таблицей 19, сформулируйте попарно признак равенства и признак подобия треугольников. Чем отличаются соответствующие признаки?

2. Используя признаки подобия треугольников, можно доказать, что точка пересечения высот треугольника Н, точка пересечения его медиан М и центр описанной окружности Олежат на одной прямой (рис. 292).

Эту прямую называют прямой Эйлера в честь великого математика XVIII в. Леонарда Эйлера (1707 — 1783). Он родился в Базеле (Швейцария), в 1727 — 1741 гг. работал в Петербурге, затем — в Берлине, а с 1766 г. — снова в Петербурге. С его работами связаны выдающиеся достижения во всех областях математики, в механике, физике, астрономии. Теорему о прямой, получившей его имя, Л. Эйлер сформулировал, доказал и опубликовал в 1765 г.

Применение подобия треугольников

Проведём высоту CD к гипотенузе ЛВ в прямоугольном треугольнике АБС (рис. 300). Она делит гипотенузу на отрезки AD и BD, которые называются проекциями катетов на гипотенузу.

Если стороны треугольника обозначены А малыми буквами (рис. 300), то проекции катетов а и b на гипотенузу с обозначают соответственно:

Существуют ли зависимости между проекциями катетов на гипотенузу и сторонами прямоугольного треугольника? Да, существуют.

Одна из этих зависимостей очевидна: . Другие зависимости требуют доказательства.

Отрезок x называется средним пропорциональным между отрезками а и b, если выполняется равенство а : х = х : b.

Из определения следует, что . То есть квадрат среднего пропорционального между двумя отрезками равен произведению этих отрезков. В прямоугольном треугольнике можно выделить три средних пропорциональных: высоту, проведённую к гипотенузе, и оба катета.

Теорема (о средних пропорциональных в прямоугольном треугольнике).

В прямоугольном треугольнике:

  1. высота, проведённая к гипотенузе, является средним пропорциональным между проекциями катетов на гипотенузу;
  2. катет является средним пропорциональным между гипотенузой и его проекцией на гипотенузу.

Дано: ∆АСВ (рис. 301), ے C= 90°, СH— высота.

Доказать:

Доказательство.

1) по двум углам.

Действительно, они имеют по прямому углу и ے ACH— ے CBH

Из подобия треугольников следует: Отсюда = .

2) Каждый из треугольников АНС и СНВ подобен заданному треугольнику АСВ. Это следует из равенства их соответственных углов. Тогда получим:

Следствие. Проекции катетов на гипотенузу относятся, как квадраты катетов.

Действительно, по теореме о средних пропорциональных в прямоугольном треугольнике, квадраты катетов соответственно равны (рис. 302).

Поэтому

Вы знаете, что биссектриса треугольника делит его угол пополам. Существует ли зависимость между отрезками, на которые биссектриса делит противолежащую сторону треугольника? Да, существует.

Пример №30 (свойство биссектрисы треугольника).

Биссектриса угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Докажите это.

Решение:

Пусть в треугольнике ABC (рис. 303) проведена биссектриса AL АС

Надо доказать, что

Из точек А и В проводим перпендикуляры AM и BN к прямой CL.

no двум углам. В них: , поскольку CL — биссектриса ے С. Отсюда по двум углам.

В них: ے AML = ے BNL = 90°, ے ALM— ے BLN как вертикальные.

Отсюда (2)

Из равенств (1) и (2) получим:

Подобие треугольников используют не только в задачах на доказательство или вычисление, но и на построение.

Пример №31

Постройте треугольник по двум углам А и С и биссектрисе I угла В.

Решение:

Анализ (рис. 304). Углы А и С определяют треугольники, подобные искомому, а биссектриса — размеры искомого треугольника.

Пусть — искомый. Опустим требование задачи, что I — биссектриса ے B, то есть = I. Тогда можно построить вспомогательный по двум заданным углам А и С. Через точку на биссектрисе ے В ( = I) проходит прямая , отсекающая от треугольника ABC подобный ему треугольник. Следовательно, вершины , искомого треугольника являются точками пересечения прямой С, со сторонами ВА и несоответственно вспомогательного АВС.

Построение.

  1. Строим вспомогательный ∆ABC двум углам А и С.
  2. Проводим биссектрису BL угла В.
  3. На луче BL откладываем отрезок = I.
  4. Через точку , проводим прямую .

Доказательство.

По построению, в треугольнике : ے At = ے A, ے CX = ے C, BLy — биссектриса угла В и = I. Следовательно, , — искомый.

Дано:

Способ применения подобия треугольников в задачах на построение называют методом подобия.

Для того чтобы решить задачу на построение треугольника методом подобия:

  1. выделите из условия задачи те данные, которые определяют форму искомого треугольника;
  2. постройте по этим данным вспомогательный треугольник, подобный искомому;
  3. постройте искомый треугольник, используя те заданные условия, которые определяют его размеры.

1. Важные свойства имеет биссектриса внешнего угла треугольника.

Если треугольник равнобедренный, то биссектриса внешнего угла параллельна основанию (рис. 305). Если треугольник не равнобедренный, то биссектриса его внешнего ума пересекает противолежащую сторону в точке, расстояния от которой до вершин этой стороны пропорциональны прилежащим сторонам треугольника.

Пусть ABC — заданный треугольник (рис. 306), биссектриса его внешнего угла КВС пересекает продолжение стороны АС в точке D. Докажем, что DC: DA= ВС: ВА. Выполним вспомогательное построение: проведём СМ || BD. Две параллельные прямые пересекают стороны угла А, поэтому, по обобщённой теореме Фалеса, А С : CD = А М: MB, либо AD: CD=AB: MB.

Но МВ= СВ, поскольку ∆ВСМ— равнобедренный.

Действительно, в нём ے 3 = ے 4, так как ے 1 = ے 2 (BD— биссектриса ے KBC);

ے 1 = ے 3 как соответственные (BD II СМ, АВ — секущая);

ے 2 = ے 4 как внутренние накрест лежащие (BD || СМ, ВС — секущая).

Следовательно, AD : CD = АВ : СВ, то есть DC: DA = ВС: ВА.

Рассмотрите самостоятельно случаи, когда треугольник ABC— остроугольный

2. Значительный вклад в развитие теории геометрических построений сделал известный украинский математик Александр Степанович Смогоржевский.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Решение прямоугольных треугольников
  • Параллелограмм
  • Теорема синусов и теорема косинусов
  • Параллельность прямых и плоскостей
  • Трапеция и ее свойства
  • Площадь трапеции
  • Центральные и вписанные углы
  • Углы и расстояния в пространстве

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

источники:

Элементы треугольника. Биссектриса

http://www.evkova.org/podobie-treugolnikov

22
Авг 2013

Категория: Справочные материалы

Подобные треугольники

2013-08-22
2014-01-31

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

8

Коэффициентом подобия называют число k, равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны  подобных треугольников — стороны, лежащие напротив равных углов.

коэффициент подобия треуг

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

3ed II признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

12

III признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

4e

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия.r
  • Отношение длин соответствующих элементов подобных треугольников (в частности,  длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

подобные треугольники

2. Треугольники  AOD и COB, образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия – k=frac{AO}{OC}.

 podobie v trapetsii

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

подобие в прямоугольном треугольнике

внимание

Здесь вы найдете  подборку задач по теме «Подобные треугольники».

Автор: egeMax |

комментариев 50

Скачать материал


8кл. 
«Определение подобных треугольников, свойство биссектрисы  треугольника».

Скачать материал

  • Сейчас обучается 246 человек из 63 регионов

  • Сейчас обучается 26 человек из 18 регионов

  • Сейчас обучается 80 человек из 37 регионов

Описание презентации по отдельным слайдам:

  • 
8кл. 
«Определение подобных треугольников, свойство биссектрисы  треугольника».

    1 слайд

    8кл.
    «Определение подобных треугольников, свойство биссектрисы треугольника».

  • Разминка 1Отрезки АВ и СD
соответственно пропорциональны от...

    8 слайд

    Разминка 1
    Отрезки АВ и СD
    соответственно
    пропорциональны
    отрезкам MN и PK.
    Найдите MN, если
    АВ=3, CD=4, PK=2.

  • Разминка 2Даны два подобных
 прямоугольных треугольника.
Ко...

    10 слайд

    Разминка 2
    Даны два подобных
    прямоугольных треугольника.
    Коэффициент подобия 1,5.
    Стороны одного из них 3см,
    4см, 5см. Найдите гипотенузу
    Другого треугольника.

  • Разминка 3Даны два подобных
 квадрата.
Коэффициент подобия...

    12 слайд

    Разминка 3
    Даны два подобных
    квадрата.
    Коэффициент подобия 2,2.
    Найдите сторону большего квадрата, если сторона меньшего равна 2см.

  • Разминка 3Даны два подобных
 квадрата.
Коэффициент подобия...

    13 слайд

    Разминка 3
    Даны два подобных
    квадрата.
    Коэффициент подобия 2,2.
    Найдите сторону большего квадрата, если сторона меньшего равна 2см.
    2 х 2,2 = 4,4см

  • Разминка 4Даны два подобных
куба.
Коэффициент подобия 0,5....

    14 слайд

    Разминка 4
    Даны два подобных
    куба.
    Коэффициент подобия 0,5.
    Найдите сторону меньшего куба , если сторона большего куба равна 10см.

  • Разминка 4Даны два подобных
куба.
Коэффициент подобия 0,5....

    15 слайд

    Разминка 4
    Даны два подобных
    куба.
    Коэффициент подобия 0,5.
    Найдите сторону меньшего куба , если сторона большего куба равна 10см.
    10 х 0,5 = 5см.

  • Разминка 55. Отношение площадей 
двух квадратов 
равно 9:1.  Найдит...

    16 слайд

    Разминка 5
    5. Отношение площадей
    двух квадратов
    равно 9:1. Найдите
    сторону большего
    из них, если сторона
    меньшего равна 2см.

  • Найдем длину 
биссектрисы  AD.

    23 слайд

    Найдем длину
    биссектрисы AD.

  • Найдем длину биссектрисы  AD.           Используем формулу: 
 AD =...

    24 слайд

    Найдем длину биссектрисы AD.
    Используем формулу:
    AD =

  • Найдем длину биссектрисы AD. AD = ==    ==мсм3=

    25 слайд

    Найдем длину биссектрисы AD.

    AD
    =

    =
    =

    =
    =
    м
    см
    3
    =

  • Условие задачи 1.1. В треугольнике ABC проведена биссектриса AD. Найдите пери...

    26 слайд

    Условие задачи 1.
    1. В треугольнике ABC проведена биссектриса AD. Найдите периметр треугольника ABC и АD , если АС = 4; DC = 2; BD = 3.

  • Решение задачи 1.Решение. По свойству биссектрисы BD/AB = DC/AC; 3/AB = 2/4;...

    27 слайд

    Решение задачи 1.
    Решение. По свойству биссектрисы BD/AB = DC/AC; 3/AB = 2/4; АВ = 6.
    Периметр треугольника РАВС = 6 + 5 + 4 = 15.
    AD=

    Ответ: 15см,

  • Условие задачи 2.2. Отрезок BD – биссектриса треугольника АВС. Найдите отрезк...

    28 слайд

    Условие задачи 2.
    2. Отрезок BD – биссектриса треугольника АВС. Найдите отрезки AD , DC и ВD, если АВ=10м, ВС=15м, АС=20м. 

  • Условие задачи 3.3. Отрезок BD – биссектриса треугольника АВС. Найдите сторо...

    29 слайд

    Условие задачи 3.
    3. Отрезок BD – биссектриса треугольника АВС. Найдите сторону ВС и BD, если AD:DC =8:5, АВ=16м. 

  • ИТОГ УРОКА.1. Какие фигуры называются
 подобными?

    30 слайд

    ИТОГ УРОКА.
    1. Какие фигуры называются
    подобными?

  • ОТВЕТ.1. Фигуры одинаковой формы
 называются подобными.

    31 слайд

    ОТВЕТ.
    1. Фигуры одинаковой формы
    называются подобными.

  • ИТОГ УРОКА.2. Какие треугольники называются
 подобными?

    32 слайд

    ИТОГ УРОКА.
    2. Какие треугольники называются
    подобными?

  • ОТВЕТ.2. Два треугольника называются подобными, если их углы соответственно р...

    33 слайд

    ОТВЕТ.
    2. Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

  • ИТОГ УРОКА.3. Чему равно отношение сходственных сторон?
4. Чему равно отношен...

    34 слайд

    ИТОГ УРОКА.
    3. Чему равно отношение сходственных сторон?
    4. Чему равно отношение площадей подобных треугольников?

  • ИТОГ УРОКА.5. В чем заключается 
Свойство биссектрисы угла
треугольника?

    35 слайд

    ИТОГ УРОКА.
    5. В чем заключается
    Свойство биссектрисы угла
    треугольника?

  • ОТВЕТ.5. Биссектриса треугольника делит противоположную сторону на отрезки пр...

    36 слайд

    ОТВЕТ.
    5. Биссектриса треугольника делит противоположную сторону на отрезки пропорциональные
    прилежащим сторонам треугольника.

  • Задачи для самостоятельной работы.1в. Отрезок BD – биссектриса треугольника А...

    37 слайд

    Задачи для самостоятельной работы.
    1в. Отрезок BD – биссектриса треугольника АВС. Найдите сторону ВС и BD, если AD:DC =3:5, АВ=24м, РАВС =96м.
    2в.Отрезок BD – биссектриса треугольника АВС. Найдите отрезки AD , DC и ВD, если АВ=20м, ВС=30м, АС=40м 
    3в. В треугольнике ABC проведена биссектриса AD. Найдите периметр треугольника ABC и АD, если АС = 4; DC = 2; BD = 3.

  • Ответы к самостоятельной работе.1 вариант. ВС=40м, ВD=12м.2вариант. АD=16см,...

    38 слайд

    Ответы к самостоятельной работе.
    1 вариант. ВС=40м, ВD=12
    м.
    2вариант. АD=16см, DС=24см,
    ВD=6 см.

    3вариант. Р=15ед., АD=3
    ед.

  • Спасибо за внимание.

    39 слайд

    Спасибо за внимание.

Краткое описание документа:

На этой паре уроков мы будем решать задачи, используя определение подобных треугольников и свойство биссектрисы треугольника, а также вспомним формулы площади многоугольника.Поэтому у вас будет возможность сегодня пересдать контрольную работу на тему «Площадь многоугольника».

Объясняю правила:

В конце второго урока вы пишете самостоятельную работу, решая одну, подобную разобранным на уроке, задачу.

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 267 022 материала в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Другие материалы

«Математика», Муравин Г.К., Муравина О.В.

6 сынып «Ондық бөлшектер»

  • Учебник: «Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С.
  • Тема: § 18. Десятичное приближение обыкновенной дроби
  • 17.02.2018
  • 889
  • 0

«Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С.

  • 17.02.2018
  • 191
  • 1
  • 17.02.2018
  • 906
  • 0
  • 17.02.2018
  • 1937
  • 3
  • 17.02.2018
  • 926
  • 0
  • 17.02.2018
  • 267
  • 0
  • 17.02.2018
  • 345
  • 1

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»

  • Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»

  • Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»

  • Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»

  • Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»

  • Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»

  • Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»

  • Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»

  • Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»

  • Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

§ 1. Подобие треугольников. Отношение площадей подобных треугольников. Свойства медиан, биссектрис и высот

Две фигуры $$ F$$ и $$ {F}^{text{‘}}$$  называются подобными, если они переводятся друг в друга преобразованием подобия, т. е. таким преобразованием, при котором расстояния между двумя точками изменяются (увеличиваются или уменьшаются) в одно и то же число раз. Если фигуры $$ F$$ и $$ {F}^{text{‘}}$$  подобны, то пишется $$ Fsim {F}^{text{‘}}$$Напомним, что в записи подобия треугольников $$ ∆ABC~∆{A}_{1}{B}_{1}{C}_{1}$$ предполагается, что вершины, совмещаемые преобразованием  подобия, стоят на соответствующих местах, т. е. $$ A$$ переходит в $$ {A}_{1}$$, $$ B$$ — в $$ {B}_{1}$$, $$ C$$ — в $$ {C}_{1}$$. Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. В частности, если $$ ∆ABC~∆{A}_{1}{B}_{1}{C}_{1}$$

$$ angle A=angle {A}_{1}, angle B=angle {B}_{1}, angle C=angle {C}_{1}, {displaystyle frac{AB}{{A}_{1}{B}_{1}}}={displaystyle frac{BC}{{B}_{1}{C}_{1}}}={displaystyle frac{AC}{{A}_{1}{C}_{1}}}$$.

Два треугольника подобны:

  • 1) если два угла одного соответственно равны двум углам другого;
  • 2) если две стороны одного пропорциональны двум сторонам другого и углы, образованные этими сторонами, равны;
  • 3) если три стороны одного треугольника пропорциональны трём сторонам другого.

Из признаков подобия следует утверждения, которые удобно использовать в решении задач: 

1°. Прямая, параллельная одной из сторон треугольника и пересекающая две другие в различных точках, отсекает треугольник, подобный данному.

Рис. 5

2°. Прямая, параллельная одной из сторон треугольника и пересекающая две другие стороны, отсекает на них отрезки, пропорциональные данным сторонам,   т. е. если  $$ MNleft|right|AC$$ (рис. 5), то

$$ {displaystyle frac{m}{n}}={displaystyle frac{p}{q}}=frac{m+p}{n+q}$$

3°. Если  прямая пересекает две стороны треугольника и отсекает на них пропорциональные отрезки, то она параллельна третьей стороне, т. е. если (см. рис. 5)

$$ {displaystyle frac{m}{n}}={displaystyle frac{m+p}{n+q}}$$ или $$ {displaystyle frac{m}{n}}={displaystyle frac{p}{q}}$$,

то $$ MN$$ параллельна $$ AC$$ (доказательство было дано в задании для  9 класса).

Прямая, проходящая через точку пересечения диагоналей трапеции параллельно её основаниям, пересекает боковые стороны трапеции в точках $$ M$$ и $$ N$$. Найти длину отрезка `MN`, если  основания  трапеции равны $$ a$$ и $$ b$$.

Пусть $$ O$$ точка пересечения диагоналей трапеции (рис. 6). Обозначим:

$$ AD=a, BC=b, MO=x, BO=p, OD=q.$$

$$1.;left.begin{array}{l}BCparallel AD\bigtriangleup BOCsimbigtriangleup DOA;(mathrm{по};mathrm{двум};mathrm{углам})end{array}right|Rightarrowdfrac ba=dfrac pq$$                                        (1)

$$2.;left.begin{array}{l}MOparallel AD\bigtriangleup MBOsimbigtriangleup ABDend{array}right|Rightarrowdfrac xa=dfrac p{p+q}$$.                                         (2)

Из (1) и (2) следует $$ x=a{displaystyle frac{p}{p+q}}=q{displaystyle frac{p/q}{p/q+1}}={displaystyle frac{ab}{a+b}}$$, т. е. $$ MO={displaystyle frac{ab}{a+b}}.$$

Аналогично устанавливаем, что $$ NO={displaystyle frac{ab}{a+b}}$$, поэтому $$ overline{)MN={displaystyle frac{2ab}{a+b}}}$$.

Результат этой задачи, как утверждение, верное для любой трапеции, следует запомнить. 

Рис. 6

Из определения подобия фигур следует, что в подобных фигурах все соответствующие линейные  элементы пропорциональны. Так, отношение периметров подобных треугольников равно отношению длин соответствующих сторон. Или, например, в подобных треугольниках отношение радиусов вписанных окружностей (также и описанных окружностей) равно отношению длин соответствующих сторон. Это замечание поможет нам решить следующую задачу.

Рис. 7

В прямоугольном треугольнике  $$ ABC$$ из вершины $$ C$$ прямого угла проведена высота $$ CD$$ (рис. 7). Радиусы  окружностей, вписанных в треугольники $$ ACD$$ и $$ BCD$$ равны соответственно $$ {r}_{1}$$ и $$ {r}_{2}$$. Найти радиус окружности, вписанной в треугольник $$ ABC$$.

 Обозначим искомый радиус $$ r$$, положим $$ AB=c$$, $$ AC=b$$, $$ BC=a$$. Из подобия прямоугольных треугольников $$ ACD$$ и $$ ABC$$ (у   них   равные углы при вершине $$ A$$) имеем $$ {displaystyle frac{r}{{r}_{1}}}={displaystyle frac{c}{b}}$$, откуда $$ b={displaystyle frac{{r}_{1}}{r}}c$$. Прямоугольные треугольники  $$ BCD$$ и  $$ BAC$$ также  подобны,  поэтому $$ {displaystyle frac{r}{{r}_{2}}}={displaystyle frac{c}{a}}$$, — откуда $$ a={displaystyle frac{{r}_{2}}{r}}c$$. Так как $$ {a}^{2}+{b}^{2}={c}^{2}$$ то, возводя в квадрат выражения для  $$ a$$ и $$ b$$ и складывая их, получим $$ {left(frac{{r}_{1}}{r}right)}^{2}{c}^{2}+{left(frac{{r}_{2}}{r}right)}^{2}{c}^{2}={c}^{2}$$ или $$ {displaystyle frac{{r}_{1}^{2}+{r}_{2}^{2}}{{r}^{2}}}=1$$.  Находим  $$ r=sqrt{{{r}_{1}}^{2}+{{r}_{2}}^{2}}$$. 

Напомним, что площади подобных фигур относятся как квадраты соответствующих линейных элементов. Для треугольников это утверждение можно сформулировать так: площади подобных треугольников относятся как квадраты соответствующих сторон. Рассмотрим характерную задачу на эту тему.

Рис. 8

Через точку $$ M$$, лежащую внутри треугольника $$ ABC$$, проведены три прямые, параллельные его сторонам. При этом образовались три треугольника (рис. 8), площади которых равны $$ {S}_{1}$$, $$ {S}_{2}$$  и $$ {S}_{3}$$. Найти  площадь треугольника $$ ABC$$.

Легко видеть, что треугольники $$ EKM$$, $$ MQF$$ и $$ PMN$$ подобны треугольнику $$ ABC$$.

Пусть $$ S$$ -площадь треугольника $$ ABC$$, тогда

$$ {displaystyle frac{{S}_{1}}{S}}={left({displaystyle frac{EM}{AC}}right)}^{2}; {displaystyle frac{{S}_{2}}{S}}={left({displaystyle frac{MF}{AC}}right)}^{2}; {displaystyle frac{{S}_{3}}{S}}={left({displaystyle frac{PN}{AC}}right)}^{2}.$$

Откуда находим

$$ EM=sqrt{{displaystyle frac{{S}_{1}}{S}}}AC, MF=sqrt{{displaystyle frac{{S}_{2}}{S}}}AC, PN=sqrt{{displaystyle frac{{S}_{3}}{S}}}AC.$$

А так как $$ EM=AP, MF=NC$$, то $$ EM+PN+MF=AP+PN+NC=AC$$.

Таким образом, $$ AC=AC·left(sqrt{{displaystyle frac{{S}_{1}}{S}}}+sqrt{{displaystyle frac{{S}_{2}}{S}}}+sqrt{{displaystyle frac{{S}_{3}}{S}}}right)$$, откуда следует

$$ S={left(sqrt{{S}_{1}}+sqrt{{S}_{2}}+sqrt{{S}_{3}}right)}^{2}$$.

Свойства медиан, высот, биссектрис треугольника

В наших заданиях 9-го и 10-го классов здесь повторяемые теоремы и утверждения были доказаны. Для некоторых из них  мы напоминаем пути доказательств, доказывая их моменты и давая поясняющие рисунки.

Рис. 9

Теорема 1. Три медианы треугольника пересекаются в одной точке  и  точкой пересечения каждая медиана делится в отношении `2 : 1`, считая от вершины.

Теорема 2. Три медианы, пересекаясь, разбивают треугольник на `6` треугольников с общей вершиной, площади которых равны между собой.

(На рис. 9 площадь каждого из `6` треугольников с вершиной `M` и основанием, равным половине стороны, равна $$ {displaystyle frac{1}{2}}{S}_{ABC}$$. Точка пересечения медиан называется центром тяжести треугольника. 

Теорема 3. Пусть $$ BD$$ — медиана треугольника 

$$ ABC (BC=a, AC=b, AB=c, BD={m}_{a})$$, тогда

$$ {m}_{c}^{2}={displaystyle frac{{a}^{2}+{b}^{2}}{2}}-{displaystyle frac{{c}^{2}}{4}}$$. (Доказательство приведено далее в §4 Задания).

Рис. 10

Медианы $$ A{A}_{1}$$ треугольника $$ ABC$$ пересекаются в точке $$ O$$, $$ A{A}_{1}=12$$ и $$ C{C}_{1}=6$$ и одна из сторон треугольника равна `12`. (рис. 10). Найти площадь треугольника  $$ ABC$$.

1. По теореме 1 имеем  $$ AO={displaystyle frac{2}{3}}A{A}_{1}=8$$, $$ CO={displaystyle frac{2}{3}}C{C}_{1}=4$$. 

Расставим на рисунке 10 длины отрезков медиан. По условию, одна из сторон треугольника равна `12`, сторона $$ AC$$ не может равняться `12`, иначе $$ AC=AO+OC$$ — нарушено неравенство треугольника. Также не может равняться `12` сторона $$ AB$$, так в этом случае $$ A{C}_{1}=6$$ и треугольник $$ AO{C}_{1}$$  со сторонами `8`, `2`, `6` не существует. Значит,  $$ BC=12$$ и $$ A{C}_{1}=6$$.

2. Площадь треугольника находим по формуле Герона:

$$ p=7, {S}_{{A}_{1}OC}=sqrt{7·1·3·3}=3sqrt{7}$$.

По теореме 2 площадь треугольника  $$ ABC$$ в `6` раз больше, находим $$ {S}_{ABC}=18sqrt{7}$$.

Теорема 4. Три высоты треугольника или три прямые, на которых лежат высоты, пересекаются в одной точке. (Эта точка называется ортоцентром треугольника). В остроугольном треугольнике точка пересечения высот лежит внутри треугольника.

Были доказаны также две леммы о высотах

1-ая лемма.

Если $$ A{A}_{1}$$ и $$ B{B}_{1}$$ — высоты треугольника $$ ABC$$, то треугольник $$ {A}_{1}{B}_{1}C$$ подобен треугольнику $$ ABC$$ с коэффициентом подобия $$ k={displaystyle frac{{A}_{1}{B}_{1}}{AB}}=left|mathrm{cos}Cright|$$. Можно это утверждение сформулировать так: Если соединить основания двух высот $$ A{A}_{1}$$ и $$ B{B}_{1}$$ треугольника $$ ABC$$, то образуется треугольник, подобный данному: $$ ∆{A}_{1}{B}_{1}C~∆ABC$$. 

Из прямоугольных треугольников $$ AC{A}_{1}$$ следует $$ {A}_{1}C=AC·mathrm{cos}C$$ или $$ {A}_{1}C=AC·mathrm{cos}(180°-C)=ACleft|mathrm{cos}Cright|$$ (рис. 11а, б), а из прямоугольных треугольников $$ BC{B}_{1}$$ следует $$ {B}_{1}C=BC·mathrm{cos}C$$ или $$ {B}_{1}C=BC·mathrm{cos}(180°-C)=BCleft|mathrm{cos}Cright|$$. Далее рассуждения очевидны.

2-ая лемма.

Если высоты $$ A{A}_{1}$$ и $$ B{B}_{1}$$ (или их продолжения) пересекаются в точке $$ H$$, то справедливо равенство $$ AH·H{A}_{1}=BH·H{B}_{1}$$ (рис. 12а, б).

Рис. 13

Высоты $$ A{A}_{1}$$ и $$ B{B}_{1}$$ пересекаются в точке $$ H$$ (рис. 13), при этом $$ AH=3H{A}_{1}$$ и $$ BH=H{B}_{1}$$. Найти косинус угла $$ ACB$$ и площадь треугольника $$ ABC$$, если $$ AC=a$$.  

Обозначим $$ H{A}_{1}=x, H{B}_{1}=y$$, 

1. Точка $$ H$$ — середина высоты (рис. 13). Если отрезок $$ MH$$ проходит через точку $$ H$$ и параллелен  основаниям,  то `MN` — средняя линия; `MN=a/2`.

2. $$left.triangle HA_1Nsimtriangle AA_1Cright|Rightarrowdfrac{HN}{AC}=dfrac x{4x},;HN=dfrac14a.$$ Значит, $$ MH=HN={displaystyle frac{a}{4}}$$ и $$ A{B}_{1}={B}_{1}C={displaystyle frac{a}{2}}$$ Треугольник  $$ ABC$$  равнобедренный, $$ AB=BC$$.

3. $$ angle {B}_{1}BC=90°-angle C$$, поэтому `ul(/_BHA_1=/_AHB_1=/_C)`, а по второй лемме о высотах  $$ AH·H{A}_{1}=BH·H{B}_{1}$$ т. е.  $$ 3{x}^{2}={y}^{2}, y=xsqrt{3}$$.

Далее, $$ mathrm{cos}C=mathrm{cos}(angle AH{B}_{1})={displaystyle frac{y}{3x}}$$, находим $$ mathrm{cos}C={displaystyle frac{1}{sqrt{3}}}$$.

4. $$ △AH{B}_{1}: A{B}_{1}^{2}=(3x{)}^{2}-{y}^{2}$$, $$ {displaystyle frac{{a}^{2}}{4}}=6{x}^{2}$$, $$ x={displaystyle frac{a}{2sqrt{6}}}$$, $$ y={displaystyle frac{a}{2sqrt{2}}}$$, тогда

$$ {S}_{ABC}={displaystyle frac{1}{2}}AC·B{B}_{1}=ay={displaystyle frac{{a}^{2}sqrt{2}}{4}}$$.

Теорема 5. Биссектриса угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим  сторонам, т. е.  если $$ AD$$ — биссектриса треугольника  $$ ABC$$ (рис. 14), то

$$ {displaystyle frac{BD}{DC}}={displaystyle frac{AB}{AC}} left({displaystyle frac{x}{y}}={displaystyle frac{c}{b}}right)$$

Доказательство легко выполните сами, применяя теорему синусов к треугольникам $$ ADB$$ и $$ ADC$$.

Теорема 6. Пусть $$ AD$$ — биссектриса треугольника $$ ABC$$ (рис. 14), тогда $$ AD=sqrt{AB·AC-DB·DC}$$ (в обозначениях рисунка 14а) 

`ul(AD=sqrt(bc-xy))`.

Эту теорему докажем. Опишем около треугольника $$ ABC$$ окружность, точку пересечения прямой $$ AD$$ и окружности обозначим $$ K$$ (рис. 14а).

Обозначим  $$ AD=z, DK=m.△ABDsim ∆AKC$$ $$ (angle ABD=angle AKC$$ и $$ angle 1=angle 2)$$. Из подобия следует $$ {displaystyle frac{AB}{AK}}={displaystyle frac{AD}{AC}}$$, т. е. $$ {displaystyle frac{c}{z+m}}={displaystyle frac{z}{b}}$$, откуда $$ {z}^{2}+zm=bc$$, $$ {z}^{2}=bc-zm$$.

По свойству пересекающихся хорд: $$ AD·DK=BD·CD$$, т. е. $$ z·m=x·y$$, тогда $$ {z}^{2}=bc-xy$$, $$ z=sqrt{bc-xy}$$.  

В треугольнике $$ ABC$$ со сторонами $$ AB=5$$, $$ AC=3$$ биссектриса $$ AD={displaystyle frac{15}{8}}$$. Найти сторону $$ BC$$ и радиус вписанной окружности.

По теореме 5 (см. рис. 14) имеем $$ {displaystyle frac{x}{y}}={displaystyle frac{5}{3}}$$ Обозначим $$ x=5z$$, тогда  $$ y=3z$$. По теореме 6 выполнено равенство $$ {left({displaystyle frac{15}{8}}right)}^{2}=5·3-5z·3z.$$ Легко находим $$ z={displaystyle frac{7}{8}}$$ значит `ul(BC=7)`. Радиус вписанной окружности найдём по формуле $$ S=pr$$ (`S` — площадь треугольника,  `p` -полупериметр). Имеем $$ p={displaystyle frac{15}{2}}$$, по формуле Герона $$ S=sqrt{{displaystyle frac{15}{2}}·{displaystyle frac{1}{2}}·{displaystyle frac{10}{2}}·{displaystyle frac{9}{2}}}={displaystyle frac{15sqrt{3}}{2}},$$ поэтому $$ r={displaystyle frac{S}{p}}={displaystyle frac{sqrt{3}}{2}}.$$  

Понравилась статья? Поделить с друзьями:
  • Как составить ионное уравнение реакции онлайн
  • Как найти первое значение в строке excel
  • Неверно пробит чек на онлайн кассе как исправить
  • Как в автокаде исправить штамп
  • Как найти захоронение на кладбище в челябинске