Как найти боковое смещение луча

2017-11-04   comment

Определить боковое смещение луча после прохождения через плоскопараллельную стеклянную пластинку толщиной 6 см, имеющую показатель преломления 1,6. Угол падения луча света на пластинку $40^{ circ}$.

Решение:



Расстояние между лучами найдем из треугольника ABD (рис.):

$d = AB sin ( alpha — beta)$,

где $AB = frac{h}{ cos beta}$ ($h$ — толщина пластинки, $beta$ — угол преломления). Окончательно имеем

$d = h frac{ sin ( alpha — beta)}{ cos beta}$.

Угол преломления $beta$ определим из выражения $frac{ sin alpha}{ sin beta} = n:$

$sin beta = frac{ sin alpha}{n}, sin beta = frac{0,643}{1,6} = 0,402; beta = 23^{ circ}40^{ prime}$.

Зная угол преломления $beta$, можно определить смещение луча:

$d = frac{6 см cdot 0,2812}{0,9159} approx 1,84 см$.

Луч света падает на плоскопараллельную стеклянную пластину толщиной 6 см. Угол падения 60 градусов. Найти величину бокового смещения луча, прошедшего через эту пластину.

Оцените сложность задачи:

0 голосов, средняя сложность: 0.0000

Решения задачи

Дано:

H=6 см; α=60°=π/3;

$n_{возд}$=1;

$n_{ст}$=1,57

h=?

Изобразим графически условие задачи

Изобразим графически условие задачи

Решение:

Согласно закону преломления света $frac{sinα}{sinβ}=frac{n_{ст}}{n_{возд}}$, откуда $sinβ=frac{n_{возд}sinα}{n_{ст}}=frac{1×0,866}{1,57}$=0,5516, откуда $β=arcsin0,5516$=0,5843

Из треугольника MGK находим $cosβ=frac{MG}{MK}$, откуда $MK=frac{MG}{cosβ}$

Из треугольника MKN находим $sin(α-β)=frac{KN}{MK}$, откуда $h=KN=MKsin(α-β)=frac{MGsin(α-β)}{cosβ}=frac{6sin(frac{π}{3}-0,5843)}{cos0,5843}=frac{6×0,4465}{0,834}$=3,2 см.

Ответ: величина бокового смещения луча составит 3,2 см.

Чтобы предложить решение пожалуйста войдите или зарегистрируйтесь

Записать новую задачу
Все задачи
Все темы
Все физики

Содержание:

Прохождение света через плоскопараллельные пластинки и призмы:

Законы отражения и преломления света широко используются для управления ходом световых пучков. Для отражения света в приборах применяются зеркала и призмы, для преломления — призмы, плоскопараллельные пластинки, линзы.

Зеркала, призмы, пластинки и линзы являются элементами, комбинируя которые, создают различные оптические приборы. Рассмотрим отдельные элементы оптических приборов.

Плоскопараллельная пластинка

Рассмотрим ход луча в плоскопараллельной пластинке. На рисунке 77 показан ход светового луча в плоскопараллельной пластинке толщиной Прохождение света через плоскопараллельные пластинки и призмы с примерами

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Согласно закону преломления на первой и второй границах раздела для луча, падающего под углом Прохождение света через плоскопараллельные пластинки и призмы с примерами на первую границу, имеем:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Здесь Прохождение света через плоскопараллельные пластинки и призмы с примерами — угол преломления на первой границе, Прохождение света через плоскопараллельные пластинки и призмы с примерами — угол падения луча на вторую границу, Прохождение света через плоскопараллельные пластинки и призмы с примерами — угол преломления на второй границе, Прохождение света через плоскопараллельные пластинки и призмы с примерами — абсолютный показатель преломления вещества пластинки.

Накрест лежащие углы Прохождение света через плоскопараллельные пластинки и призмы с примерами при параллельных прямых Прохождение света через плоскопараллельные пластинки и призмы с примерами (перпендикулярах к первой и второй параллельным границам) равны, т. е. Прохождение света через плоскопараллельные пластинки и призмы с примерами Следовательно, Прохождение света через плоскопараллельные пластинки и призмы с примерами Откуда следует, что

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Таким образом, луч света, проходя через плоскопараллельную пластинку, с обеих сторон которой находится одна и та же среда, смещается параллельно своему начальному направлению на некоторое расстояние Прохождение света через плоскопараллельные пластинки и призмы с примерами

Соответственно, все предметы, если смотреть на них сквозь прозрачную плоскопараллельную пластинку под углом, не равным нулю, будут также казаться смещенными.

Найдем, от каких параметров пластинки зависит смещение Прохождение света через плоскопараллельные пластинки и призмы с примерами луча. Из Прохождение света через плоскопараллельные пластинки и призмы с примерами следует, что

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Из Прохождение света через плоскопараллельные пластинки и призмы с примерами имеем:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Отсюда:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

С учетом закона преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами и тригонометрического тождества Прохождение света через плоскопараллельные пластинки и призмы с примерами находим:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Расстояние Прохождение света через плоскопараллельные пластинки и призмы с примерами между направлениями входящего и выходящего лучей можно определить из соотношения
Прохождение света через плоскопараллельные пластинки и призмы с примерами
Как видно из соотношения (2), смещение Прохождение света через плоскопараллельные пластинки и призмы с примерами луча при данном угле падения Прохождение света через плоскопараллельные пластинки и призмы с примерами зависит от толщины Прохождение света через плоскопараллельные пластинки и призмы с примерами пластинки и ее показателя преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами

Трехгранная призма

Рассмотрим ход луча в трехгранной призме. Пусть световой луч Прохождение света через плоскопараллельные пластинки и призмы с примерами падает под углом Прохождение света через плоскопараллельные пластинки и призмы с примерами на боковую грань трехгранной призмы Прохождение света через плоскопараллельные пластинки и призмы с примерами сечение которой показано на рисунке 78. Призма, изготовленная из вещества с абсолютным показателем преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами находится в среде с абсолютным показателем преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами Угол Прохождение света через плоскопараллельные пластинки и призмы с примерами при вершине Прохождение света через плоскопараллельные пластинки и призмы с примерами называется преломляющим углом призмы. Грани призмы, образующие преломляющий угол Прохождение света через плоскопараллельные пластинки и призмы с примерами называются преломляющими. Грань, лежащая напротив преломляющего угла, называется основанием призмы.

Пусть луч Прохождение света через плоскопараллельные пластинки и призмы с примерами лежат в одной плоскости — плоскости листа книги. Из закона преломления света находим угол преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Если показатель призмы Прохождение света через плоскопараллельные пластинки и призмы с примерами то преломленный луч Прохождение света через плоскопараллельные пластинки и призмы с примерами падает на вторую боковую грань призмы под углом Прохождение света через плоскопараллельные пластинки и призмы с примерами Полного отражения на второй преломляющей грани не происходит при условии Прохождение света через плоскопараллельные пластинки и призмы с примерами и луч выходит из призмы под углом Прохождение света через плоскопараллельные пластинки и призмы с примерами Его находим из закона преломления:
Прохождение света через плоскопараллельные пластинки и призмы с примерами
Отклонение от начального направления луча Прохождение света через плоскопараллельные пластинки и призмы с примерами вследствие преломлений на гранях призмы определяется углом Прохождение света через плоскопараллельные пластинки и призмы с примерами (см. рис. 78). Угол Прохождение света через плоскопараллельные пластинки и призмы с примерами между направлениями входящего и выходящего лучей называется углом отклонения.

Рассмотрим Прохождение света через плоскопараллельные пластинки и призмы с примерами С учетом того, что Прохождение света через плоскопараллельные пластинки и призмы с примерами по теореме о внешнем угле треугольника находим:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Применим эту же теорему к Прохождение света через плоскопараллельные пластинки и призмы с примерами

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Из формул (5) и (6) определим связь угла падения Прохождение света через плоскопараллельные пластинки и призмы с примерами угла преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами с преломляющим углом Прохождение света через плоскопараллельные пластинки и призмы с примерами призмы и углом отклонения Прохождение света через плоскопараллельные пластинки и призмы с примерами выходящего луча от начального направления:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

В результате получим систему уравнений (3), (4), (5), (7):

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Система уравнений (8) позволяет решить задачу на прохождение луча света через трехгранную призму без полного отражения на ее гранях.

  • Заказать решение задач по физике

Если угол падения Прохождение света через плоскопараллельные пластинки и призмы с примерами на грань призмы и преломляющий угол призмы Прохождение света через плоскопараллельные пластинки и призмы с примерами малы, то малыми будут и углы Прохождение света через плоскопараллельные пластинки и призмы с примерами Поэтому в законах преломления (3) и (4) отношение синусов можно заменить отношением углов, выраженных в радианах, т. е.:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Подставляя полученные выражения для Прохождение света через плоскопараллельные пластинки и призмы с примерами в соотношение (7), находим:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Из соотношения (9) следует, что, во-первых: чем больше преломляющий угол Прохождение света через плоскопараллельные пластинки и призмы с примерами тем больше угол отклонения Прохождение света через плоскопараллельные пластинки и призмы с примерами лучей призмой; во-вторых, угол отклонения Прохождение света через плоскопараллельные пластинки и призмы с примерами лучей увеличивается с ростом абсолютного показателя преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами вещества призмы. Как видно из рисунка 78, луч света, проходя через трехгранную призму, отклоняется к ее утолщенной части, если абсолютный показатель преломления вещества призмы больше абсолютного показателя преломления окружающей среды Прохождение света через плоскопараллельные пластинки и призмы с примерами

Пример решения задачи

Определите наименьший преломляющий угол Прохождение света через плоскопараллельные пластинки и призмы с примерами стеклянной призмы, находящейся в воздухе, при котором луч, падающий нормально на грань призмы, не выйдет через ее вторую боковую грань (рис. 79). Показатель преломления стекла призмы Прохождение света через плоскопараллельные пластинки и призмы с примерами

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Дано: 

Прохождение света через плоскопараллельные пластинки и призмы с примерами
Прохождение света через плоскопараллельные пластинки и призмы с примерами

Решение:

Запишем условие полного отражения на боковой грани Прохождение света через плоскопараллельные пластинки и призмы с примерами
Прохождение света через плоскопараллельные пластинки и призмы с примерами
Вследствие того, что Прохождение света через плоскопараллельные пластинки и призмы с примерами как углы с взаимно перпендикулярными сторонами:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Ответ: Прохождение света через плоскопараллельные пластинки и призмы с примерами

  • Поляризация света
  • Линзы в физике
  • Глаз как оптическая система
  • Звук в физике и его характеристики
  • Электромагнитная природа света
  • Интерференция света
  • Дифракция света
  • Принцип Гюйгенса — Френеля

Условие задачи:

Определить смещение светового луча при прохождении его через стеклянную пластинку с параллельными гранями, если толщина пластинки 4 см и угол падения 70°.

Задача №10.3.33 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(d=4) см, (alpha=70^circ), (l-?)

Решение задачи:

Схема к решению задачиРазумеется к такой задаче необходимо сделать хороший рисунок, без него решить задачу невозможно. Первое, что можно увидеть на рисунке, так это то, что искомое смещение (l) можно найти из прямоугольного треугольника по формуле:

[l = Delta lcos alpha;;;;(1)]

Расстояние (Delta l) можно определить следующим образом:

[Delta l = {l_2} – {l_1}]

Расстояния (l_1) и (l_2) можно найти из соответствующих прямоугольных треугольников (да, опять) по следующим формулам:

[left{ begin{gathered}
{l_1} = d cdot tgbeta hfill \
{l_2} = d cdot tgalpha hfill \
end{gathered} right.]

Учитывая все вышесказанное, формула (1) примет вид:

[l = dcos alpha left( {tgalpha – tgbeta } right);;;;(2)]

Чтобы найти угол преломления (beta), запишем закон преломления света (также известен как закон преломления Снеллиуса):

[{n_1}sin alpha = {n_2}sin beta]

Здесь (alpha) и (beta) – угол падения и угол преломления соответственно, (n_1) и (n_2) – показатели преломления сред. Показатель преломления воздуха (n_1) равен 1, показатель преломления стекла (n_2) равен 1,5.

Тогда:

[sin beta = frac{{{n_1}sin alpha }}{{{n_2}}}]

[beta = arcsin left( {frac{{{n_1}sin alpha }}{{{n_2}}}} right);;;;(3)]

Подставим выражение (3) в формулу (2):

[l = dcos alpha left( {tgalpha – tgleft( {arcsin left( {frac{{{n_1}sin alpha }}{{{n_2}}}} right)} right)} right)]

Задача решена в общем виде, подставим данные задачи в полученную формулу и посчитаем численный ответ:

[l = 0,04 cdot cos 70^circ left( {tg70^circ – tgleft( {arcsin left( {frac{{1 cdot sin 70^circ }}{{1,5}}} right)} right)} right) = 0,0266;м = 26,6;мм]

Ответ: 26,6 мм.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

10.3.32 На какое расстояние сместится луч, пройдя плоскопараллельную стеклянную пластинку
10.3.34 Луч света падает под углом 30° на плоскопараллельную стеклянную пластинку
10.3.35 Луч света падает перпендикулярно на вертикальную грань прозрачной призмы

Понравилась статья? Поделить с друзьями:
  • Как найти расстояние между точками алгебра
  • Как составить бизнес план по рекламной деятельности
  • Как найти бесплатную gta 5
  • Как найти центр массива
  • Как найти источник ссылки в ворде