На чтение 4 мин Просмотров 65.8к. Опубликовано 13 февраля, 2019
Здесь вы найдёте: Объем правильной треугольной призмы понятие, Объем призмы треугольной формула нахождения, Площадь треугольной призмы
Треугольная призма — это трехмерное тело, образованное соединением прямоугольников и треугольников. В этом уроке вы узнаете, как найти размер внутри (объем) и снаружи (площадь поверхности) треугольной призмы.
Содержание
- Призма треугольная — определение
- Элементы треугольной призмы
- Виды треугольных призм
- Прямая треугольная призма
- Наклонная треугольная призма
- Основные формулы для расчета треугольной призмы
- Объем треугольной призмы
- Площадь боковой поверхности призмы
- Площадь полной поверхности призмы
- Правильная призма — прямая призма, основанием которой является правильный многоугольник.
- Пример призмы
- Задачи на расчет треугольной призмы
Призма треугольная — определение
Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.
Элементы треугольной призмы
Треугольники ABC и A1B1C1 являются основаниями призмы.
Четырехугольники A1B1BA, B1BCC1 и A1C1CA являются боковыми гранями призмы.
Стороны граней являются ребрами призмы (A1B1, A1C1, C1B1, AA1, CC1, BB1, AB, BC, AC), всего у треугольной призмы 9 граней.
Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).
Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.
Площадь основания — это площадь треугольной грани призмы.
Площадь боковой поверхности призмы — это сумма площадей четырехугольных граней призмы.
Виды треугольных призм
Треугольная призма бывает двух видов: прямая и наклонная.
У прямой призмы боковые грани прямоугольники, а у наклонной боковые грани — параллелограммы (см. рис.)
Прямая треугольная призма
Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой.
Наклонная треугольная призма
Призма, боковые ребра которой являются наклонными к плоскостям оснований, называется наклонной.
Основные формулы для расчета треугольной призмы
Объем треугольной призмы
Чтобы найти объем треугольной призмы, надо площадь ее основания умножить на высоту призмы.
Объем призмы = площадь основания х высота
или
V=Sосн . h
Площадь боковой поверхности призмы
Чтобы найти площадь боковой поверхности треугольной призмы, надо периметр ее основания умножить на высоту.
Площадь боковой поверхности треугольной призмы = периметр основания х высота
или
Sбок=Pосн.h
Площадь полной поверхности призмы
Чтобы найти площадь полной поверхности призмы, надо сложить ее площади оснований и площадь боковой поверхности.
так как Sбок=Pосн.h, то получим:
Sполн.пов.=Pосн.h+2Sосн
Правильная призма — прямая призма, основанием которой является правильный многоугольник.
Свойства призмы:
Верхнее и нижнее основания призмы – это равные многоугольники.
Боковые грани призмы имеют вид параллелограмма.
Боковые ребра призмы параллельные и равны.
Совет: при расчете треугольной призмы вы должны обратить внимание на используемые единицы. Например, если площадь основания указана в см2, то высота должна быть выражена в сантиметрах, а объем — в см3 . Если площадь основания в мм2, то высота должна быть выражена в мм, а объем в мм3 и т. д.
Пример призмы
В этом примере:
— ABC и DEF составляют треугольные основания призмы
— ABED, BCFE и ACFD являются прямоугольными боковыми гранями
— Боковые края DA, EB и FC соответствуют высоте призмы.
— Точки A, B, C, D, E, F являются вершинами призмы.
Задачи на расчет треугольной призмы
Задача 1. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S — площадь основания, а h — боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:
V = 1/2 · 6 · 8 · 5 = 120.
Задача 2.
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.
Решение:
Объём призмы равен произведению площади основания на высоту: V = Sосн ·h.
Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S2 = S1k2 = S122 = 4S1.
Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.
Таким образом, искомый объём равен 20.
-
Вы здесь:
- Главная
- Правильная треугольная призма
Правильная треугольная призма
Треугольная призма — это многогранник,две грани которого являются равными треугольниками, лежащими в параллельных плоскостях, а остальные грани (боковые грани) — параллелограммами, имеющими общие стороны с этими треугольниками.
Правильная треугольная призма — это треугольная призма у которой основания правильные треугольники (все стороны которых равны, углы между сторонами основания составляют 60 градусов), а боковые грани прямоугольники.
Основания призмы являются равными правильными треугольниками.
Боковые грани призмы являются прямоугольниками.
Боковые рёбра призмы параллельны и равны.
Размеры призмы можно выразить через длину стороны a и высоту h.
Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания.
Формула площади поверхности треугольной призмы:
Объём призмы равен произведению её высоты на площадь основания.
Формула объема правильной треугольной призмы:
Правильная треугольная призма может быть вписана в цилиндр.
Формула радиуса цилиндра вписанной треугольной призмы:
Двойственным многогранником прямой призмы является бипирамида.
Исторически понятие «призма» возникло из латыни и означало — нечто отпиленное.
Анимация демонстрирует как две параллельные плоскости отрезая лишнее формируют два основания призмы. Из одной заготовки можно получить как правильную призму, так и наклонную призму.
Геометрические размеры готовой призмы (мм):
Длина =85
Ширина = 74
Высота = 55
Геометрические размеры готовой призмы (мм):
Длина =70
Ширина = 60
Высота = 80
Геометрические размеры готовой призмы (мм):
Длина =31
Ширина = 27
Высота = 94
посмотреть другие призмы
Популярное
Школьный проект — новый способ обучения
Во второй половине XIX века в школах США зародился новый способ обучения – метод проектов.Согласно этому подходу истинным и ценным является только то, что…
Куб Принца Руперта
В выпуске 25 «Волшебных граней» мы обратили взор читателя на то, что разрезая куб плоскостью, мы получаем в точке разреза сечение, имеющее форму…
Призмы, которые спасли Мир
Сюжет фантастического блокбастера «Пятый элемент», построен на легенде, что существуют пять элементов, которые способны защитить мир от угрозы Абсолютного Зла.
Многогранники на фестивале науки
Фестиваль Увлекательной Науки состоится в Москве 24 и 25 апреля 2015 года на физфаке Московского педагогического университета (станция метро Спортивная).
Зная стороны оснований треугольной призмы и боковые ребра, можно вычислить все необходимые параметры треугольной призмы. Равносторонний треугольник в основании позволяет найти высоту основания, равную ребру основания, деленному на корень из двух. Радиусы окружностей, которые могут быть вписаны и описаны около оснований треугольной призмы, также можно найти по формулам для равностороннего треугольника.
h=a/√2
r=a/(2√3)
R=a/√3
Чтобы найти диагональ боковой грани призмы, нужно знать не только сторону ее основания, но и боковое ребро, тогда диагональ станет гипотенузой в прямоугольном треугольнике из бокового ребра и ребра основания.
d=√(a^2+b^2 )
Периметр треугольной призмы складывается из шести сторон оснований, по три на каждое, и трех боковых ребер. Площадь основания треугольной призмы равна площади равностороннего треугольника, а площадь боковой поверхности – трем площадям прямоугольников со сторонами ребром основаниям и боковым ребром. Чтобы посчитать площадь полной поверхности треугольной призмы, нужно сложить две площади основания и площадь боковой поверхности.
P=3(2a+b)
S_(осн.)=(√3 a^2)/4
S_(б.п.)=3ab
S_(п.п.)=3ab+(√3 a^2)/2
Чтобы вычислить объем треугольной призмы, как и любого другого объемного тела с двумя основаниями, необходимо площадь основания умножить на высоту тела/боковое ребро призмы.
V=S_(осн.) b=(√3 a^2 b)/4
Вокруг любой треугольной призмы можно описать сферу, ее радиус будет равен квадратному корню из суммы квадрата радиуса описанной вокруг основания окружности и квадрата половины бокового ребра призмы, которые путем алгебраических преобразований приводят к квадратному корню из пяти шестых, умноженному на сторону основания.
R_1=√(5/6) a
В треугольную призму можно вписать сферу тогда и только тогда, когда половина ее высоты равна радиусу вписанной в основание окружности, в таком случае радиус вписанной в треугольную призму сферы будет равен радиусу вписанной в основание окружности (половине бокового ребра).
r_1=r
На этой странице вы узнаете
- Чем упаковка стикеров похожа на призму?
- Как можно попасть в призму в реальной жизни?
- Как сложить игральные кости из листа бумаги?
- Как найти объем воды в аквариуме?
Слышали такое выражение «смотреть сквозь призму чего-либо»? Оно значит ситуацию, в которой мы воспринимаем что-либо под влиянием каких-то убеждений или представлений. Замысловато, конечно… Возможно, потому что и сама призма — непростое понятие. Давайте разберемся с ней с точки зрения математики.
Определение призмы
Многие из нас пользуются стикерами. Для записи своих дел, для закладок, для пометок при ведении конспектов. Даже если мы ими не пользуемся, то наверняка видели их в магазинах или у родственников и друзей.
Один такой стикер можно принять за плоскость. Теперь вспомним, как выглядит упаковка с ними. Много-много стикеров накладываются друг на друга и получается небольшая объемная фигура, сверху и снизу которой лежат два абсолютно одинаковых листа. При этом сразу заметим, что нижний и верхний стикеры будут параллельны друг другу.
На самом деле, упаковка со стикерами является не чем иным, как призмой!
Призма — это многогранник, в котором две грани являются равными многоугольниками и лежат в параллельных плоскостях, а все остальные — параллелограммами.
Упаковка стикеров является объемной фигурой, в основаниях которой лежат равные прямоугольники. А боковые стороны упаковки являются параллелограммом. Таким образом, упаковка стикеров полностью соответствует определению призмы.
Определение может показаться немного запутанным, но в нем нет ничего страшного. Разберемся, поближе взглянув на составные призмы.
Строение призмы
Представим себе обычную коробку. Ее дно и крышка равны между собой и лежат в параллельных плоскостях. Это и есть равные многоугольники. Также их называют основаниями призмы.
Посмотрим на стенки коробки. Они являются параллелограммами, просто с прямыми углами. Подробнее про параллелограммы можно прочитать в статье «Параллелограмм». Эти параллелограммы называются боковыми гранями призмы.
Возьмем линейку и измерим расстояние между основаниями призмы. Для этого из любой точки одного основания проведем перпендикуляр к другому.
Подробнее про расстояния между плоскостями можно узнать в статьях «Углы в пространстве» и «Расстояния между фигурами».
Может возникнуть вопрос, что мы сейчас нашли? Мы нашли высоту призмы.
Высота призмы — перпендикуляр, опущенный из любой точки одного основания на другое основание призмы.
В задачах намного удобнее опускать перпендикуляр не из произвольной точки, а из вершины призмы.
Рассмотрим элементы призмы.
Ребро — это линия пересечения двух плоскостей.
Представим, что вместо картонных стенок в нашей коробке ткань, которую нам нужно натянуть на каркас так, чтобы коробка не изменилась. В этом случае все прямые этого каркаса и будут ребрами.
Ребра бывают двух видов:
- ребра оснований,
- боковые ребра.
Отличить их также легко: ребра основания являются стороной многоугольника, который в нем лежит, в то время как боковые ребра не принадлежат основаниям.
У боковых ребер есть одно очень важное свойство: они равны между собой и параллельны.
Диагональ призмы — отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.
Например, мы можем взять клетку попугая и от угла до угла сделать ему жердочку, чтобы птичке было весело жить. Эта жердочка и будет диагональю призмы.
Виды призм
Вернемся к рассуждениям о том, чем упаковка стикеров похожа на призму. Например, куб и параллелепипед будут отличаться. А если в основании призмы будет лежать треугольник или шестиугольник? Или двадцатиугольник? Разделим призмы на несколько видов.
Мы рассмотрим две классификации.
В первом случае будем рассматривать призмы по фигурам, которые лежат в основании. В многоугольнике может быть множество сторон, а значит, и в основании призмы может быть треугольник, четырехугольник, шестиугольник, десятиугольник и так далее.
В зависимости от фигуры в основании призмы могут называться по-разному. Вот три основных, которые чаще всего встречаются при решении заданий:
- треугольная призма,
- четырехугольная призма,
- шестиугольная призма.
Аналогичным образом можно дать название любой призме, например, десятиугольная призма или стоугольная призма.
В определении призмы сказано, что в боковых гранях лежат параллелограммы. До этого мы чертили только прямоугольники, но в боковых гранях могут лежать не только они.
С этим связана вторая классификация призм. По этому признаку призмы делятся всего на два вида:
- прямые,
- наклонные.
Разберемся в них чуть подробнее.
Прямая призма — призма, боковые ребра которой перпендикулярны основаниям.
В этом случае боковые ребра и ребра оснований действительно образовывают прямоугольник.
Наклонная призма — призма, боковые ребра которой находятся под углом к основаниям.
Где мы можем найти прямые и наклонные призмы? Оказывается, в архитектуре. Обычный жилой дом типовой застройки будет прямой призмой. А вот примером наклонной призмы может служить комплекс зданий “Ворота Европы” в Мадриде.
Чуть подробнее остановимся на прямых призмах. Они встречаются достаточно часто и обладают несколькими важными свойствами.
Посмотрите на свою комнату. Если по плану квартиры она будет многоугольником, то вы как бы сидите в призме. Теперь ответим на вопрос: как найти высоту комнаты?
Простой ответ: померить по стене. А если посмотреть на угол, то можно заметить, что ребро призмы совпадает с высотой. Таким образом, мы получаем первое свойство прямых призм.
Свойство 1. Высота прямой призмы совпадает с её боковым ребром.
Посмотрим на стены комнаты, на их форму. Они все являются прямоугольниками, верно?
Свойство 2. Все боковые грани прямой призмы — прямоугольники.
Многие комнаты и помещения, особенно в типовой застройке, обладают формой призмы. Сидя в комнате, в классе, в столовой, даже в автобусе — мы как бы находимся внутри большой призмы.
Если мы в основании прямой призмы разместим правильный многоугольник, у нас получится правильная призма.
Правильная призма — прямая призма, в основании которой лежит правильный многоугольник.
Например, в правильной треугольной призме будет лежать равносторонний треугольник, а в правильной шестиугольной призме — правильный шестиугольник.
Определение параллелепипеда
Еще одной разновидностью прямоугольной призмы является параллелепипед.
Параллелепипед — это четырехугольная призма, все грани которой являются параллелограммами.
Параллелепипеды встречаются повсюду: коробки, мебель, комнаты, здания, склады, магазины. Поэтому изучить их не составит труда.
Свойство параллелепипеда, видимое невооруженным глазом: противоположные грани параллелепипеда равны. Как пример, вспомним ту же комнату: потолок и пол равны, так же как и стены, находящиеся напротив друг друга.
Нельзя не упомянуть про одно очень важное свойство параллелепипеда:
- Все его диагонали пересекаются в одной точке и этой точкой делятся пополам. Это свойство справедливо для всех видов параллелепипеда.
Какие бывают параллелепипеды?
Параллелепипеды также бывают прямыми и наклонными. В этих случаях все определения такие же, как и для всех остальных призм.
Прямой параллелепипед
Рассмотрим несколько интересных свойств прямого параллелепипеда.
1 свойство. Боковые ребра прямого параллелепипеда перпендикулярны основаниям.
2 свойство. Высота прямоугольного параллелепипеда равна длине его бокового ребра.
3 свойство. Боковые грани, которые лежат напротив друг друга, равны между собой и являются прямоугольниками.
Прямые параллелепипеды можно разделить еще на два вида:
- Прямой параллелепипед: в основании лежит параллелограмм;
- Прямоугольный параллелепипед: в основании лежит прямоугольник.
Рассмотрим свойства прямоугольного параллелепипеда.
1 свойство. Все грани прямоугольного параллелепипеда являются прямоугольниками.
2 свойство. Все углы в прямоугольном параллелепипеде, образованные двумя гранями, равны 90°.
3 свойство. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин его ширины, длины и высоты.
Таким образом, мы получаем важную формулу для параллелепипеда.
d2 = a2 + b2 + c2
Пример 1. Дан прямоугольный параллелепипед. Два ребра, выходящие из одной его вершины, равны (sqrt{35}) и (sqrt{46}). Диагональ параллелепипеда равна 15. Найдите третье ребро параллелепипеда.
Решение. Пусть третье ребро параллелепипеда равняется х. Получаем уравнение:
(15^2 = (sqrt{35})^2 + (sqrt{46})^2 + x^2)
225 = 35 + 46 + x2
x2 = 144
x = 12
Ответ: 12.
У прямоугольного параллелепипеда существует еще несколько видов. Прямоугольные параллелепипеды делятся на:
- Произвольный прямоугольный параллелепипед. В основании может лежать прямоугольник.
- Правильный прямоугольный параллелепипед. В основании лежит правильный четырехугольник, то есть квадрат.
При этом боковые ребра не равны ребрам основания. Следовательно, в основаниях будут лежать квадраты, а в боковых гранях прямоугольники.
- Куб. В основании лежит квадрат, а боковые ребра равны ребрам основания.
В кубе все ребра равны, а все его грани будут квадратом.
Таким образом, мы рассмотрели все виды параллелепипеда.
Формулы для призмы
Однако ни одна задача не может быть решена без формул. Поэтому необходимо рассмотреть несколько основных формул, которые могут встретиться не только в задачах, но и в жизни.
Немного вспомним моделирование, а именно развертку кубика. Мы знаем, что из листа бумаги без труда можно сложить кубик, если правильно его вычертить.
Задумали вы вечером сыграть с семьей или друзьями в настольную игру. Но вот незадача: игральные кости опять куда-то запропастились. Не беда.Достаточно вычертить на листе бумаги несколько квадратов, вырезать получившуюся фигуру, согнуть по ребрам и склеить между собой с помощью клея. В итоге получатся кубики для игры.
На рисунке оранжевым показаны основания, а желтым боковые грани нашего будущего кубика. А теперь представим, что нам нужно найти площадь боковой поверхности. Как это сделать?
Нужно найти площади желтых квадратиков и сложить их.
Площадь боковой поверхности призмы — сумма площадей всех боковых ее граней.
Единой формулы тут нет, поскольку призмы могут очень сильно отличаться друг от друга. В произвольных призмах придется считать площадь каждой боковой грани, а уже после их складывать.
Но есть один фокус! Правда, он работает только для прямой призмы. Если по условию дана прямая призма, то можно воспользоваться формулой
Sбок. = P * h
В этой формуле Р — периметр основания, h — высота призмы, которая совпадает с высотой боковой грани.
Пример 1. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равняется 2, а высота 10.
Решение.
Шаг 1. Поскольку правильная призма по определению прямая, мы можем воспользоваться формулой S = Ph.
Шаг 2. В основании правильной призмы лежит правильный шестиугольник, следовательно, периметр основания будет равен 6 * 2 = 12.
Шаг 3. Осталось найти только площадь боковой поверхности. Подставляем данные в формулу и получаем: S = 12 * 10 = 120.
Ответ: 120.
Пример 2. Дана прямая треугольная призма, в основании которой лежит прямоугольный треугольник с катетами 12 и 5. Высота призмы равна 13. Найдите площадь ее боковой поверхности.
Решение.
Шаг 1. Поскольку призма прямая, можно воспользоваться формулой S = Ph.
Шаг 2. Найдем периметр основания. Для этого необходимо найти гипотенузу треугольника. Воспользуемся теоремой Пифагора: (sqrt{12^2 + 5^2} = sqrt{144 + 25} = sqrt{169} = 13).
Шаг 3. Найдем периметр основания: P = 12 + 5 + 13 = 30.
Шаг 4. Осталось найти только площадь боковой поверхности. Подставляем данные в формулу и получаем: S = 30 * 13 = 390.
Ответ: 390.
Мы научились находить площадь боковой поверхности. А как найти всю площадь призмы? Вспомним нашу развертку с кубиком. Чтобы найти всю площадь кубика, нужно найти площадь всех квадратов, из которых он состоит. То есть и площадь боковой поверхности, и площадь оснований.
Площадь полной поверхности призмы — сумма площадей всех граней.
Следовательно, нам нужно сложить площади всех боковых граней и дважды площадь основания. Получаем следующую формулу.
S = Sбок + 2Sосн
Вспомним обычный хлеб, черный или белый. Его форма очень приближена к параллелепипеду. Тогда его корочка будет площадью полной поверхности параллелепипеда. А все что внутри, то есть мякиш, можно принять за объем.
Пример 3. Дана прямая призма, в основании которой лежит ромб с диагоналями 12 и 16. Боковое ребро призмы равно 25. Найдите площадь поверхности призмы.
Решение.
Шаг 1. Найдем площадь основания. Площадь ромба можно найти по формуле (frac{1}{2} * D_1 * D_2). Следовательно, площадь ромба равна (frac{1}{2} * 12 * 16 = 96).
Шаг 2. Заметим, что диагонали ромба образуют четыре равных прямоугольных треугольника. Следовательно, чтобы найти сторону ромба, достаточно рассмотреть прямоугольный треугольник с катетами 6 и 8. По теореме Пифагора сторона ромба будет равна (sqrt{6^2 + 8^2} = sqrt{36 + 64} = sqrt{100} = 10).
Шаг 3. Периметр ромба будет равен 4 * 10 = 40. Тогда площадь боковой поверхности равна 40 * 25 = 1000.
Шаг 4. Площадь полной поверхности будет равняться 1000 + 2 * 96 = 1000 + 192 = 1192.
Ответ: 1192
Пример 4. Площадь поверхности правильной четырехугольной призмы равняется 1980. Сторона основания равна 5. Найдите боковое ребро этой призмы.
Решение.
Шаг 1. Воспользуемся формулой S = Sбок + 2Sосн. Площадь основания будет равняться площади квадрата, то есть 5 * 5 = 25.
Шаг 2. Подставим известные величины в формулу:
1980 = Sбок + 2 * 25
Sбок = 1930
Шаг 3. Площадь боковой поверхности равна произведению периметра основания на высоту призмы. Периметр равен 5 * 4 = 20. Тогда получаем уравнение:
20h = 1930
h = 96,5
Шаг 4. Поскольку по условию дана правильная призма, то высота совпадает с боковым ребром. Следовательно, боковое ребро равняется 96,5.
Ответ: 96,5.
Теперь рассмотрим, как найти объем призмы. Допустим, мы налили в прямоугольный аквариум немного воды. Как определить, сколько воды мы налили?
Для этого достаточно воспользоваться формулой объема призмы.
V = Sосн. * h
Эта формула общая, однако для каждой призмы она может принять свой вид в зависимости от того, какую формулу нужно использовать для поиска площади основания или высоты.
Например, чтобы найти объем воды в аквариуме, необходимо длину умножить на ширину и на высоту, а значит формула принимает вид V = abh.
Для этого достаточно перемножить ширину, длину аквариума и высоту воды. Тем самым мы найдем объем призмы, форму которой принимает вода в аквариуме.
Пример 5. Основанием прямой треугольной призмы является прямоугольный треугольник с катетами 12 и 15. Боковое ребро призмы равно 4. Найдите объем этой призмы.
Решение.
Шаг 1. Для начала найдем площадь основания. В этом случае мы можем воспользоваться формулой (frac{1}{2}ab). Площадь равна (frac{1}{2} * 12 * 15 = 90).
Шаг 2. Воспользуемся формулой объема призмы и подставим известные величины:
V = 90 * 4 = 360.
Ответ: 360.
Пример 6. Дан сосуд, в основании которого лежит правильный треугольник. В этот сосуд налили 3000 см3 воды. Высота жидкости оказалась равной 10 см. После этого в сосуд опустили шарик и высота изменилась с 10 см на 14 см. Найдите объем шарика.
Решение. Немного вспомним физику, а именно тот факт, что объем вытесненной жидкости равен объему тела. Значит, чтобы найти объем шарика, необходимо найти насколько изменился объем воды.
Шаг 1. Найдем площадь основания сосуда. Для этого немного преобразуем формулу объема:
(S = frac{V}{h})
Тогда:
(S = frac{3000}{10} = 300)
Шаг 2. А теперь найдем объем после того, как в воду погрузили шарик. Он будет равен 300 * 14 = 4200.
Шаг 3. Объем вытесненной жидкости равен 4200 — 3000 = 1200.
Ответ: 1200.
Мы рассмотрели основные формулы, которые применяются для решения задач. Стоит заметить, что они универсальны, и в каждой задаче их рационально преобразовывать под ситуацию.
Фактчек
- Призма — это многогранник, в котором две грани являются равными многоугольниками и лежат в параллельных плоскостях, а все остальные — параллелограммами. Равные многоугольники называются основаниями призмы, а остальные стороны — боковыми гранями. В призме есть ребра — линии пересечения двух ее граней. Ребра как бы образуют каркас призмы.
- Призмы можно разделить на несколько видов по тому, какая фигура лежит в основании: треугольник, четырехугольник, шестиугольник или любой другой многоугольник. Призмы бывают прямые и наклонные. В прямых призмах боковые ребра перпендикулярны основанию, а в наклонных — нет. Правильная призма — прямая призма, в основании которой лежит правильный многоугольник.
- Параллелепипед — это четырехугольная призма, все грани которой являются параллелограммами. Параллелепипеды бывают наклонными и прямыми. Прямые параллелепипеды включают в себя прямоугольные параллелепипеды, которые, в свою очередь, делятся на произвольные, правильные и кубы.
- В призме можно найти площадь боковой поверхности, площадь полной поверхности и объем. Для каждого из этих случаев необходимо пользоваться формулами.
Проверь себя
Задание 1.
Что такое диагональ призмы?
- Отрезок, соединяющий две соседние вершины в призме.
- Отрезок, соединяющий противоположные углы в боковой грани призмы.
- Отрезок, соединяющий противоположные углы в основании призмы.
- Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.
Задание 2.
Что такое прямая призма?
- Призма, боковые ребра которой перпендикулярны основаниям.
- Призма, боковые ребра которой расположены под острым углом относительно основания.
- Призма, боковые ребра которой расположены под тупым углом относительно основания.
- Призма, в основании которой лежит прямоугольник.
Задание 3.
Как найти высоту прямой призмы?
- Высоту нужно найти с помощью оснований.
- Высота совпадает с боковым ребром.
- Необходимо найти расстояние между двумя вершинами, не принадлежащими одной грани.
- В прямой призме невозможно найти высоту.
Задание 4.
Какая фигура лежит в основании прямоугольного параллелепипеда?
- Параллелограмм с острыми углами.
- Ромб с острыми углами.
- Трапеция.
- Прямоугольник.
Задание 5.
Как найти площадь полной поверхности призмы?
- Нужно найти сумму площадей всех боковых граней.
- Нужно сложить площадь боковой поверхности и площадь основания.
- Нужно сложить площадь боковой поверхности и удвоенную площадь основания.
- Нужно сложить площади оснований.
Ответы: 1. — 4 2. — 1 3. — 2 4. — 4 5. — 3
Тема: Многогранники
Урок: Многогранники. Призма. Задачи на призму
Тема и цели урока
На этом занятии мы повторим основные сведения о многогранниках. Особенное внимание уделим определению призмы. Вспомним теорему о площади боковой поверхности прямой призмы.
Повторение, призма
На рисунке 1 изображена призма ABCDFA1B1C1D1F1, ее основания ABCDF и A1B1C1D1F1. Пятиугольники ABCDF и A1B1C1D1F1 равны и лежат в параллельных плоскостях.
Рис. 1
Призма – это многогранник, в основаниях которого лежат равные многоугольники, а боковые грани – параллелограммы.
Основания призмы – это две грани, являющиеся равными многоугольниками, которые лежат в параллельных плоскостях.
Боковыми гранями являются все грани призмы, кроме оснований. Каждая боковая грань является параллелограммом.
Общие стороны боковых граней называются боковыми ребрами.
Вернемся к рисунку 1. В пятиугольнике ABCDFA1B1C1D1F1:
ABCDF и A1B1C1D1F1 – основания призмы.
Боковыми гранями являются грани АА1В1В, ВВ1С1С, CC1D1D, DD1F1F, FF1A1A. А боковыми ребрами – АА1, ВВ1, СС1, DD1, FF1.
Прямая призма
Определение. Если боковое ребро призмы перпендикулярно плоскости ее основания, то такая призма называется прямой.
Рассмотрим пятиугольную призму ABCDFA1B1C1D1F1 (рис. 2).
Пусть боковое ребро AA1 перпендикулярно плоскости основания. Значит, данная призма – прямая. Так как ребро АА1 перпендикулярно плоскости АВС, то это боковое ребро перпендикулярно любой прямой из плоскости основания АВС, в том числе и прямой AF. Значит, боковая грань является прямоугольником.
Рис. 2
Параллелепипед
Рассмотрим параллелепипед ABCDA1B1C1D1 (рис. 3) – частный случай призмы. В основаниях призмы лежат параллелограммы ABCD и A1B1C1D1.
Рис. 3
Если боковое ребро перпендикулярно плоскости основания, то такой параллелепипед будет называться прямым параллелепипедом.
Рис. 4
Рассмотрим параллелепипед ABCDA1B1C1D1 (рис. 4). Если ребро AA1 перпендикулярно плоскости ABCD, то параллелепипед ABCDA1B1C1D1 прямой.
Если в основании прямого параллелепипеда лежит прямоугольник, то такой параллелепипед называется прямоугольным. Обозначение: ABCDA1B1C1D1 или кратко AC1.
Правильная призма
Определение. Правильной n-угольной призмой называется такая прямая призма, у которой в основаниях лежит правильный n-угольник.
Площадь боковой поверхности призмы
Теорема. Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.
Рассмотрим эту теорему на примере треугольной прямой призмы ABCA1B1C1 (рис. 5). Призма ABCA1B1C1 – прямая, значит, все боковые ребра перпендикулярны плоскости основания.
Дано: АВСА1В1С1 – прямая призма, т. е. АА1 ⊥ АВС.
АА1 = h.
Доказать: Sбок = Росн ∙ h.
Рис. 5
Доказательство.
Треугольная призма АВСА1В1С1 – прямая, значит, боковые грани АА1В1В, АА1С1С, ВВ1С1С – прямоугольники. А все боковые ребра призмы равны высоте призмы.
Найдем площадь боковой поверхности как сумму площадей прямоугольников АА1В1В, АА1С1С, ВВ1С1С:
Sбок = АВ∙ АА1 + ВС∙ ВВ1 + СА∙ СС1 = АВ∙ h + ВС∙ h + СА∙ h = (AB + ВС + CА) ∙ h = Pосн ∙ h.
Получаем, Sбок = Росн ∙ h, что и требовалось доказать.
Задача 1
В правильной n-угольной призме сторона основания равна a и высота равна h. Вычислить площадь боковой и полной поверхности призмы, если n = 3, h = 15 см, a = 10 см. См. рис. 6.
Дано: АВСА1В1С1 – призма,
АА1 ⊥ АВС,
h = АА1 = 15см,
АВ = BC = CA = a = 10 см.
Найти: Sбок , Sполн.
Рис. 6
Решение:
По условию призма прямая. Значит, ребро АА1 перпендикулярно плоскости основания и равно высоте призмы.
Площадь боковой поверхности прямой призмы равна произведению периметра основания призмы на высоту. Найдем площадь боковой поверхности.
Sбок = Pосн ∙ h = PАВС ∙ АА1 = 3 ∙ АВ ∙ h = 3∙ 10 ∙ 15 = 450 (см2).
В основании призмы лежит правильный треугольник АВС. Найдем его площадь.
(см2)
Площадь полной поверхности призмы – это площадь всех ее граней, то есть площадь боковой поверхности плюс площади двух оснований. Значит:
(см2).
Ответ: (см2).
Задача 2
Боковое ребро наклонной четырехугольной призмы равно 12 см. Перпендикулярным сечением является ромб со стороной 5 см. Найти площадь боковой поверхности.
Дано: призма ABCDA1B1C1D1 (рис. 7),
АА1 = 12 см,
перпендикулярное сечение – ромб со стороной 5 см.
Найти: Sбок
Рис. 7
Решение:
Мы доказали на прошлом уроке, что площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на боковое ребро.
По условию, перпендикулярным сечением является ромб со стороной 5 см. Все стороны ромба равны. Значит, периметр перпендикулярного сечения равен см.
Теперь вычислим площадь боковой поверхности:
(см2).
Ответ: 240 см2.
Задача 3
Основанием прямой призмы является равнобедренная трапеция с основаниями 25 см и 9 см и высотой 8 см. Найдите двугранные углы при боковых рёбрах призмы. См. рис. 8.
Дано: ABCDA1B1C1D1 – призма,
AA1 ⊥ ABC,
AB ∥ CD, CB = AD,
AB = 9 см, CD = 25 см,
hтрап= 8 см.
Найти: двугранные углы при боковых рёбрах призмы.
Рис. 8
Решение:
Вспомним, что такое двугранный угол. Пусть у нас есть две полуплоскости α и β, которые пересекаются по прямой СC1 (рис. 9). Тогда они образовывают двугранный угол с ребром СC1. Двугранный угол измеряется своим линейным углом.
Как строится линейный угол? Берется произвольная точка M на ребре, и проводятся два перпендикуляра: один перпендикуляр в плоскости β – перпендикуляр b, второй перпендикуляр в плоскости α – перпендикуляр a. Тогда угол между прямыми a и b и будет линейным углом двугранного угла.
Рис. 9
Найдем линейный угол при ребре СС1. Так как ребро СC1 перпендикулярно всей плоскости ABC, то ребро СC1 перпендикулярно любой прямой из этой плоскости, в том числе прямым BC и CD. Тогда угол между прямыми BC и CD, а именно угол DCB, является линейным углом двугранного угла при ребре СC1.
Аналогичным образом, получаем, что линейные угол при ребре АА1 – это угол ВAD, при ребре DD1 – ∠ADC, при ребре BB1 – ∠ABC. Все эти углы являются углами трапеции ABCD. Найдем их градусную меру.
Рассмотрим трапецию ABCD (рис. 10). Проведем высоты АН и КВ. По условию, высота трапеции равна 8 см. Значит, АН = КВ = 8 см.
Рис. 10
Найдем НК. Прямые АН и КВ перпендикулярны одной и той же прямой DC. Значит, прямые АН и КВ параллельны. Так как АН = КВ, то АНКВ – параллелограмм. Значит, НК = АВ = 9 см.
Так как трапеция ABCD равнобедренная, то см.
Рассмотрим треугольник DHA. Он прямоугольный, так как АН ⊥ DC и равнобедренный, так как АН = DH. Значит, ∠HAD = ∠HDA = 45° градусов.
Так как трапеция ABCD равнобедренная, то ∠DCB = ∠СDA = 45°, ∠DAB = ∠ABC = 180° — 45° = 135°.
Ответ: 45°, 45°, 135°, 135°.
Список литературы
- Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е изд., испр. и доп. – М.: Мнемозина, 2008. – 288 с.: ил.
- Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. – М.: Дрофа, 1999. – 208 с.: ил.
- Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. – 6-е издание, стереотип. – М.: Дрофа, 008. – 233 с.: ил.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Физ/мат класс (Источник).
- 5klass.net (Источник).
- Ppt4web.ru (Источник).
- Якласс (Источник).
- Rutube.ru (Источник).
Домашнее задание
- У параллелепипеда три грани имеют площадь 1 см2, 2 см2, 3 см2. Чему равна полная поверхность параллелепипеда?
- Основание призмы – прямоугольный треугольник, диагонали боковых граней призмы – 8 см, 14 см, 16 см. Найдите высоту призмы.
- Диагональ боковой грани правильной шестиугольной призмы равна большей диагонали основания. Под каким углом пересекаются диагонали боковой грани этой призмы?
- Найдите площадь поверхности правильной n-угольной призмы, если любое ребро это призмы равно а. а) n = 3; б) n = 4.