Как найти часть от целого по процентам

Расчет процента от числа — одна из основополагающих тем, которую все проходят в школе на уроках математики. Но это не значит, что все осваивают ее с легкостью. На самом деле же тема проста, главное — знать проверенные методы вычисления целого по части и процентов от целого.

1% — это сотая часть целого, так что, зная эту величину, можно с легкостью вычислить и значение части. Например, 15% от числа 60 можно высчитать следующим образом: принимаем 60 за 100 процентов. Тогда 1% — это 60/100 — 0,6. 15%, таким образом, составят — 0,6*15 = 9. Это первый способ высчитать процент от числа.

Второй способ — составить пропорцию. 15 относится к 100, как икс относится к 60, то есть 15/100=х/60. Решить составленную пропорцию можно двумя способами:

  1. Преобразовать ее в выражение х = 15*60/100. И опять же получается: х = 9.
  2. Сделать другое преобразование, в 2 действия: 100х = 15*60, то есть числа в пропорциях перемножаются крест-накрест. Из этого выражения получаем следующее: 100х = 900. Следовательно, х = 9.

Если нужно выяснить то, какой процент от числа составляет другое число, формула тоже очень проста. Возьмем для примера числа 70 и 13. Пусть 70 — это 100%, а 13 — х. Тогда 13/70 = х/100. Решить эту пропорцию можно уже знакомыми способами.

70х = 13*100; 70х = 1300; Если округлить до второго знака после запятой, получится, что х = 18,57%.

Например, 16% — это 32. Каково целое число? Опять же составляем пропорцию: 16% относится к 100%, также как 32 к х. 16/100 = 32/х; 16х = 3200; х = 3200/16 = 200.

Если же условие задачи таково, что число А составляет некий процент от числа Б, который надо вычислить, то применяется еще одна очень простая формула. А/Б*100% — это и будет ответ. Например, нужно выяснить, сколько процентов число 87 составляет от числа 329.

Вычисляя результат по формуле, получим 87/329*100% = 26,44%. В случае если формула забудется в самый нужный момент, на помощь снова придут пропорции: 87 относится к 329, как х относится к 100%, то есть 87/329 = х/100. Преобразовав эту пропорцию, получаем 329х = 87*100; 329х = 8700; х = 8700/329 = 26,44%.

Ну и самые простые пропорции практически у всех всегда на слуху и в голове: одна пятая — это 20%, одна десятая — 10%, половина и четверть — 50% и 25% соответственно. Для кого-то удобнее и нагляднее мыслить частями, а кому-то легче оперировать процентами. Большой разницы между одной второй и 50% нет.

С калькулятором и вовсе будет легко и просто, ведь там даже есть специальная кнопка, позволяющая вычислить проценты.

Конечно, все эти задачи — просто закрепление теории. Но вычислить процент от числа может понадобиться и в жизни. На распродажах, чтобы узнать, стоит ли 30% скидка того, чтобы хвататься за вещь, или она составляет мизерную сумму. Можно узнать, какова была цена до скидки, а также перепроверить продавцов — ведь часто они пользуются невнимательностью покупателей и указывают на ценниках крайне привлекательные цифры.

Словом, тема это несложная, хоть и кажется на первый взгляд весьма непростой. Однако когда придет понимание, задачи, касающиеся вычисления процентов от числа и целого по части, покажутся семечками. Нужно всего лишь набить руку и немножко пошевелить мозгами.

вторник, 30 декабря 2008 г.

Образцы решения типовых задач на проценты

ОСНОВНЫЕ ТИПЫ РЕШЕНИЯ ЗАДАЧ НА ПРОЦЕНТЫ

I. НАХОЖДЕНИЕ ЧАСТИ ОТ ЦЕЛОГО

Чтобы найти часть (%) от целого, надо число умножить на часть (проценты, переведенные в десятичную дробь).

ПРИМЕР: В классе 32 ученика. Во время контрольной работы отсутствовало 12,5% учащихся. Найди, сколько учеников отсутствовало?
РЕШЕНИЕ 1: Целое в этой задаче – общее количество учащихся (32).
12,5% = 0,125
32 · 0,125 = 4
РЕШЕНИЕ 2: Пусть х учеников отсутствовали, что составляет 12,5%. Если 32 ученика –
общее количество учеников (100%), то
32 ученика – 100%
х учеников – 12,5%

ОТВЕТ: В классе отсутствовало 4 ученика.

II. НАХОЖДЕНИЕ ЦЕЛОГО ПО ЕГО ЧАСТИ

Чтобы найти целое по его части (%-ам), надо число разделить на часть (проценты, переведенные в десятичную дробь).

ПРИМЕР: Коля истратил в парке аттракционов 120 крон, что составило75% всех его карманных денег. Сколько было карманных денег у Коли до прихода в парк аттракционов?
РЕШЕНИЕ 1: В этой задаче надо найти целое, если известна данная часть и значение
этой части.
75% = 0,75
120 : 0,75 = 160

РЕШЕНИЕ 2: Пусть х крон было у Коли, что составляет целое, т.е 100%. Если он потратил 120 крон, что составило 75%, то
120 крон– 75 %
х крон – 100 %

ОТВЕТ: У Коли было 160 крон.

III. ВЫРАЖЕНИЕ В ПРОЦЕНТАХ ОТНОШЕНИЯ ДВУХ ЧИСЕЛ

ТИПОВОЙ ВОПРОС:
СКОЛЬКО % СОСТАВЛЯЕТ ОДНА ВЕЛИЧИНА ОТ ДРУГОЙ?

ПРИМЕР: Ширина прямоугольника 20м, а длина 32м. Сколько % составляет ширина от длины? (Длина является основой для сравнения)
РЕШЕНИЕ 1:

РЕШЕНИЕ 2: В этой задаче длина прямоугольника 32м составляет 100%, тогда ширина 20м составляет х%. Составим и решим пропорцию:
20 метров – х %
32 метра – 100 %

ОТВЕТ: Ширина составляет от длины 62,5%.

NB! Обратите внимание на то, как меняется решение в зависимости от изменения вопроса.

ПРИМЕР: Ширина прямоугольника 20м, а длина 32м. Сколько % составляет длина от ширины? (Ширина является основой для сравнения)
РЕШЕНИЕ 1:

РЕШЕНИЕ 2: В этой задаче ширина прямоугольника 20м составляет 100%, тогда длина 32м составляет х%. Составим и решим пропорцию:
20 метров – 100 %
32 метра – х %

ОТВЕТ: Длина составляет от ширины 160%.

IV. ВЫРАЖЕНИЕ В ПРОЦЕНТАХ ИЗМЕНЕНИЯ ВЕЛИЧИНЫ

ТИПОВОЙ ВОПРОС:
НА СКОЛЬКО % ИЗМЕНИЛАСЬ (УВЕЛИЧИЛАСЬ, УМЕНЬШИЛАСЬ) ПЕРВОНАЧАЛЬНАЯ ВЕЛИЧИНА?

Чтобы найти изменение величины в % надо:
1) найти на сколько изменилась величина (без %)
2) разделить полученную величину из п.1) на величину, являющуюся основой для сравнения
3) перевести результат в % (выполнив умножение на 100%)

ПРИМЕР: Цена платья снизилась с 1250 крон до 1000 крон. Найди на сколько процентов снизилась цена платья?
РЕШЕНИЕ 1:

1) 1250 –1000= 250 (кр) на столько изменилась цена
2) Основа для сравнения здесь 1250 крон (т.е. то, что было изначально)
3)
Решение задачи одним действием:
ОТВЕТ: Цена платья уменьшилась на 20%.

NB! Обратите внимание на то, как меняется решение в зависимости от изменения вопроса.

ПРИМЕР: Цена платья повысилась с 1000 крон до 1250 крон. Найди на сколько процентов повысилась цена платья?
РЕШЕНИЕ 1:

1) 1250 –1000= 250 (кр) на столько изменилась цена
2) Основа для сравнения здесь 1000 крон (т.е. то, что было изначально)
3)
Решение задачи одним действием:

РЕШЕНИЕ 2:
1250 –1000= 250 (кр) на столько изменилась цена
В этой задаче первоначальная цена 1000 крон 100%, тогда изменение цены 250 крон составляет х%. Составим и решим пропорцию:
1000 крон – 100 %
250 крон – х %

х =
ОТВЕТ: Цена платья увеличилась на 25%.

V. ПОСЛЕДОВАТЕЛЬНОЕ ИЗМЕНЕНИЕ ВЕЛИЧИНЫ (ЧИСЛА)

ПРИМЕР: Число уменьшили на 15%, а затем увеличили на 20%. Найди на сколько процентов изменилось число?

Самая распространенная ошибка: число увеличилось на 5 %.

РЕШЕНИЕ 1:
1) Хотя исходное число не дано, для простоты решения можно принять его за 100 (т.е. одно целое или 1)
2) Если число уменьшилось на 15%, то полученное число составит 85%, или от 100 это было бы 85.
3) Теперь полученный результат надо увеличить на 20%, т.е
85 – 100%
а новое число х – 120% (т.к. увеличилось на 20%)

х =
4)Таким образом в результате изменений число 100 (первоначальное) изменилось и стало 102, а это означает, что первоначальное число увеличилось на 2%

РЕШЕНИЕ 2:
1) Пусть исходное число Х
2) Если число уменьшилось на 15%, то полученное число составит 85% от Х, т.е. 0,85Х.
3) Теперь полученное число надо увеличить на 20%, т.е
0,85Х – 100%
а новое число ? – 120% (т.к. увеличилось на 20%)

? =
4) Таким образом в результате изменений число Х (первоначальное), является основой для сравнения, а число 1,02Х(полученное), (см. IV тип решения задач), тогда

ОТВЕТ: Число увеличилось на 2%.

Один процент — это сотая часть от числа. Данное понятие используется, когда нужно обозначить отношение доли к целому. Кроме этого, в процентах можно сравнивать несколько величин, при этом обязательно указывая, относительного какого целого проценты вычисляются. Например, расходы выше доходов на 10 % или цена на железнодорожные билеты возросла на 15 % в сравнении с тарифами прошлого года. Число процентов выше 100 означает, что доля превышает целое, как часто бывает при статистических расчетах.

Процент как финансовое понятие — плата, заемщика кредитору за предоставление денег во временное пользование. В бизнесе встречается выражение «работать за проценты». В данном случае подразумевается, что размер вознаграждения зависит от прибыли или оборота (комиссионные). Обойтись без вычисления процентов невозможно в бухгалтерии, бизнесе, банковском деле. Чтобы упростить расчеты, разработан онлайн-калькулятор процентов.

Калькулятор позволяет вычислить:

  • Процент от заданного значения.
  • Процент из суммы (налог по фактической зарплате).
  • Процент от разницы (НДС из ).
  • И многое другое.

При решении задач на калькуляторе процентов нужно оперировать тремя значениями, одно из которых неизвестно (по заданным параметрам вычисляется переменная). Сценарий расчета следует выбирать, исходя из заданных условий.

Примеры расчетов

1. Вычисление процента от числа

Чтобы найти число, составляющее 25 % от 1 000 руб., нужно:

  • 1 000 × 25 / 100 = 250 руб.
  • Или 1 000 × 0,25 = 250 руб.

Для расчета на обычном калькуляторе, нужно 1 000 умножить на 25 и нажать кнопку %.

2. Определение целого числа (100 %)

Мы знаем, что 250 руб. составляет 25 % от какого-то числа. Как его вычислить?

Составим простую пропорцию:

  • 250 руб. — 25 %
  • Y руб. — 100 %
  • Y = 250 × 100 / 25 = 1 000 руб.

3. Процент между двумя числами

Допустим, предполагалась прибыль 800 руб., а получили 1 040 руб. Каков процент превышения?

Пропорция будет такой:

  • 800 руб. — 100 %
  • 1 040 руб. – Y %
  • Y = 1 040 × 100 / 800 = 130 %

Перевыполнения плана по прибыли — 30 %, то есть выполнение — 130 %.

4. Расчет не из 100 %

Например, в магазин, состоящий из трех отделов, приходят 100 % покупателей. В продуктовый отдел — 800 человек (67 %), в отдел бытовой химии — 55. Какой процент покупателей приходит в отдел бытовой химии?

  • 800 посетителей – 67 %
  • 55 посетителей — Y %
  • Y = 55 × 67 / 800 = 4,6 %

5. На сколько процентов одно число меньше другого

Цена товара упала с 2 000 до 1 200 руб. На сколько процентов подешевел товар или на сколько процентов 1 200 меньше 2 000?

  • 2 000 — 100 %
  • 1 200 – Y %
  • Y = 1 200 × 100 / 2 000 = 60 % (60 % к цифре 1 200 от 2 000)
  • 100 % − 60 % = 40 % (число 1 200 меньше 2 000 на 40 %)

6. На сколько процентов одно число больше другого

Зарплата выросла с 5 000 до 7 500 рублей. На сколько процентов увеличилась зарплата? На сколько процентов 7 500 больше 5 000?

  • 5 000 руб. — 100 %
  • 7 500 руб. — Y %
  • Y = 7 500 × 100 / 5 000 = 150 % (в цифре 7 500 150 % от 5 000)
  • 150 % − 100 % = 50 % (число 7 500 больше 5 000 на 50 %)

7. Увеличение числа на определенный процент

Цена товара S выше 1 000 руб. на 27 %. Какова цена товара?

  • 1 000 руб. – 100 %
  • S — 100 % + 27 %
  • S = 1 000 × (100 + 27) / 100 = 1 270 руб.

Онлайн-калькулятор делает вычисления намного проще: вам нужно выбрать вид расчета, ввести число и процент (в случае вычисления процентного соотношения — второе число), указать точность расчета и дать команду о начале действий.

Используя калькулятор процентов Вы сможете производить всевозможные расчеты с использованием процентов. Округляет результаты до нужного количества знаков после запятой.

Сколько процентов составляет число X от числа Y. Какое число соответствует X процентам от числа Y. Прибавление или вычитание процентов из числа.

Сколько составляет % от числа

0% от числа 0 = 0

Сколько % составляет число от числа

Число 15 от числа 3000 = 0.5%

Прибавить % к числу

Прибавить 0 % к числу 0 = 0

Вычесть % из числа

Расчет очистить всё

Калькулятор разработан специально для расчета процентов. Позволяет выполнять разнообразные расчеты при работе с процентами. Функционально состоит из 4-х разных калькуляторов. Примеры вычислений на калькуляторе процентов смотрите ниже.

Процентом в математике называют сотую часть числа. К пример 5% от 100 равно 5.
Данный калькулятор позволит точно посчитать посчитать процент от заданного числа. Имеются различные режимы расчета. Вы сможете производить различные расчёты с использованием процентов.

  • Первый калькулятор нужен когда вы хотите рассчитать процент от суммы. Т.е. Вы знаете значение процента и суммы
  • Второй — если нужно посчитать сколько процентов составляет Х от Y. X и Y это числа, а вы ищете процент первого во втором
  • Третий режим — прибавление процента от указанного числа к данному числу. К примеру у Васи 50 яблок. Миша принёс Васе ещё 20% от яблок. Сколько яблок у Васи?
  • Четвёртый калькулятор противоположен третьему. У Васи 50 яблок, а Миша забрал 30% яблок. Сколько яблок осталось у Васи?

Частые задачи

Решение : Пользуемся первым калькулятором. Вводим в первое поле ставку 6, в второе 100000
Получаем 6000 руб. — сумма налога.

Задача 2. У Миши 30 яблок. 6 он отдал Кате. Сколько процентов от общего числа яблок Миша отдал Кате?

Решение: Пользуемся вторым калькулятором — в первое поле вводим 6, во второе 30. Получаем 20%.

Задача 3. У банка Тинькофф за пополнение вклада из другого банка вкладчик получает 1% сверху от суммы пополнения. Коля пополнил вклад переводом из другого банка на сумму 30 000. На какую итоговую сумму будет пополнен вклад Коли.

Решение : пользуемся 3м калькулятором. Вводим 1 в первое поле, 10000 во второе. Жмём расчёт получаем сумму 10100 руб.

Возможно, математика не была вашим любимым предметом в школе, а числа пугали и наводили тоску. Но во взрослой жизни от них никуда не деться. Без вычислений не заполнить квитанцию об оплате электроэнергии, не составить бизнес-проект, не помочь ребёнку с домашним заданием. Часто в этих и других случаях требуется посчитать процент от суммы. Как это сделать, если о том, что такое процент, со школьных времён остались смутные воспоминания? Давайте напряжём память и разберёмся.

Способ первый: процент от суммы через определение значения одного процента

Процент – одна сотая часть от числа и обозначается знаком %. Если разделить сумму на 100, то как раз получится один её процент. А дальше всё просто. Полученное число умножаем на нужное количество процентов. Таким способом легко посчитать прибыль по вкладу в банке.

Например, вы положили сумму в 30 000 под 9% годовых. Каким будет прибыток? Сумму 30 000 делим на 100. Получаем значение одного процента – 300. Умножаем 300 на 9 и получаем 2700 рублей – прибавку к первоначальной сумме. Если вклад — на два или три года, то этот показатель удваивается или утраивается. Бывают вклады, по которым выплату процентов производят ежемесячно. Тогда надо 2700 разделить на 12 месяцев. 225 рублей будут ежемесячным прибытком. Если проценты капитализируются (прибавляются к общему счёту), то каждый месяц сумма вклада будет увеличиваться. А значит, и процент будет высчитываться не от первоначального взноса, а от нового показателя. Поэтому в конце года вы получите прибыль уже не 2700 рублей, а больше. Сколько? Попробуйте посчитать.

Способ второй: переводим проценты в десятичную дробь

Как вы помните, процент — сотая часть числа. В виде десятичной дроби это 0,01 (ноль целых одна сотовая). Следовательно, 17% – это 0,17 (ноль целых, семнадцать сотых), 45% – 0,45 (ноль целых, сорок пять сотых) и т. д. Полученную десятичную дробь умножаем на сумму, процент от которой считаем. И находим искомый ответ.

Например, давайте рассчитаем сумму подоходного налога от зарплаты 35 000 рублей. Налог составляет 13%. В виде десятичной дроби это будет 0,13 (ноль целых, тринадцать сотых). Умножим сумму 35 000 на 0,13. Получится 4 550. Значит, после вычета подоходного налога вам будет перечислена зарплата 35 000 – 4 550 = 30 050. Иногда эту сумму уже без налога называют «зарплатой на руки» или «чистой». В противовес этому сумму вместе с налогом «грязной зарплатой». Именно «грязную зарплату» указывают в объявлениях о вакансиях компании и в трудовом договоре. На руки же даётся меньше. Сколько? Теперь вы легко посчитаете.

Способ третий: считаем на калькуляторе

Если сомневаетесь в своих математических способностях, то воспользуйтесь калькулятором. С его помощью считается быстрее и точнее, особенно если речь идёт о больших суммах. Проще работать с калькулятором, у которого есть кнопка со знаком процент %. Сумму умножаем на количество процентов и нажимаем кнопку %. На экране высветится необходимый ответ.

Например, вы хотите посчитать, каким будет ваше пособие по уходу за ребёнком до 1,5 лет. Оно составляет 40% от среднего заработка за два последних закрытых календарных года. Допустим, средняя зарплата получилась 30 000 рублей. На калькуляторе 30 000 умножаем на 40 и нажимаем кнопку %. Клавишу = трогать не нужно. На экране высветится ответ 12 000. Это и будет величина пособия.

Как видите, всё очень просто. Тем более, что приложение «Калькулятор» сейчас есть в каждом сотовом телефоне. Если специальной кнопки % у аппарата нет, то воспользуйтесь одним из двух описанных выше способов. А умножение и деление произведите на калькуляторе, что облегчит и ускорит ваши вычисления.

Не забудьте: для облегчения подсчётов есть онлайн-калькуляторы. Действуют они так же, как и обычные, но всегда под рукой, когда вы работаете на компьютере.

Способ четвёртый: составляем пропорцию

Посчитать процент от суммы можно с помощью составления пропорции. Это ещё одно страшное слово из школьного курса математики. Пропорция – равенство между двумя отношениями четырёх величин. Для наглядности лучше сразу разобраться на конкретном примере. Вы хотите купить сапоги за 8 000 рублей. На ценнике указано, что они продаются со скидкой 25%. Сколько же это в рублях? Из 4 величин мы знаем 3. Есть сумма 8 000, которая приравнивается к 100%, и 25%, которые требуется посчитать. В математике обычно неизвестную величину называют X. Получается пропорция:

Для удобства подсчётов переводим проценты в десятичные дроби. Получаем:

Решается пропорция так: Х = 8 000 * 0,25: 1X = 2 000

2 000 рублей – скидка на сапоги. Вычитаем эту сумму из старой цены. 8 000 – 2 000= 6 000 рублей (новая цена со скидкой). Вот такая приятная пропорция.

Этим методом можно воспользоваться и для определения значения 100%, если знаете числовой показатель – допустим, 70%. На общекорпоративном собрании шеф объявил, что за год было продано 46 900 единиц товара, при этом план выполнен лишь на 70%. Сколько же необходимо было продать, чтобы выполнить план полностью? Составляем пропорцию:

Переводим проценты в десятичные дроби, получается:

Решаем пропорцию: Х = 46 900 * 1: 0,7Х = 67 000. Вот таких результатов работы ожидало начальство.

Как вы уже догадались, методом пропорции можно вычислить, сколько процентов составляет числовой показатель от суммы. Например, выполняя тест, вы ответили правильно на 132 вопроса из 150. Сколько процентов задания было сделано?

Переводить в десятичные дроби эту пропорцию не надо, можно сразу решать.

Х = 100 * 132: 150. В итоге Х = 88%

Как видите, не так уж всё и страшно. Немного терпения и внимания, и вот уже вычисление процентов вами осилено.

Доброго времени суток, уважаемые гости! А вы хорошо учились в школе? Я вот на отлично, но и у меня возникают ситуации, когда нужно освежить в памяти школьные знания.

К сожалению, среди всего объема информации очень сложно выделить ту, которая может понадобиться на самом деле.
Давайте сегодня вспомним, как узнать процент от числа.

Математика необходима в обычной жизни, ведь она учит мыслить нестандартно и развивает логику. Знания вычислительных манипуляций упрощает жизнь в материальном отношении.

Вот примеры использования %:

  1. Данное отношение позволяет улучшить восприятие информации, чтобы сравнить определенные параметры. Например, тело человека состоит из 70 % воды, а медузы – 98%.
  2. Применяются такие расчеты и в экономике. Это нужно, к примеру для расчетов прибыли.
  3. Знания необходимы и для анализа конкретных величин. Например, разницу между зарплатами в разные месяцы.

Понятие процента

Что интересно, индусы еще в 5-ом столетии использовали проценты в расчетах. В Европе о десятичных дробях узнали только через тысячелетие.

Данное понятие ввел бельгийский ученый Симон Стевин . В 16-ом столетии была опубликована таблица с величинами.
Само слово имеет латинское происхождение. Переводится слово, как «со ста». При этом имеется ввиду одна сотая часть от какой-либо величины.

% предоставляют возможность сравнивать составляющие одного целого без сложностей. Возникновение долей позволило упростить расчеты, и они стали стандартным явлением.

Способы расчета

В учебнике математики за 5-ый класс можно узнать, что % составляет сотую часть от числа. Чтобы узнать, сколько % от определенного значения, можно воспользоваться пропорцией и составить правило креста.

Например, нужно найти 500 от 1000. При этом данные, которые располагаются напротив друг друга необходимо перемножить, а затем разделить на третье число.

При этом числа пишутся под цифрами, а проценты под такими же показателями.
Получается:

Можно использовать и программу Excel.

Например, нужно найти сумму, которая составляет 15% от целого числа 8500.

Сначала создайте на рабочем столе лист Excel.

Затем откройте документ и в выделенной строке введите:

  • = (равно);
  • затем 8500;
  • после этого нажмите * (умножить);
  • затем 15;
  • после следует нажать клавишу % и Enter.

Как просчитать процент на калькуляторе

Затем в поля нужно ввести запрашиваемые данные и получить результат. При этом можно узнать, как % от общего числа, так и сколько процентов составляет значение одного числа от другого.
Подводя итоги, можно сказать, что калькулятор позволяет определиться с такими вопросами:

  1. Вычислить определенный % из определенного значения. Или, если известен %, то прибавить его к какому-то числу.
  2. Какой % составляет от заданного показателя.
  3. Сколько % содержит одно значение от другого.

На обычном калькуляторе также есть функция определения %. Если опция есть, то должна быть клавиша, где изображен %.

Для этого найдите на его клавиатуре кнопку с изображением процента (%).

Например, давайте выясним, сколько 12 составляет от 125.

Для этого проведем следующие манипуляции:

Введите 125 на калькуляторе.
Нажмите умножить (*).
Нажмите 12.
Затем нажмите кнопку с процентом.
При этом на экране отобразиться результат – 9,6%.

Таким образом, можно найти любые другие значения с двумя числами. Калькулятором можно и воспользоваться на мобильном телефоне.

В ноутбуке или компьютере полезную программку можно отыскать через меню пуск.

Расчет с помощью формул

Итак, рассмотрим некоторые формулы для расчета.
Формула вычисления процента от определенного значения.

Если известно число А и составляющее от процента В, то процент от А находится так:

Есть специальная формула для вычисления по проценту. При этом нужно узнать от какого значения %.

Если известно В, которое составляет Р процентов от числа А, то количество А находится так.
А=В*100%/Р.
Можно также вычислить процентное значение одного числа от другого. Если известны два значения А и В, то можно выяснить, какой % содержит В от А. При этом применяется такая формула. Р=В/А*100%.
Чтобы узнать насколько увеличилось число по сравнению с исходным, также есть определенная формула.

Если известно число А и необходимо найти В, которое на определенный процент больше числа А, то применяется такая формула: В=А(1+Р/100%) .
Также есть формула для расчетов, которое меньше исходного на какой-то заданный процент.

Если мы знаем число А и необходимо отыскать В, которое на Р % меньше А, то применяется такое вычисление: В=А(1-Р/100%).

Надеюсь вам пригодиться информация в моей статье. Если хотите дополнить ее, то напишите в комментариях.

Вспоминайте школьные знания и используйте их в обычной жизни. Математические расчеты здорово упрощают жизнь.

На сегодня у меня все. До свидания, дорогие почитатели моего блога!

Правила записи чисел, имеющих дробную часть, предусматривают несколько форматов, основными из которых являются «десятичный» и «обыкновенный». Обыкновенные дроби, в свою очередь, могут быть записаны в форматах, называемых «неправильными» и «смешанными». Для выделения целой части из дробного числа каждого из этих вариантов записи удобнее применять различающиеся способы.

Отбросьте дробную часть, если надо выделить из положительной дроби, записанной в смешанном формате. В такой дроби целая часть перед дробной — например, 12 ⅔. В этой дроби целой частью будет число 12. Если смешанная дробь имеет знак, то полученное таким способом число уменьшайте на единицу. Необходимость этого действия вытекает из определения целой части числа, согласно она не может быть больше значения исходной дроби. Например, целой частью дроби -12 ⅔ является число -13.

Разделите без остатка числитель исходной дроби на ее знаменатель, если она записана в неправильном обыкновенном формате. Если исходное число имеет положительный знак, то полученный результат и будет целой частью. Например, целая часть дроби 716/51 равна 14. Если же исходное число отрицательно, то и здесь от результата следует отнять единицу — например, вычисление целой части дроби -716/51 должно дать число -15.

Считайте ноль целой частью положительной дроби, записанной в обыкновенном формате и при этом не являющейся ни смешанной, ни неправильной. Например, это к дроби 48/51. Если исходная дробь меньше нуля, то, как и в предыдущих случаях, результат нужно на один. Например, целой частью дроби -48/51 следует считать число -1.

Отбросьте все знаки, стоящие после десятичной запятой, если выделить надо из положительного числа, записанного в формате десятичной дроби. В этом случае именно разделительная

Процент — это одна сотая доля числа, принимаемого за целое. Проценты используются для обозначения отношения части к целому, а также для сравнения величин.

1% = 1100 = 0,01

Онлайн калькулятор позволяет выполнить следующие операции:

Найти процент от числа

Чтобы найти процент p от числа, нужно умножить это число на дробь p100

Найдем 12% от числа 300:

300 · 12100 = 300 · 0,12 = 36

12% от числа 300 равняется 36.

Например, товар стоит 500 рублей и на него действует скидка 7%. Найдем абсолютное значение скидки:

500 · 7100 = 500 · 0,07 = 35

Таким образом, скидка равна 35 рублей.

Сколько процентов составляет одно число от другого числа

Чтобы вычислить процентное отношение чисел, нужно одно число разделить на другое и умножить на 100%.

Вычислим, сколько процентов составляет число 12 от числа 30:

1230 · 100 = 0,4 · 100 = 40%

Число 12 составляет 40% от числа 30.

Например, книга содержит 340 страниц. Вася прочитал 200 страниц. Вычислим, сколько процентов от всей книги прочитал Вася.

200340 · 100% = 0,59 · 100 = 59%

Таким образом, Вася прочитал 59% от всей книги.

Прибавить процент к числу

Чтобы прибавить к числу p процентов, нужно умножить это число на (1 + p100)

Прибавим 30% к числу 200:

200 · (1 + 30100) = 200 · 1,3 = 260

200 + 30% равняется 260.

Например, абонемент в бассейн стоит 1000 рублей. Со следующего месяца обещали поднять цену на 20%. Вычислим, сколько будет стоить абонемент.

1000 · (1 + 20100) = 1000 · 1,2 = 1200

Таким образом, абонемент будет стоить 1200 рублей.

Вычесть процент из числа

Чтобы отнять от числа p процентов, нужно умножить это число на (1 — p100)

Отнимем 30% от числа 200:

200 · (1 — 30100) = 200 · 0,7 = 140

200 — 30% равняется 140.

Например, велосипед стоит 30000 рублей. Магазин сделал на него скидку 5%. Вычислим, сколько будет стоить велосипед с учетом скидки.

30000 · (1 — 5100) = 30000 · 0,95 = 28500

Таким образом, велосипед будет стоить 28500 рублей.

На сколько процентов одно число больше другого

Чтобы вычислить, на сколько процентов одно число больше другого, нужно первое число разделить на второе, умножить результат на 100 и вычесть 100.

Вычислим, на сколько процентов число 20 больше числа 5:

205 · 100 — 100 = 4 · 100 — 100 = 400 — 100 = 300%
Число 20 больше числа 5 на 300%.

Например, зарплата начальника равна 50000 рублей, а сотрудника — 35000 рублей. Найдем, на сколько процентов зарплата начальника больше:

5000035000 · 100 — 100 = 1,43 * 100 — 100 = 143 — 100 = 43%

Таким образом, зарплата начальника на 43% выше зарплаты сотрудника.

На сколько процентов одно число меньше другого

Чтобы вычислить, на сколько процентов одно число меньше другого, нужно из 100 вычесть отношение первого числа ко второму, умноженное на 100.

Вычислим, на сколько процентов число 5 меньше числа 20:

100 — 520 · 100 = 100 — 0,25 · 100 = 100 — 25 = 75%

Число 5 меньше числа 20 на 75%.

Например, фрилансер Олег в январе выполнил заказы на 40000 рублей, а в феврале на 30000 рублей. Найдем, на сколько процентов Олег в феврале заработал меньше, чем в январе:

100 — 3000040000 · 100 = 100 — 0,75 * 100 = 100 — 75 = 25%

Таким образом, в феврале Олег заработал на 25% меньше, чем в январе.

Найти 100 процентов

Если число x это p процентов, то найти 100 процентов можно умножив число x на 100p

Найдем 100%, если 25% это 7:

7 · 10025 = 7 · 4 = 28

Если 25% равняется 7, то 100% равняется 28.

Например, Катя копирует фотографии с фотоаппарата на компьютер. За 5 минут скопировалось 20% фотографий. Найдем, сколько всего времени занимает процесс копирования:

5 · 10020 = 5 · 5 = 25

Получаем, что процесс копирования всех фотографий занимает 25 минут.

Онлайн калькулятор для вы нахождения числа по его процентам, может решать примеры, сохранять историю вычисления и копировать ссылку на расчет.

Правило: Чтобы найти число по его проценту, нужно заданное число разделить на заданную величину процента, а результат умножить на 100.

Примеры вычисления исходного числа по известному проценту от числа:
Например: число 4 это 5% от неизвестного нам числа, чтобы найти это число нужно 4/5×100=80

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»

ОСНОВНЫЕ ТИПЫ РЕШЕНИЯ ЗАДАЧ НА ПРОЦЕНТЫ

I. НАХОЖДЕНИЕ ЧАСТИ ОТ ЦЕЛОГО

Чтобы найти часть (%) от целого, надо число умножить на часть (проценты, переведенные в десятичную дробь).

ПРИМЕР: В классе 32 ученика. Во время контрольной работы отсутствовало 12,5% учащихся. Найди, сколько учеников отсутствовало?
РЕШЕНИЕ 1: Целое в этой задаче – общее количество учащихся (32).
12,5% = 0,125
32 · 0,125 = 4
РЕШЕНИЕ 2: Пусть х учеников отсутствовали, что составляет 12,5%. Если 32 ученика –
общее количество учеников (100%), то
32 ученика – 100%
х учеников – 12,5%

х =

ОТВЕТ: В классе отсутствовало 4 ученика.

II. НАХОЖДЕНИЕ ЦЕЛОГО ПО ЕГО ЧАСТИ

Чтобы найти целое по его части (%-ам), надо число разделить на часть (проценты, переведенные в десятичную дробь).

ПРИМЕР: Коля истратил в парке аттракционов 120 крон, что составило75% всех его карманных денег. Сколько было карманных денег у Коли до прихода в парк аттракционов?
РЕШЕНИЕ 1: В этой задаче надо найти целое, если известна данная часть и значение
этой части.
75% = 0,75
120 : 0,75 = 160

РЕШЕНИЕ 2: Пусть х крон было у Коли, что составляет целое, т.е 100%. Если он потратил 120 крон, что составило 75%, то
120 крон– 75 %
х крон – 100 %

х =

ОТВЕТ:У Коли было 160 крон.

III. ВЫРАЖЕНИЕ В ПРОЦЕНТАХ ОТНОШЕНИЯ ДВУХ ЧИСЕЛ

ТИПОВОЙ ВОПРОС:
СКОЛЬКО % СОСТАВЛЯЕТ ОДНА ВЕЛИЧИНА ОТ ДРУГОЙ?

ПРИМЕР: Ширина прямоугольника 20м, а длина 32м. Сколько % составляет ширина от длины? (Длина является основой для сравнения)
РЕШЕНИЕ 1:РЕШЕНИЕ 2: В этой задаче длина прямоугольника 32м составляет 100%, тогда ширина 20м составляет х%. Составим и решим пропорцию:
20 метров – х %
32 метра – 100 %

х =

ОТВЕТ: Ширина составляет от длины 62,5%.

NB! Обратите внимание на то, как меняется решение в зависимости от изменения вопроса.

ПРИМЕР: Ширина прямоугольника 20м, а длина 32м. Сколько % составляет длина от ширины? (Ширина является основой для сравнения)
РЕШЕНИЕ 1:

РЕШЕНИЕ 2: В этой задаче ширина прямоугольника 20м составляет 100%, тогда длина 32м составляет х%. Составим и решим пропорцию:
20 метров – 100 %
32 метра – х %

х =

ОТВЕТ: Длина составляет от ширины 160%.

IV. ВЫРАЖЕНИЕ В ПРОЦЕНТАХ ИЗМЕНЕНИЯ ВЕЛИЧИНЫТИПОВОЙ ВОПРОС:
НА СКОЛЬКО % ИЗМЕНИЛАСЬ (УВЕЛИЧИЛАСЬ, УМЕНЬШИЛАСЬ) ПЕРВОНАЧАЛЬНАЯ ВЕЛИЧИНА?

Чтобы найти изменение величины в % надо:
1) найти на сколько изменилась величина (без %)
2) разделить полученную величину из п.1) на величину, являющуюся основой для сравнения
3) перевести результат в % (выполнив умножение на 100%)

ПРИМЕР: Цена платья снизилась с 1250 крон до 1000 крон. Найди на сколько процентов снизилась цена платья?
РЕШЕНИЕ 1:

1) 1250 –1000= 250 (кр) на столько изменилась цена
2) Основа для сравнения здесь 1250 крон (т.е. то, что было изначально)
3)
Решение задачи одним действием:
ОТВЕТ: Цена платья уменьшилась на 20%.

NB! Обратите внимание на то, как меняется решение в зависимости от изменения вопроса.

ПРИМЕР:

Цена платья повысилась с 1000 крон до 1250 крон. Найди на сколько процентов повысилась цена платья?
РЕШЕНИЕ 1:

1) 1250 –1000= 250 (кр) на столько изменилась цена
2) Основа для сравнения здесь 1000 крон (т.е. то, что было изначально)
3)
Решение задачи одним действием:

РЕШЕНИЕ 2:
1250 –1000= 250 (кр) на столько изменилась цена
В этой задаче первоначальная цена 1000 крон 100%, тогда изменение цены 250 крон составляет х%. Составим и решим пропорцию:
1000 крон – 100 %
250 крон – х %

х =
ОТВЕТ: Цена платья увеличилась на 25%.

V. ПОСЛЕДОВАТЕЛЬНОЕ ИЗМЕНЕНИЕ ВЕЛИЧИНЫ (ЧИСЛА)

ПРИМЕР:
Число уменьшили на 15%, а затем увеличили на 20%. Найди на сколько процентов изменилось число?

Самая распространенная ошибка: число увеличилось на 5 %.

РЕШЕНИЕ 1:
1) Хотя исходное число не дано, для простоты решения можно принять его за 100 (т.е. одно целое или 1)
2) Если число уменьшилось на 15%, то полученное число составит 85%, или от 100 это было бы 85.
3) Теперь полученный результат надо увеличить на 20%, т.е
85 – 100%
а новое число х – 120% (т.к. увеличилось на 20%)

х =
4)Таким образом в результате изменений число 100 (первоначальное) изменилось и стало 102, а это означает, что первоначальное число увеличилось на 2%

РЕШЕНИЕ 2:
1) Пусть исходное число Х
2) Если число уменьшилось на 15%, то полученное число составит 85% от Х, т.е. 0,85Х.
3) Теперь полученное число надо увеличить на 20%, т.е
0,85Х – 100%
а новое число ? – 120% (т.к. увеличилось на 20%)

? =
4) Таким образом в результате изменений число Х (первоначальное), является основой для сравнения, а число 1,02Х(полученное), (см. IV тип решения задач), тогда

ОТВЕТ: Число увеличилось на 2%.

Как посчитать процент от числа

  1. Главная
  2. /
  3. Математика
  4. /
  5. Арифметика
  6. /
  7. Как посчитать процент от числа

Чтобы найти процент от числа или определить сколько процентов число составляет от другого числа, надо воспользоваться пропорцией или нашим онлайн калькулятором:

Онлайн калькулятор

Сколько будет % от числа ?
Ответ:

0

Для того чтобы найти процент от числа, нужно просто это число умножить на число процентов и разделить на 100%.

Сколько процентов число составляет от числа ?
Ответ:

0

%

Чтобы определить сколько процентов число составляет от другого числа, необходимо первое число умножить на 100% и разделить на второе.

Число это % от какого числа?
Ответ:

0

Для того чтобы выяснить от какого числа другое число (X) составляет определённое количество процентов, надо число X умножить на 100% и разделить на количество интересующих вас процентов.

Теория

Сколько будет P% от числа Y?

Формула

X = (Y*P)/100

Пример

К примеру, определим сколько будет 12% от 600?

X = (600*12)/100

Ответ: X = 72

Сколько процентов число X составляет от числа Y?

Формула

P = (X*100)/Y

Пример

К примеру, определим сколько процентов число 72 составляет от 600?

P = (72*100)/600

Ответ: P = 12%

Число X это P% от какого числа?

Формула

Y = (100*X)/P

Пример

К примеру, определим: число 72 это 12% от какого числа?

Y = (100*72)/12

Ответ: Y = 600

Понравилась статья? Поделить с друзьями:
  • Как найти хорошее аниме
  • Как исправить ошибку в приложении контакты
  • Как найти богатую девочку
  • Как найти код плательщика жкх на госуслугах
  • Составьте рекомендации на тему как добиться успеха в учебе