Как найти частицу в ядерной реакции

Задача. Найти неизвестный элемент ядерной реакции. Пример реакции: displaystyle {}_{{16}}^{{32}}S+{}_{Z}^{A}Xto {}_{{15}}^{{32}}P+{}_{1}^{1}H, остальные реакции будут разобраны в тексте задачи (ибо лень делать страницу для каждой реакции).

Дано:
Реакция

Найти:
Элемент — ?

Решение

Думаем: все вопросы нахождения неизвестного элемента ядерной реакции касаются закона сохранения нуклонного и протонного заряда:

displaystyle {{z}_{1}}+{{z}_{2}}={{z}_{3}}+{{z}_{4}} (1)

displaystyle {{p}_{1}}+{{p}_{2}}={{p}_{3}}+{{p}_{4}} (2)

Также есть набор элементов, которые могут не записываться без протонного и нуклонного заряда.

Решаем: рассматривая реакцию displaystyle {}_{{16}}^{{32}}S+{}_{Z}^{A}Xto {}_{{15}}^{{32}}P+{}_{1}^{1}H, исходя из (1) и (2) можем вывести два соотношения.

displaystyle 32+A=32+1 (3)

displaystyle 16+Z=15+1 (4)

Считаем: исходя из (3) и (4), получаем:

displaystyle Z=0;              displaystyle Z=0

Тогда: displaystyle {}_{0}^{1}X — этот элемент является нейтроном.

Ответ: displaystyle {}_{0}^{1}n (нейтрон)

Задача 2. Реакция displaystyle {}_{8}^{{17}}O+dto {}_{Z}^{A}X+n.

Решаем: в этой задаче дополнительно необходимо «узнать» элементы. В нашей задаче displaystyle _{1}^{{1+1}}d=_{1}^{2}d — дейтерий — «тяжёлый» водород с 1 протоном (всё же водород) и 1 нейтрон. Тогда форма записи: displaystyle n. displaystyle {}_{0}^{{0+1}}n={}_{0}^{1}n — нейтрон — элемент с 0 протонов и 1 нейтроном, т.е. displaystyle {}_{0}^{{0+1}}n={}_{0}^{1}n. Тогда:

displaystyle {}_{8}^{{17}}O+{}_{1}^{2}dto {}_{Z}^{A}X+{}_{0}^{1}n

Решаем: исходя из (1) и (2) можем вывести два соотношения.

displaystyle 17+2=A+1 (5)

displaystyle 8+1=Z+0 (6)

Считаем: исходя из (5) и (6), получаем:

displaystyle Z=9;              displaystyle Z=9

Тогда: displaystyle {}_{9}^{{18}}F — используя таблицу Менделеева, заключаем, что этот элемент — фтор (displaystyle {}_{9}^{{18}}F)

Ответ: displaystyle {}_{9}^{{18}}F (фтор).

Задача 3. Реакция displaystyle {}_{{20}}^{{40}}Ca+gamma to {}_{Z}^{A}X+p+n.

Решаем: в этой задаче дополнительно необходимо «узнать» элементы. В нашей задаче displaystyle {}_{0}^{0}gamma — гамма-квант или фотон света без нейтронов и протонов. Тогда форма записи: displaystyle p. displaystyle {}_{1}^{{1+0}}p={}_{1}^{1}p — протон — элемент с 1 протоном и 0 нейтронов, тогда форма записи: displaystyle n. displaystyle {}_{0}^{{0+1}}n={}_{0}^{1}n — нейтрон — элемент с 0 протонов и 1 нейтроном, т.е. displaystyle {}_{0}^{{0+1}}n={}_{0}^{1}n. Тогда:

displaystyle {}_{{20}}^{{40}}Ca+{}_{0}^{0}gamma to {}_{Z}^{A}X+{}_{1}^{1}p+{}_{0}^{1}n

Решаем: исходя из (1) и (2) можем вывести два соотношения.

displaystyle 40+0=A+1+1 (7)

displaystyle 20+0=Z+1+0 (8)

Считаем: исходя из (7) и (8), получаем:

displaystyle Z=19;              displaystyle Z=19

Тогда: displaystyle {}_{{19}}^{{38}}K — используя таблицу Менделеева, заключаем, что этот элемент — калий (displaystyle {}_{{19}}^{{38}}K)

Ответ: displaystyle {}_{{19}}^{{38}}K (калий).

Задача 4. Реакция displaystyle {}_{4}^{A}X+alpha to {}_{Z}^{{12}}Y+n.

Решаем: в этой задаче дополнительно необходимо «узнать» элементы. В нашей задаче displaystyle {}_{2}^{{2+2}}alpha ={}_{2}^{4}alpha — альфа частица или ядро гелия с 2 протонами и 2 нейтронами. Тогда форма записи: displaystyle n. displaystyle {}_{0}^{{0+1}}n={}_{0}^{1}n — нейтрон — элемент с 0 протонов и 1 нейтроном, т.е. displaystyle {}_{0}^{{0+1}}n={}_{0}^{1}n. Тогда:

displaystyle {}_{4}^{A}X+{}_{2}^{4}alpha to {}_{Z}^{{12}}Y+{}_{0}^{1}n

Решаем: исходя из (1) и (2) можем вывести два соотношения.

displaystyle A+4=12+1 (9)

displaystyle 4+2=Z+0 (10)

Считаем: исходя из (9) и (10), получаем:

displaystyle Z=6;              displaystyle Z=6

Тогда: displaystyle {}_{4}^{9}Be — используя таблицу Менделеева, заключаем, что этот элемент — бериллий (displaystyle {}_{6}^{{12}}Y). displaystyle {}_{6}^{{12}}C — используя таблицу Менделеева, заключаем, что этот элемент — углерод (displaystyle {}_{6}^{{12}}C)

Ответ: displaystyle {}_{6}^{{12}}C (бериллий), displaystyle {}_{6}^{{12}}C (углерод).

Задача 5. Реакция displaystyle {}_{{{{Z}_{1}}}}^{{239}}Pu+{}_{{{{Z}_{2}}}}^{A}Xto {}_{{{{z}_{3}}}}^{{242}}Cm+n.

Решаем: в этой задаче дополнительно необходимо «узнать» элементы. В нашей задаче displaystyle {}_{{94}}^{{239}}Pu — свинец, из таблицы Менделеева находим количество протонов — 94. Тогда форма записи: displaystyle {}_{{96}}^{{242}}Cm. displaystyle n — кюрий, из таблицы Менделеева находим количество протонов — 96. displaystyle {}_{0}^{{0+1}}n={}_{0}^{1}n — нейтрон — элемент с 0 протонов и 1 нейтроном, т.е. displaystyle {}_{0}^{{0+1}}n={}_{0}^{1}n. Тогда:

displaystyle {}_{{94}}^{{239}}Pu+{}_{{{{Z}_{2}}}}^{A}Xto {}_{{96}}^{{242}}Cm+{}_{0}^{1}n

Решаем: исходя из (1) и (2) можем вывести два соотношения.

displaystyle 239+A=242+1 (11)

displaystyle 94+{{Z}_{2}}=96+0 (12)

Считаем: исходя из (11) и (12), получаем:

displaystyle {{Z}_{2}}=2;              displaystyle {{Z}_{2}}=2

Тогда: displaystyle {}_{2}^{4}He — используя таблицу Менделеева, заключаем, что этот элемент — Гелий (или альфа-частица) (displaystyle {}_{2}^{4}He).

Ответ: displaystyle {}_{2}^{4}He (гелий).

Ядерная реакцияпроцесс взаимодействия ядра с элементарной частицей или другим ядром, в процессе которого происходит изменение строения и свойств ядра. Например, испускание ядром элементарных частиц, его деление, испускание фотонов с высокой энергией (гамма-квантов). Одним из результатов ядерных реакций является образование изотопов, не существующих в естественных условиях на Земле.

Протекать ядерные реакции могут при бомбардировке атомов быстрыми частицами (протоны, нейтроны, ионы, альфа-частицы).

Больше полезной информации по разным темам – у нас в телеграм.

Ядерные реакции

Одна из первых проведенных людьми ядерных реакций была осуществлена Резерфордом в 1919 году с целью обнаружения протона. Тогда еще не было известно, что ядро состоит их нуклонов (протоны и нейтроны). При расщеплении многих элементов была обнаружена частица, являющаяся ядром атома водорода.  На основе опытов Резерфорд сделал предположение, что данная частица входит в состав всех ядер.

Эта реакция как раз и описывает один из экспериментов ученого. В опыте выше газ (азот) бомбардируется альфа-частицами (ядра гелия), которые, выбивая из ядер азота протон, превращают его в изотоп кислорода. Запись этой реакции выглядит следующим образом:

Ялерная физика для чайников

При решении задач на ядерные реакции следует помнить, что при их протекании выполняются классические законы сохранения: заряда, момента импульса, импульса и энергии.

Также существует закон сохранения барионного заряда. Это значит, что число нуклонов, участвующих в реакции, остается неизменным. Если мы посмотрим на реакцию, то увидим, что суммы массовых чисел (цифра сверху) и атомных чисел (снизу) в правой и левой частях уравнения совпадают.

Ядерная реакция

 

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Удельная энергия связи ядер

Как известно, внутри ядра на расстояниях порядка его размера действует одно из фундаментальных физических взаимодействий – сильное взаимодействие. Чтобы его преодолеть и «развалить» ядро, необходимо большое количество энергии.

Энергия связи ядра – минимальная энергия, необходимая, чтобы расщепить ядро атома на составляющие его элементарные частицы.

Масса любого атомного ядра меньше, чем масса составляющих его частиц. Разность масс ядра и его составляющих нуклонов называется дефектом масс:

деффект масс ядерная физика

Числа Z и N легко определяются при помощи таблицы Менделеева, а почитать о том, как это делается, можно тут. Энергия связи высчитывается по формуле:

Удельная энергия связи

Энергия ядерных реакций

Ядерные реакции сопровождаются энергетическими превращениями. Существует величина, называемая энергетическим выходом реакции и определяемая формулой

Энергетический выход реакции

Дельта M – дефект масс, но в данном случае это разница масс между начальными и конечными продуктами ядерной реакции.

Ядерная энергия

 

Реакции могут протекать как с выделением  энергии, так и с ее поглощением. Такие реакции называются соответственно экзотермическими и эндотермическими.
Чтобы протекала экзотермическая реакция, необходимо выполнение следующего условия: кинетическая энергия начальных продуктов должна быть больше кинетической энергии продуктов, образовавшихся в ходе реакции.

Эндотермическая реакция возможна в случае, когда удельная энергия связи нуклонов в исходных продуктах меньше удельной энергии связи ядер конечных продуктов.

Примеры решения задач по ядерной реакции

А теперь пара практических примеров с решением:

Задача 1

 
Задача 2
 

Даже если Вам попалась задачка со звездочкой, стоит помнить – нерешаемых задач не существует. Студенческий сервис поможет выполнить любое задание.

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Ядерные реакции

  • Темы кодификатора ЕГЭ: ядерные реакции, деление и синтез ядер.

  • Энергетический выход ядерной реакции

  • Деление ядер

  • Цепная ядерная реакция

  • Термоядерная реакция

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: ядерные реакции, деление и синтез ядер.

В предыдущем листке мы неоднократно говорили о расщеплении атомного ядра на составные части. Но как этого добиться в действительности? В результате каких физических процессов можно разбить ядро?

Наблюдения радиоактивного распада в изменяющихся внешних условиях — а именно, при различных давлениях и температурах, в электрических и магнитных полях — показали, что скорость радиоактивного распада от этих условий не зависит. Никаких превращений химических элементов друг в друга все эти факторы вызвать не способны. Очевидно, изменения энергии тут слишком малы, чтобы повлиять на атомное ядро — так ветер, обдувающий кирпичный дом, не в состоянии его разрушить.

Но разрушить дом можно артиллерийским снарядом. И Резерфорд в 1919 году решил воспользоваться наиболее мощными «снарядами», которые имелись тогда в распоряжении. Это были alpha-частицы, вылетающие с энергией около 5 МэВ при радиоактивном распаде урана. (Как вы помните, это те самые снаряды, которыми он восемь лет назад бомбардировал лист золотой фольги в своих знаменитых опытах, породивших планетарную модель атома.)

Правда, превращений золота в другие химические элементы в тех экспериментах не наблюдалось. Ядро золота ^{197}_{phantom{1} 79}rm{Au} само по себе весьма прочное, да и к тому же содержит довольно много протонов; они создают сильное кулоновское поле, отталкивающее alpha-частицу и не подпускающее её слишком близко к ядру. А ведь для разбивания ядра alpha-снаряд должен сблизиться с ядром настолько, чтобы включились ядерные силы! Что ж, раз большое количество протонов мешает — может, взять ядро полегче, где протонов мало?

Резерфорд подверг бомбардировке ядра азота ^{14}_{phantom{1} 7}rm{N} и в результате осуществил первую в истории физики ядерную реакцию:

^{14}_{vphantom{1}7}rm{N} + vphantom{1} ^{4}_{2}rm{He} rightarrow vphantom{1}^{17}_{phantom{1}8}rm{O} + vphantom{1}^{1}_{1}rm{H}. (1)

В правой части (1) мы видим продукты реакции — изотоп кислорода и протон.

Стало ясно, что для изучения ядерных реакций нужно располагать частицами-снарядами высоких энергий. Такую возможность дают ускорители элементарных частиц. Ускорители имеют два серьёзных преимущества перед естественными «радиоактивными пушками».

1. В ускорителях можно разгонять любые заряженные частицы. В особенности это касается протонов, которые при естественном распаде ядер не появляются. Протоны хороши тем, что несут минимальный заряд, а значит — испытывают наименьшее кулоновское отталкивание со стороны ядер-мишеней.

2. Ускорители позволяют достичь энергий, на несколько порядков превышающие энергию α-частиц при радиоактивном распаде. Например, в Большом адронном коллайдере протоны разгоняются до энергий в несколько ТэВ; это в миллион раз больше, чем 5 МэВ у alpha-частиц в реакции (1), осуществлённой Резерфордом.

Так, с помощью протонов, прошедших через ускоритель, в 1932 году удалось разбить ядро лития (получив при этом две alpha-частицы):

^{7}_{3}rm{Li} + vphantom{1}^{1}_{1}rm{H} rightarrow vphantom{1}^{4}_{2}rm{He} + vphantom{1}^{4}_{2}rm{He}. (2)

Ядерные реакции дали возможность искусственного превращения химических элементов.

Кроме того, в продуктах реакций стали обнаруживаться новые, не известные ранее частицы. Например, при облучении бериллия alpha-частицами в том же 1932 году был открыт нейтрон:

^{9}_{4}rm{Be} + vphantom{1}^{4}_{2}rm{He} rightarrow vphantom{1}^{12}_{phantom{1} 6}rm{O} + vphantom{1}^{1}_{0}rm{n}. (3)

Нейтроны замечательно подходят для раскалывания ядер: не имея электрического заряда, они беспрепятственно проникают внутрь ядра. (При этом ускорять нейтроны не надо — медленные нейтроны легче проникают в ядра. Нейтроны, оказывается, нужно даже замедлять, и делается это пропусканием нейтронов через обычную воду.) Так, при облучении азота нейтронами протекает следующая реакция:

^{14}_{phantom{1} 7}rm{N} + vphantom{1}^{1}_{0}rm{n} rightarrow vphantom{1}^{11}_{phantom{1} 5}rm{B} + vphantom{1}^{4}_{2}rm{He}. (4)

к оглавлению ▴

Энергетический выход ядерной реакции

Обсуждая энергию связи, мы видели, что в результате ядерных процессов масса системы частиц не остаётся постоянной. Это, в свою очередь, приводит к тому, что кинетическая энергия продуктов ядерной реакции отличается от кинетической энергии исходных частиц.

Прежде всего напомним, что полная энергия E частицы массы m складывается из её энергии покоя mc^2 и кинетической энергии K:

E = mc^2 + K.

Пусть в результате столкновения частиц A и B происходит ядерная реакция, продуктами которой служат частицы X и Y:

A + B rightarrow X + Y. (5)

Полная энергия системы частиц сохраняется:

E_A + E_B = E_X + E_Y,

то есть

(m_Ac^2 + K_A) + (m_Bc^2 + K_B) = (m_Xc^2 + K_X) + (m_Y c^2 + K_Y ). (6)

Кинетическая энергия исходных частиц равна K_A + K_B. Кинетическая энергия продуктов реакции равна K_X + K_Y. Энергетический выход Q ядерной реакции — это разность кинетических энергий продуктов реакции и исходных частиц:

Q = (K_X + K_Y) - (K_A + K_B).

Из (6) легко получаем:

Q = (m_A + m_B - m_X - m_Y)c^2. (7)

Если Q > 0, то говорят, что реакция идёт с выделением энергии: кинетическая энергия продуктов реакции больше кинетической энергии исходных частиц. Из (7) мы видим, что в этом случае суммарная масса продуктов реакции меньше суммарной массы исходных частиц.

Если же Q < 0, то реакция идёт с поглощением энергии: кинетическая энергия продуктов реакции меньше кинетической энергии исходных частиц. Суммарная масса продуктов реакции в этом случае больше суммарной массы исходных частиц.

Таким образом, термины «выделение» и «поглощение» энергии не должны вызывать недоумение: они относятся только к кинетической энергии частиц. Полная энергия системы частиц, разумеется, в любой реакции остаётся неизменной.

Чтобы посчитать энергетический выход Q ядерной реакции (5), действуем по следующему алгоритму.

1. С помощью таблицы масс нейтральных атомов находим m_A, m_B, m_X и m_Y, выраженные в а. е. м. (для нахождения массы ядра не забываем вычесть из массы нейтрального атома массу электронов).

2. Вычисляем массу m_1 = m_A + m_B исходных частиц, массу m_2 = m_X + m_Y продуктов реакции и находим разность масс Delta m = m_1 - m_2.

3. Умножаем Delta m на 931,5 и получаем величину Q, выраженную в МэВ.

Мы сейчас подробно рассмотрим вычисление энергетического выхода Q на двух примерах бомбардировки ядер лития ^{7}_{3}rm{Li}: сначала — протонами, затем — alpha-частицами.

В первом случае имеем уже упоминавшуюся выше реакцию (2):

vphantom{1}^{7}_{3}rm{Li} + vphantom{1}^{1}_{1}rm{H} rightarrow vphantom{1}^{4}_{2}rm{He} + vphantom{1}^{4}_{2}rm{He}.

Масса атома лития ^{7}_{3}rm{Li} равна 7,01601 а. е. м. Масса электрона равна 0,000548 а. е. м. Вычитая из массы атома массу трёх его электронов, получаем массу ядра лития ^{7}_{3}rm{Li}:

7,01601 - 3 cdot 0,000548 = 7,01437 а. е. м.

Масса протона равна  1,00728  а. е. м., так что масса исходных частиц:

m_1 = 7,01437 + 1,00728 = 8,02165  а. е. м.

Переходим к продуктам реакции. Масса атома гелия равна  4,00260  а. е. м. Вычитаем массу электронов и находим массу ядра гелия vphantom{1}^{4}_{2}rm{He}:

4,00260 - 2 cdot 0,000548 = 4,00150  а. е. м.

Умножая на 2, получаем массу продуктов реакции:

 m_2 = 2 cdot 4,00150 = 8,00300  а. е. м.

Масса, как видим, уменьшилась (m_2 < m_1); это означает, что наша реакция идёт с выделением энергии. Разность масс:

Delta m = m_1 - m_2 = 8,02165 - 8,00300 = 0,01865  а. е. м.

Выделившаяся энергия:

Q = 0,01865 cdot 931,5 = 17,4  МэВ.

Теперь рассмотрим второй пример. При бомбардировке ядер лития alpha-частицами происходит реакция:

vphantom{1}^{7}_{3}rm{Li} + vphantom{1}^{4}_{2}rm{He} rightarrow vphantom{1}^{10}_{phantom{1} 5}rm{B} + vphantom{1}^{1}_{0}rm{n}. (8)

Массы исходных ядер нам уже известны; остаётся сосчитать их суммарную массу:

m_1 = 7,01437 + 4,00150 = 11,01587  а. е. м.

Из таблицы берём массу атома бора vphantom{1}^{10}_{phantom{1} 5}rm{B} (она равна  10,01294  а. е. м.); вычитаем массу пяти электронов и получаем массу ядра атома бора:

10,01294 - 5 cdot 0,000548 = 10,01020  а. е. м.

Масса нейтрона равна 1,00867  а. е. м. Находим массу продуктов реакции:

m_2 = 10,01020 + 1,00867 = 11,01887 а. е. м.

На сей раз масса увеличилась (m_2 > m_1), то есть реакция идёт с поглощением энергии.

Разность масс равна:

Delta m = m_1 - m_2 = -0,0030  а. е. м.

Энергетический выход реакции:

Q = -0,0030 cdot 931,5 = -2,8 МэВ.

Таким образом, в реакции (8) поглощается энергия 2,8 МэВ. Это означает, что суммарная кинетическая энергия продуктов реакции (ядра бора и нейтрона) на 2,8 МэВ меньше, чем суммарная кинетическая энергия исходных частиц (ядра лития и alpha-частицы). Поэтому чтобы данная реакция в принципе осуществилась, энергия исходных частиц должна быть не меньше 2,8 МэВ.

к оглавлению ▴

Деление ядер

Бомбардируя ядра урана медленным нейтронами, немецкие физики Ган и Штрассман обнаружили появление элементов средней части периодической системы: бария, криптона, стронция, рубидия, цезия и т. д. Так было открыто деление ядер урана.

На рис. 1 мы видим процесс деления ядра (изображение с сайта oup.co.uk.). Захватывая нейтрон, ядро урана делится на два осколка, и при этом освобождаются два-три нейтрона.

Рис. 1. Деление ядра урана

Осколки являются ядрами радиоактивных изотопов элементов середины таблицы Менделеева. Обычно один из осколков больше другого. Например, при бомбардировке урана vphantom{1}^{235}_{phantom{1} 92}rm{U} могут встречаться такие комбинации осколков (как говорят, реакция идёт по следующим каналам).

• Барий и криптон: vphantom{1}^{235}_{phantom{1} 92}rm{U} + vphantom{1}^{1}_{0}rm{n} rightarrow vphantom{1}^{144}_{phantom{1} 56}rm{Ba} + vphantom{1}^{89}_{36}rm{Kr} + 3 vphantom{1}^{1}_{0}rm{n}.

• Цезий и рубидий: vphantom{1}^{235}_{phantom{1} 92}rm{U} + vphantom{1}^{1}_{0}rm{n} rightarrow vphantom{1}^{140}_{phantom{1} 55}rm{Cs} + 2vphantom{1}^{1}_{0}rm{n}.

• Ксенон и стронций: vphantom{1}^{235}_{phantom{1} 92}rm{U} + vphantom{1}^{1}_{0}rm{n} rightarrow vphantom{1}^{140}_{phantom{1} 54}rm{Xe} + vphantom{1}^{94}_{38}rm{Sr} + 2vphantom{1}^{1}_{0}rm{n}.

В каждой из этих реакций выделяется очень большая энергия — порядка 200  МэВ. Сравните эту величину с найденным выше энергетическим выходом реакции (2), равным 17,4  МэВ! Откуда берётся такое количество энергии?

Начнём с того, что из-за большого числа протонов (92 штуки), упакованных в ядре урана, кулоновские силы отталкивания, распирающие ядро, очень велики. Ядерные силы, конечно, ещё в состоянии удерживать ядро от распада, но могучий кулоновский фактор готов сказать своё слово в любой момент. И такой момент настаёт, когда в ядре застревает нейтрон (рис. 2 — изображение с сайта investingreenenergy.com).

Рис. 2. Деформация, колебания и разрыв ядра

Застрявший нейтрон вызывает деформацию ядра. Начнутся колебания формы ядра, которые могут стать столь интенсивными, что ядро вытянется в «гантельку». Короткодействующие ядерные силы, скрепляющие небольшое число соседних нуклонов перешейка, не справятся с силами электрического отталкивания половинок гантельки, и в результате ядро разорвётся.

Осколки разлетятся с огромной скоростью — около 1/30 скорости света. Они и уносят большую часть высвобождающейся энергии (около 170  МэВ из 200).

Деление тяжёлых ядер можно истолковать с точки зрения уже известного нам графика зависимости удельной энергии связи ядра от его массового числа (рис. 3).

Рис. 3. Деление тяжёлых ядер энергетически выгодно

Цветом выделена область 50 leqslant A leqslant 90, в которой удельная энергия связи достигает наибольшего значения 8,7  МэВ/нуклон. Это область наиболее устойчивых ядер. Справа от этой области удельная энергия связи плавно уменьшается до 7,6  МэВ/нуклон у ядра урана.

Процесс превращения менее устойчивых ядер в более устойчивые является энергетически выгодным и сопровождается выделением энергии. При делении ядра урана, как видим, удельная энергия связи повышается примерно на 1  МэВ/нуклон; эта энергия как раз и выделяется в процессе деления. Умножив это на число нуклонов в ядре урана, получим приблизительно те самые 200  МэВ энергетического выхода, о которых говорилось выше.

к оглавлению ▴

Цепная ядерная реакция

Появление двух-трёх нейтронов в процессе деления ядра урана — важнейший факт. Эти нейтроны «первого поколения» могут попасть в новые ядра и вызвать их деление; в результате деления новых ядер возникнут нейтроны «второго поколения», которые попадут в следующие ядра и вызовут их деление; возникнут нейтроны «третьего поколения», которые приведут к делению очередных ядер и т. д. Так идёт цепная ядерная реакция, в ходе которой высвобождается колоссальное количество энергии.

Для протекания цепной ядерной реакции необходимо, чтобы число N_i высвободившихся нейтронов в очередном поколении было не меньше числа N_{i-1} нейтронов в предыдущем поколении. Величина

k = frac{displaystyle N_i}{displaystyle N_{i-1} vphantom{1^a}}

называеся коэффициентом размножения нейтронов. Таким образом, цепная реакция идёт при условии k > 1. Если k < 1, то цепная реакция не возникает.

В случае k > 1 происходит лавинообразное нарастание числа освобождающихся нейтронов, и цепная реакция становится неуправляемой. Так происходит взрыв атомной бомбы.

В ядерных реакторах происходит управляемая цепная реакция деления с коэффициентом размножения k = 1. Стационарное течение управляемой цепной реакции обеспечивается введением в активную зону реактора (то есть в ту область, где протекает реакция) специальных управляющих стержней, поглощающих нейтроны. При полностью введённых стержнях поглощение ими нейтронов настолько велико, что k < 1 и реакция не идёт. В процессе запуска реактора стержни постепенно выводят из активной зоны, пока выделяемая мощность не достигнет требуемого уровня. Этот уровень тщательно контролируется, и при его превышении включаются устройства, вводящие управляющие стержни назад в активную зону.

к оглавлению ▴

Термоядерная реакция

Наряду с реакцией деления тяжёлых ядер энергетически возможным оказывается и обратный в некотором смысле процесс — синтез лёгких ядер, то есть слияние ядер лёгких элементов (расположенных в начале периодической таблицы) с образованием более тяжёлого ядра.

Чтобы началось слияние ядер, их нужно сблизить вплотную — чтобы вступили в действие ядерные силы. Для такого сближения нужно преодолеть кулоновское отталкивание ядер, резко возрастающее с уменьшением расстояния между ними. Это возможно лишь при очень большой кинетической энергии ядер, а значит — при очень высокой температуре (в десятки и сотни миллионов градусов). Поэтому реакция ядерного синтеза называется термоядерной реакцией.

В качестве примера термоядерной реакции приведём реакцию слияния ядер дейтерия и трития (тяжёлого и сверхтяжёлого изотопов водорода), в результате которой образуется ядро гелия и нейтрон:

vphantom{1}^{2}_{1}rm{H} + vphantom{1}^{3}_{1}rm{H} rightarrow vphantom{1}^{4}_{2}rm{He} + vphantom{1}^{1}_{0}rm{n}. (9)

Эта реакция идёт с выделением энергии, равной 17,6  МэВ (попробуйте сами провести расчёты и получить данную величину). Это очень много, если учесть, что в реакции участвуют всего 5 нуклонов! В самом деле, в расчёте на один нуклон в реакции (9) выделяется энергия примерно 3,5  МэВ, в то время как при делении ядра урана выделяется «всего» 1  МэВ на нуклон.

Таким образом, термоядерные реакции служат источником ещё большего количества энергии, чем реакции деления ядер. С физической точки зрения это понятно: энергия реакции 6 ядерного деления есть в основном кинетическая энергия осколков, разогнанных электрическими силами отталкивания, а при ядерном синтезе энергия высвобождается в результате разгона нуклонов навстречу друг другу под действием куда более мощных ядерных сил притяжения.

Проще говоря, при делении ядер высвобождается энергия электрического взаимодействия, а при синтезе ядер — энергия сильного (ядерного) взаимодействия.

В недрах звёзд достигаются температуры, подходящие для синтеза ядер. Свет Солнца и далёких звёзд несёт энергию, выделяющуяся в термоядерных реакциях — при слиянии ядер водорода в ядра гелия и последующем слиянии ядер гелия в ядра более тяжёлых элементов, расположенных в средней части периодической системы. Направление термоядерного синтеза показано на рис. 4; синтез лёгких ядер энергетически выгоден, так как направлен в сторону увеличения удельной энергии связи ядра.

Рис. 4. Синтез лёгких ядер энергетически выгоден

Неуправляемая термоядерная реакция осуществляется при взрыве водородной бомбы. Сначала взрывается встроенная атомная бомба — это нужно для создания высокой температуры на первой ступени термоядерного взрыва. При достижении необходимой температуры в термоядерном горючем бомбы начинаются реакции синтеза, и происходит взрыв собственно водородной бомбы.

Осуществление управляемой термоядерной реакции остаётся пока нерешённой проблемой, над которой физики работают уже более полувека. Если удастся добиться управляемого течения термоядерного синтеза, то человечество получит в своё распоряжение фактически неограниченный источник энергии. Это чрезвычайно важная задача, стоящая перед нынешним и будущими поколениями — в свете угрожающей перспективы истощения нефтегазовых ресурсов нашей планеты.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Ядерные реакции» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Найдите неизвестный элемент ядерной реакции

Задача. Найти неизвестный элемент ядерной реакции. Пример реакции: , остальные реакции будут разобраны в тексте задачи (ибо лень делать страницу для каждой реакции).

Найти:
Элемент — ?

Решение

Думаем: все вопросы нахождения неизвестного элемента ядерной реакции касаются закона сохранения нуклонного и протонного заряда:

  • — количество нуклонов (протонов+нейтронов) в соответствующих атомах,
  • — количество протонов в соответствующих атомах.

Также есть набор элементов, которые могут не записываться без протонного и нуклонного заряда.

Решаем: рассматривая реакцию , исходя из (1) и (2) можем вывести два соотношения.

Считаем: исходя из (3) и (4), получаем:

Тогда: — этот элемент является нейтроном.

Ответ: (нейтрон)

Задача 2. Реакция .

Решаем: в этой задаче дополнительно необходимо «узнать» элементы. В нашей задаче — дейтерий — «тяжёлый» водород с 1 протоном (всё же водород) и 1 нейтрон. Тогда форма записи: . — нейтрон — элемент с 0 протонов и 1 нейтроном, т.е. . Тогда:

Решаем: исходя из (1) и (2) можем вывести два соотношения.

Считаем: исходя из (5) и (6), получаем:

Тогда: — используя таблицу Менделеева, заключаем, что этот элемент — фтор ( )

Ответ: (фтор).

Задача 3. Реакция .

Решаем: в этой задаче дополнительно необходимо «узнать» элементы. В нашей задаче — гамма-квант или фотон света без нейтронов и протонов. Тогда форма записи: . — протон — элемент с 1 протоном и 0 нейтронов, тогда форма записи: . — нейтрон — элемент с 0 протонов и 1 нейтроном, т.е. . Тогда:

Решаем: исходя из (1) и (2) можем вывести два соотношения.

Считаем: исходя из (7) и (8), получаем:

Тогда: — используя таблицу Менделеева, заключаем, что этот элемент — калий ( )

Ответ: (калий).

Задача 4. Реакция .

Решаем: в этой задаче дополнительно необходимо «узнать» элементы. В нашей задаче — альфа частица или ядро гелия с 2 протонами и 2 нейтронами. Тогда форма записи: . — нейтрон — элемент с 0 протонов и 1 нейтроном, т.е. . Тогда:

Решаем: исходя из (1) и (2) можем вывести два соотношения.

Считаем: исходя из (9) и (10), получаем:

Тогда: — используя таблицу Менделеева, заключаем, что этот элемент — бериллий ( ). — используя таблицу Менделеева, заключаем, что этот элемент — углерод ( )

Ответ: (бериллий), (углерод).

Задача 5. Реакция .

Решаем: в этой задаче дополнительно необходимо «узнать» элементы. В нашей задаче — свинец, из таблицы Менделеева находим количество протонов — 94. Тогда форма записи: . — кюрий, из таблицы Менделеева находим количество протонов — 96. — нейтрон — элемент с 0 протонов и 1 нейтроном, т.е. . Тогда:

Решаем: исходя из (1) и (2) можем вывести два соотношения.

Считаем: исходя из (11) и (12), получаем:

Тогда: — используя таблицу Менделеева, заключаем, что этот элемент — Гелий (или альфа-частица) ( ).

Примеры ядерных реакций: особенности, решение и формулы

На протяжении долгого времени человека не оставляли мечты о взаимопревращении элементов – точнее, о превращении различных металлов в один. После осознания бесплодности этих попыток утвердилась точка зрения о незыблемости химических элементов. И только открытие структуры ядра в начале XX века показало, что превращение элементов один в другой возможно – но не химическими методами, то есть воздействием на внешние электронные оболочки атомов, а путем вмешательства в структуру атомного ядра. Такого рода явления (и некоторые другие) относятся к ядерным реакциям, примеры которых будут рассмотрены ниже. Но прежде необходимо вспомнить о некоторых основных понятиях, которые потребуются в ходе этого рассмотрения.

Общее понятие о ядерных реакциях

Существуют явления, в которых ядро атома того или иного элемента вступает во взаимодействие с другим ядром или какой-либо элементарной частицей, то есть обменивается с ними энергией и импульсом. Подобные процессы и называются ядерными реакциями. Результатом их может стать изменение состава ядра или образование новых ядер с испусканием определенных частиц. При этом возможны такие варианты, как:

  • превращение одного химического элемента в другой;
  • деление ядра;
  • синтез, то есть слияние ядер, при котором образуется ядро более тяжелого элемента.

Начальная фаза реакции, определяемая типом и состоянием вступающих в нее частиц, называется входным каналом. Выходные каналы – это возможные пути, по которым реакция будет протекать.

Правила записи ядерных реакций

В примерах, приведенных ниже, демонстрируются способы, с помощью которых принято описывать реакции с участием ядер и элементарных частиц.

Первый способ – тот же, что применяется в химии: в левой части ставятся исходные частицы, в правой – продукты реакции. Например, взаимодействие ядра бериллия-9 с налетающей альфа-частицей (так называемая реакция открытия нейтрона) записывается следующим образом:

Верхние индексы обозначают количество нуклонов, то есть массовые числа ядер, нижние – количество протонов, то есть атомные номера. Суммы тех и других в левой и правой части должны совпадать.

Сокращенный способ написания уравнений ядерных реакций, часто применяющийся в физике, выглядит так:

Общий вид такой записи: A (a, b1b2…) B. Здесь A – ядро-мишень; a – налетающая частица или ядро; b1, b2 и так далее – легкие продукты реакции; B – конечное ядро.

Энергетика ядерных реакций

В ядерных превращениях выполняется закон сохранения энергии (наряду с другими законами сохранения). При этом кинетическая энергия частиц во входном и выходном канале реакции могут различаться за счет изменения энергии покоя. Так как последняя эквивалентна массе частиц, до и после реакции массы также будут неодинаковы. Но полная энергия системы всегда сохраняется.

Разность энергии покоя вступающих в реакцию и выходящих из нее частиц называется энергетическим выходом и выражается в изменении их кинетической энергии.

В процессах с участием ядер задействуются три вида фундаментальных взаимодействий – электромагнитное, слабое и сильное. Благодаря последнему ядро обладает такой важнейшей особенностью, как высокая энергия связи между составляющими его частицами. Она существенно выше, чем, например, между ядром и атомными электронами или между атомами в молекулах. Об этом свидетельствует заметный дефект массы – разница между суммой масс нуклонов и массой ядра, которая всегда меньше на величину, пропорциональную энергии связи: Δm = Eсв/c 2 . Расчет дефекта массы производится по простой формуле Δm = Zmp + Amn – Мя, где Z – заряд ядра, A – массовое число, mp – масса протона (1,00728 а.е.м.), mn – масса нейтрона (1,00866 а.е.м.), Mя – масса ядра.

При описании ядерных реакций используется понятие удельной энергии связи (то есть в расчете на один нуклон: Δmc 2 /A).

Энергия связи и стабильность ядер

Наибольшей устойчивостью, то есть наивысшей удельной энергией связи, отличаются ядра с массовым числом от 50 до 90, например, железо. Такой «пик стабильности» обусловлен нецентральным характером ядерных сил. Поскольку каждый нуклон взаимодействует только с соседями, на поверхности ядра он связан слабее, нежели внутри. Чем меньше в ядре взаимодействующих нуклонов, тем меньше и энергия связи, поэтому легкие ядра менее стабильны. В свою очередь, с ростом количества частиц в ядре возрастают кулоновские силы отталкивания между протонами, так что энергия связи тяжелых ядер тоже уменьшается.

Таким образом, для легких ядер наиболее вероятными, то есть энергетически выгодными, являются реакции слияния с формированием устойчивого ядра средней массы, для тяжелых же – напротив, процессы распада и деления (нередко многоступенчатые), в результате которых также образуются более стабильные продукты. Этим реакциям свойственен положительный и часто очень высокий энергетический выход, сопровождающий увеличение энергии связи.

Ниже мы рассмотрим некоторые примеры ядерных реакций.

Реакции распада

Ядра могут претерпевать спонтанное изменение состава и структуры, при которых происходит испускание каких-либо элементарных частиц или фрагментов ядра, таких как альфа-частицы или более тяжелые кластеры.

Так, при альфа-распаде, возможном благодаря квантовому туннелированию, альфа-частица преодолевает потенциальный барьер ядерных сил и покидает материнское ядро, которое, соответственно, уменьшает атомный номер на 2, а массовое число – на 4. Например, ядро радия-226, испуская альфа-частицу, превращается в радон-222:

Энергия распада ядра радия-226 составляет около 4,87 МэВ.

Бета-распад, обусловленный слабым взаимодействием, происходит без изменения количества нуклонов (массового числа), но с увеличением или уменьшением заряда ядра на 1, при испускании антинейтрино или нейтрино, а также электрона или позитрона. Примером ядерной реакции данного типа является бета-плюс-распад фтора-18. Здесь один из протонов ядра превращается в нейтрон, излучаются позитрон и нейтрино, а фтор превращается в кислород-18:

Энергия бета-распада фтора-18 – около 0,63 МэВ.

Деление ядер

Гораздо больший энергетический выход имеют реакции деления. Так называется процесс, при котором ядро самопроизвольно или вынужденно распадается на близкие по массе осколки (как правило, два, редко – три) и некоторые более легкие продукты. Ядро делится, если его потенциальная энергия превысит исходное значение на некоторую величину, называемую барьером деления. Однако вероятность спонтанного процесса даже для тяжелых ядер невелика.

Она существенно возрастает при получении ядром соответствующей энергии извне (при попадании в него частицы). Наиболее легко проникает в ядро нейтрон, поскольку он не подвержен силам электростатического отталкивания. Попадание нейтрона приводит к повышению внутренней энергии ядра, оно деформируется с образованием перетяжки и делится. Осколки разлетаются под действием кулоновских сил. Пример ядерной реакции деления демонстрирует уран-235, поглотивший нейтрон:

Расщепление на барий-144 и криптон-89 – лишь один из возможных вариантов деления урана-235. Эту реакцию можно записать в виде 235 92U + 1 0n → 236 92U* → 144 56Ba + 89 36Kr + 3 1 0n, где 236 92U* – сильно возбужденное составное ядро с высокой потенциальной энергией. Избыток ее наряду с разностью энергий связи материнского и дочерних ядер выделяется главным образом (около 80%) в форме кинетической энергии продуктов реакции, а также частично в форме потенциальной энергии осколков деления. Общая энергия деления массивного ядра – примерно 200 МэВ. В пересчете на 1 грамм урана-235 (при условии, что прореагировали все ядра) это составляет 8,2 ∙ 10 4 мегаджоулей.

Цепные реакции

Деление урана-235, а также таких ядер, как уран-233 и плутоний-239, характеризуется одной важной особенностью – наличием среди продуктов реакции свободных нейтронов. Эти частицы, проникая в другие ядра, в свою очередь, способны инициировать их деление опять-таки с вылетом новых нейтронов и так далее. Подобный процесс именуется цепной ядерной реакцией.

Течение цепной реакции зависит от того, как соотносится число вылетающих нейтронов очередного поколения с количеством их в предыдущем поколении. Это отношение k = Ni/Ni–1 (здесь N – количество частиц, i – порядковый номер поколения) носит название коэффициента размножения нейтронов. При k 1 число нейтронов, а значит, и делящихся ядер, возрастает лавинообразно. Пример цепной ядерной реакции такого типа – взрыв атомной бомбы. При k = 1 процесс протекает стационарно, примером чему служит реакция, управляемая при помощи поглощающих нейтроны стержней, в ядерных реакторах.

Ядерный синтез

Наибольшее энерговыделение (в расчете на один нуклон) происходит при слиянии легких ядер – так называемых реакциях синтеза. Чтобы вступить в реакцию, положительно заряженные ядра должны преодолеть кулоновский барьер и сблизиться на расстояние сильного взаимодействия, не превышающее размеров самого ядра. Поэтому они должны обладать чрезвычайно большой кинетической энергией, что означает высокие температуры (десятки миллионов градусов и выше). По этой причине реакции синтеза еще называют термоядерными.

Пример ядерной реакции синтеза – образование гелия-4 с вылетом нейтрона при слиянии ядер дейтерия и трития:

Здесь высвобождается энергия 17,6 МэВ, что в расчете на один нуклон более чем в 3 раза превышает энергию деления урана. Из них 14,1 МэВ приходится на кинетическую энергию нейтрона и 3,5 МэВ – ядра гелия-4. Такая существенная величина создается за счет огромной разницы в энергиях связи ядер дейтерия (2,2246 МэВ) и трития (8,4819 МэВ) с одной стороны, и гелия-4 (28,2956 МэВ) – с другой.

В реакциях деления ядра высвобождается энергия электрического отталкивания, в то время как при синтезе энерговыделение происходит за счет сильного взаимодействия – самого мощного в природе. Это и определяет столь значительный энергетический выход данного типа ядерных реакций.

Примеры решения задач

Рассмотрим реакцию деления 235 92U + 1 0n → 140 54Xe + 94 38Sr + 2 1 0n. Каков ее энергетический выход? В общем виде формула для его расчета, отражающая разность энергий покоя частиц до и после реакции, выглядит следующим образом:

Вместо умножения на квадрат скорости света можно умножить разность масс на коэффициент 931,5 и получить значение энергии в мегаэлектронвольтах. Подставив в формулу соответствующие значения атомных масс, получим:

Q = (235,04393 + 1,00866 – 139,92164 – 93,91536 — 2∙1,00866) ∙ 931,5 ≈ 184,7 МэВ.

Еще один пример – на реакцию синтеза. Это один из этапов протон-протонного цикла – главного источника солнечной энергии.

Применим ту же формулу:

Q = (2 ∙ 3,01603 – 4,00260 — 2 ∙ 1,00728) ∙ 931,5 ≈ 13,9 МэВ.

Основная доля этой энергии – 12,8 МэВ – приходится в данном случае на гамма-фотон.

Мы рассмотрели только простейшие примеры ядерных реакций. Физика этих процессов чрезвычайно сложна, они отличаются огромным разнообразием. Исследование и применение ядерных реакций имеет большое значение как в практической области (энергетика), так и в фундаментальной науке.

Ядерные реакции. Выделение и поглощение энергии при ядерных реакциях. Термоядерные реакции синтеза лёгких ядер

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы узнаем, что такое ядерные реакции, рассмотрим законы сохранения при ядерных реакциях, выясним причину изменения суммарной массы ядер, а также научимся вычислять энергетический выход таких реакций. В конце урока узнаем, какой колоссальный выход энергии получается при термоядерных реакциях.

источники:

http://fb.ru/article/416252/primeryi-yadernyih-reaktsiy-osobennosti-reshenie-i-formulyi

http://interneturok.ru/lesson/physics/11-klass/fizika-atomnogo-jadra/yadernye-reaktsii-vydelenie-i-pogloschenie-energii-pri-yadernyh-reaktsiyah-termoyadernye-reaktsii-sinteza-lyogkih-yader

Ядерная реакция — процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра, а также выделением вторичных частиц или γ-квантов.

Осуществление ядерной реакции возможно только при сближении ядер атомов вещества вплотную и их попадании в радиус действия ядерных сил. Но ядра любых химических элементов имеют положительный заряд. Поэтому при сближении они отталкиваются за счет действия кулоновских сил. Ядра могут сблизиться друг с другом только в случае, если им сообщить достаточно большую кинетическую энергию. Такую энергию можно им сообщить с помощью специальных ускорителей. Однако для легких ядер достаточно использовать α-частицы или дейтроны — ядро атома дейтерия.

Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году в опытах по обнаружению протонов в продуктах распада ядер. Ученый бомбардировал атомы азота α-частицами. При соударении частиц происходила ядерная реакция, протекавшая по следующей схеме:

147N+42He178O+11H

Первая реакция с использованием ускорителей была проведена в 1932 году. Во время нее удалось расщепить атом лития на две α-частицы :

73Li+11H42He+42He

На фотографии треков в камере Вильсона (см. рисунок выше) видно, что ядра гелия разлетаются в разные стороны вдоль одной прямой. Это соответствует закону сохранения импульса (импульс протона много меньше импульса возникающих α-частиц; на фотографии треки протонов не видны).

Внимание! Количество нуклонов до и после реакции есть число постоянное.

Пример №1. При бомбардировке ядер бора 115B протонами получается бериллий 84Be. Какое еще ядро образуется при этой реакции?

Составим схему реакции:

115B+11p=84Be+AZX

Количество нуклонов до и после реакции постоянно. Поэтому зарядовое число нового элемента будет равно разнице суммы зарядов бора и протона и заряда бериллия:

Z=(5+1)4=2

Массовое число нового элемента будет равно разнице суммы массовых чисел бора и протона и массового числа бериллия:

A=(11+1)8=4

Вещество с зарядовым числом 2 и массовым числом 4 — гелий. Следовательно, схема получает вид:

115B+11p=84Be+42He

Энергетический выход ядерных реакций

В ядерной реакции по распаду лития при столкновении с быстрым протоном кинетическая энергия двух образующихся ядер гелия оказалась больше кинетической энергии протона, который вступил в реакцию. И разница между ними составила 7,3 МэВ. Это говорит о том, что превращение ядер сопровождается изменением их внутренней энергии, т. е. изменение энергии связи. В рассмотренной реакции удельная энергия связи в ядрах гелия больше удельной энергии связи в ядре лития. Поэтому часть внутренней энергии ядра лития превращается в кинетическую энергию разлетающихся α-частиц.

Изменение энергии связи ядер означает, что суммарная энергия покоя участвующих в реакциях ядер и частиц не остается постоянной. Ведь энергия покоя ядра выражается через энергию связи. В соответствии с законом сохранения энергии изменение кинетической энергии в процессе ядерной реакции равно изменению энергии покоя участвующих в реакции ядер и частиц.

Энергетический выход ядерной реакции — разность энергий покоя ядер и частиц до реакции и после реакции.

Q = (MA + MB – MC – MD)c2 = ΔMc2

где MA и MB – массы исходных продуктов, MC и MD – массы конечных продуктов реакции.

Энергетический выход ядерной реакции равен изменению кинетической энергии частиц, участвующих в реакции. Причем:

  • Если суммарная кинетическая энергия ядер и частиц после реакции больше, чем до реакции, то энергия выделяется.
  • Если суммарная кинетическая энергия ядер и частиц после реакции меньше, чем до реакции, то энергия поглощается.

Выделяющаяся при ядерных реакциях энергия может быть колоссальной. Но использовать ее при столкновениях ускоренных частиц (или ядер) с неподвижными ядрами мишени практически нельзя. Это связано с тем, что основная часть ускоренных частиц пролетает мимо ядер мишени, не приводя к возникновению реакции.

Пример №2. В результате деления ядра урана 23592U, захватившего нейтрон, образуются ядра бария 14256Ba и криптона 9136Kr, а также три свободных нейтрона. Удельная энергия связи ядер бария 8,38 МэВ/нуклон, криптона – 8,55 МэВ/нуклон и урана – 7,59 МэВ/нуклон. Чему равна энергия, выделенная из одного ядра урана?

Составим схему реакции:

23592U+10n14256Ba+9136Kr+310n

Из условия задачи известно, сколько энергии имеет каждый нуклон. Нуклон — это 1 протон или нейтрон. Каждый элемент до и после реакции имеет определенные массовые числа:

AU=235

ABa=142

AKr=91

Следовательно, чтобы найти выделившуюся энергию, нужно умножить количество нуклонов на их энергии, а затем найти разность энергий до и после реакции:

Q=EсвUAUEсвBaABaEсвKrAKr

Q=7,59·2358,38·1428,55·91=184,36 (МэВ)

Отрицательное число получилось в связи с тем, что суммарная энергия связи ядер образовавшихся элементов больше энергии связи ядра атома урана. Это говорит о том, что энергия при проведении этой реакции будет выделяться в количестве 184,36 МэВ.

Ядерные реакции на нейтронах

Нейтроны не имеют заряда. Поэтому они беспрепятственно проникают в атомные ядра и вызывают их изменения. Например, столкновение нейтрона с ядром атома алюминия может вызвать следующую реакцию:

2713Al+10n2411Na+42He

Итальянский физик Энрико Ферми, изучавший ядерные реакции на нейтронах, обнаружил, что ядерные превращения вызываются, как быстрыми, так и медленными нейтронами. Причем применение медленных нейтронов часто дает лучшие результаты. Поэтому быстрые нейтроны стали замедлять в воде. После соударения с ядрами водорода, которые по массе примерно равны массе нейтрона, эти нейтроны замедлялись. Их скорость становилась равной скорости теплового движения молекул воды.

Деление ядер урана

В отличие от радиоактивного распада ядер, сопровождающегося испусканием α- или β-частиц, реакции деления —процесс, при котором нестабильное ядро делится на два крупных фрагмента сравнимых масс. В 1939 году немецкие ученые Ган и Штрассман открыли деление ядер урана. Они обнаружили, что при бомбардировке урана нейтронами возникают элементы средней части периодической системы – радиоактивные изотопы бария (Z = 56), криптона (Z = 36) и пр.

Уран встречается в природе в виде двух изотопов: 23892U (99,3 %) и 23592U (0,7 %). При бомбардировке нейтронами ядра обоих изотопов расщепляются на 2 части. Причем реакция деления 23592U лучше идет на медленных нейтронах, в то время как ядра 23892U вступают в реакцию деления только с быстрыми нейтронами, энергия которых составляет около 1 МэВ.

Наибольший интерес для ученых представила реакция деления ядра 23592U. Сегодня известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, которые образуются при делении этого ядра. Две наиболее распространенные реакции деления этого ядра имеют вид:

23592U+10n14456Ba+8936Kr+310n

23592U+10n14454Xe+9438Sr+210n

Ядро урана-235 имеет форм шара. При поглощении лишнего нейтрона (рис. а) оно переходит в возбужденное состояние и начинает деформироваться — удлиняться (рис. б). Оно растягивается дальше (рис. в.) до тех пор, пока не распадется с образованием двух новых ядер и испусканием нескольких нейтронов (рис. г).

Картинки по запросу "деление урана"

Кинетическая энергия, выделяющаяся при делении одного ядра урана, огромна – порядка 200 МэВ. Оценку выделяющейся при делении ядра энергии можно сделать с помощью понятия удельной энергии связи нуклонов в ядре. Удельная энергия связи нуклонов в ядрах с массовым числом A ≈ 240 порядка 7,6 МэВ/нуклон, в то время как в ядрах с массовыми числами A = 90–145 удельная энергия примерно равна 8,5 МэВ/нуклон. Следовательно, при делении ядра урана освобождается энергия порядка 0,9 МэВ/нуклон или приблизительно 210 МэВ на один атом урана. При полном делении всех ядер, содержащихся в 1 г урана, выделяется такая же энергия, как и при сгорании 3 т угля или 2,5 т нефти.

Цепные ядерные реакции

При делении ядра урана-235, вызванного столкновением с нейтроном, освобождается 2 или 3 нейтрона. При соблюдении некоторых условий эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией.

Цепная реакция — ядерная реакция, при которой вызывающие ее частицы (нейтроны), образуются как продукт этой реакции.

Схема цепной реакции урана-235 выглядит так:

https://physics.ru/courses/op25part2/content/chapter6/section/paragraph8/images/6-8-1.gif

Для осуществления цепной реакции необязательно каждый выделенный нейтрон должен вызывать распад другого ядра урана. Важно лишь, чтобы среднее число освобожденных нейтронов с течением времени не уменьшалось. Такое условие выполняется, если коэффициент размножения нейтронов (k) больше или равен единице: k 1.

Коэффициент размножения нейтронов — отношение числа нейтронов в каком-либо «поколении» к числу нейтронов предшествующего поколения.

Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %. Такая концентрация оказывается недостаточной для начала цепной реакции. Изотоп урана-238 также может поглощать нейтроны, но при этом не возникает цепной реакции.

Ядерный реактор

Ядерный реактор — устройство, в котором осуществляется и поддерживается управляемая цепная реакция деления некоторых тяжелых ядер.

Первый ядерный реактор был построен в 1942 году в США под руководством Э. Ферми. В нашей стране первый реактор был построен в 1946 году под руководством И. В. Курчатова.

Ядерные энергетические реакторы используются для выработки электроэнергии на атомных электростанциях, в судовых энергетических установках, атомных теплоэлектроцентралях, а также на атомных станциях теплоснабжения.

Основные элементами ядерного реактора:

  • ядерное горючее (обычно уран-235);
  • замедлитель нейтронов — для получения медленных электронов (тяжелая вода, захватывающая нейтроны, или графит, не захватывающий их);
  • теплоноситель для вывода энергии, образующейся при работе реактора (вода, жидкий натрий);
  • регулирующие стержни (бор, кадмий) — для регулирования количества высвобожденных электронов (эти вещества способны поглощать много нейтронов);
  • защитная оболочка, которая задерживает излучения (железобетон).

https://fhd.multiurok.ru/3/a/4/3a426908fc37ca002d27d00c5a845a198c88e8ad/phppnwfbq_Otkrytyj-urok-YAdernyj-reaktor_0_1.png

Цепная реакция, как известно, может протекать только при коэффициенте размножения нейтронов k 1. Но он может поддерживаться в этом значении только при условии, что масса урана превышает некоторое критическое значение.

Критическая масса — наименьшая масса делящегося вещества, при которой может протекать цепная реакция.

Для чистого урана-235 критическая масса равна 50 кг. При такой массе шар из урана имеет радиус всего 9 см. Если в реакторе использовать оболочку, которая отражает уран, то критическую массу можно снизить до 250 г.

Это интересно! Реактор, работающий на уране-235 и медленных нейтронах, является энергетическим. Его применяют для производства энергии. Но реактор, работающий на уране-235 и быстрых нейтронах, является реактором-размножителем. При распаде 1 кг урана в этом случае образуется 1,5 кг плутония, который также можно использовать как ядерное топливо. При делении урана медленными нейтронами входит в 2,5 раза меньше плутония.

Термоядерные реакции

Масса покоя ядра урана больше суммы масс покоя осколков, на которые делится ядро. Для легких ядер дело обстоит как раз наоборот. Так, масса покоя ядра гелия значительно меньше суммы масс покоя двух ядер тяжелого водорода, на которые можно разделить ядро гелия. Поэтому при слиянии легких ядер масса покоя уменьшается. Следовательно, должна выделяться значительная энергия. Подобного рода реакции слияния легких ядер могут протекать только при очень высоких температурах. Поэтому они называются термоядерными.

Термоядерные реакции — это реакции слияния легких ядер при очень высокой температуре.

Ядра сливаются только при сближении на расстоянии около 10-12 см — тогда они попадают в сферу действия ядерных сил. Этому сближению препятствует кулоновское отталкивание ядер, которое может быть преодолено лишь за счет большой кинетической энергии теплового движения ядер.

Энергия, которая выделяется при термоядерных реакциях в расчете на один нуклон, превышает удельную энергию, выделяющуюся при цепных реакциях деления ядер. Так, при слиянии тяжелого водорода — дейтерия — со сверхтяжелым изотопом водорода — тритием — выделяется около 3,5 МэВ на один нуклон. При делении же урана выделяется примерно 1 МэВ энергии на один нуклон.

Термоядерные реакции играют большую роль в эволюции Вселенной. Энергия излучения Солнца и звезд имеет термоядерное происхождение. По современным представлениям, на ранней стадии развития звезда в основном состоит из водорода. Температура внутри звезды столь велика, что в ней протекают реакции слияния ядер водорода с образованием гелия. Затем при слиянии ядер гелия образуются и более тяжелые элементы.

Если человечество научится управлять термоядерными реакциями, то на Земле появится неисчерпаемый источник энергии. Но пока это невозможно, так как нет таких веществ, которые могли бы выдержать температуру, при которых могут сливаться ядра. Однако неуправляемые реакции проведены уже были. Речь идет о термоядерных бомбах, которые могут уничтожить все человечество.

Задание EF17710

Каково массовое число ядра Х в реакции 95241 Am + 24 He→ X + 2 01 n?


Алгоритм решения

  1. Записать правило сохранения нуклонов до и после реакции.
  2. Составить уравнение и вычислить искомое массовое число.

Решение

Количество нуклонов до и после реакции постоянно. Поэтому сумма массовых чисел до реакции и после нее не изменится. Составим уравнение, используя только массовые числа ядер и частиц:

241 + 4 = A + 2

A = 243

Ответ: 243

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18442

Определите массовое и зарядовое число частицы, которая вызывает ядерную реакцию37 Li + … → 48 Вe + 01 n?


Алгоритм решения

  1. Записать правило сохранения нуклонов до и после реакции.
  2. Составить уравнение и вычислить искомое массовое число.
  3. Составить уравнение и вычислить искомое зарядовое число.

Решение

Количество нуклонов до и после реакции постоянно. Поэтому сумма массовых чисел до реакции и после нее не изменится. Составим уравнение, используя только массовые числа ядер и частиц:

7 + А = 8 + 1

A = 2

Составим уравнение, используя только массовые числа ядер и частиц:

3 + Z = 4 + 0

Z = 1

Ответ: 21

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18660

Закону сохранения электрического заряда не противоречит реакция:


Алгоритм решения

  1. Записать правило сохранения нуклонов до и после реакции.
  2. Проверить, где выполняется это правило.

Решение

Количество нуклонов до и после реакции постоянно. Поэтому сумма массовых и зарядовых чисел до реакции и после нее не изменится. Проверим правильность реакций.

Реакция «а»:

7 + 1 = 8

4 + 0 < 5

Реакция «б»:

13 = 1 + 12

8 = 1 + 7

Реакция «в»:

7 + 1 > 6

3 + 0 > 2

Реакция «г»:

12 > 7 + 4

7 >  4 + 2

Подходит только реакция «б».

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 2.7k

Понравилась статья? Поделить с друзьями:
  • Ребенок пишет зеркально как это исправить
  • Как найти это слово на сайте
  • Как найти по фотке товар в интернете
  • Как составить вопросы по рассказу кавказский пленник
  • Как можно составить кроссворд по географии