Как найти частное значение производной функции

Частная производная функции в точке

Как найти значение?

Постановка задачи

Найти значение частной производной функции $ u(x,y,z) $ в точке $ M(x_0,y_0,z_0) $

План решения

Частная производная в точке обозначается и вычисляется по формуле:

$$ frac{partial u}{partial x} bigg |_{M(x_0,y_0,z_0)} = frac{partial u}{partial x} (x_0,y_0,z_0) $$

$$ frac{partial u}{partial y} bigg |_{M(x_0,y_0,z_0)} = frac{partial u}{partial y} (x_0,y_0,z_0) $$

$$ frac{partial u}{partial z} bigg |_{M(x_0,y_0,z_0)} = frac{partial u}{partial z} (x_0,y_0,z_0) $$

  1. Находим частные производные, к примеру первого порядка:
    $$ frac{partial u}{partial x}; frac{partial u}{partial y}; frac{partial u}{partial z} $$
  2. Подставляем координаты $ x_0,y_0,z_0 $ точки $ M $ в полученные частные производные вместо $ x,y,z $:
    $$ frac{partial u}{partial x} (x_0,y_0,z_0); frac{partial u}{partial y} (x_0,y_0,z_0); frac{partial u}{partial z} (x_0,y_0,z_0) $$
  3. Вычисляем выражения и записываем ответ

Примеры решений 

Пример 1
Найти частную производную $ u = xy + ln(y^3+z^3) $ в точке $ M(1,2,3) $
Решение

Берем частные производные первого порядка:

$$ frac{partial u}{partial x} = y $$

$$ frac{partial u}{partial y} = x + frac{3y^2}{y^3+z^3} $$

$$ frac{partial u}{partial z} = frac{3z^2}{y^3+z^3} $$

Подставляем координаты точки $ M $ вместо $ x,y,z $ в полученные выражения и находим значения частных производных в точке:

$$ frac{partial u}{partial x} (1,2,3) = 2 $$

$$ frac{partial u}{partial y} (1,2,3) = 1 + frac{3 cdot 4}{8+27} = 1 + frac{12}{35} = 1.34 $$

$$ frac{partial u}{partial z} (1,2,3) = frac{3 cdot 9}{8+27} = frac{27}{35} = 0.77 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ frac{partial u}{partial x} (1,2,3) = 2; frac{partial u}{partial y} (1,2,3) = 1.34; frac{partial u}{partial z} (1,2,3) = 0.77 $$

Чтобы понять частные производные, сначала нужно разобраться с обычными. И не нужно ничего искать: в нашей отдельной статье мы уже подготовили все для того, чтобы у вас это получилось. А сейчас речь пойдет о частных производных.

Добро пожаловать на наш телеграм-канал за полезной рассылкой и актуальными студенческими новостями.

Функция двух и более переменных

Прежде чем говорить о частных производных, нужно затронуть понятие функции нескольких переменных, без которого нет смысла в частной производной. В школе мы привыкли иметь дело с функциями одной переменной: 

Функция двух и более переменных

Производными таких функций мы и считали раньше. График функции одной переменной представляет собой линию на плоскости: прямую, параболу, гиперболу и т.д.

А что, если добавить еще одну переменную? Получится такая функция:

Функция двух и более переменных

Это – функция двух независимых переменных x и y. График такой функции представляет собой поверхность в трехмерном пространстве: шар, гиперболоид, параболоид или еще какой-нибудь сферический конь в вакууме. Частные производные функции z по иксу и игреку соответственно записываются так:

Функция двух и более переменных

Существуют также функции трех и более переменных. Правда, график такой функции нарисовать невозможно: для этого понадобилось бы как минимум четырехмерное пространство, которое невозможно изобразить.

Частная производная первого порядка

Запоминаем главное правило:

При вычислении частной производной по одной из переменных, вторая переменная принимается за константу. В остальном правила вычисления производной не меняются.

То есть, частная производная по сути ничем не отличается от обычной. Так что, держите перед глазами таблицу производных элементарных функций и правила вычисления обычных производных. Рассмотрим пример, чтобы стало совсем понятно. Допустим, нужно вычислить частные производные первого порядка следующей функции:

Частная производная первого порядка

Сначала возьмем частную производную по иксу, считая игрек обычным числом:

Частная производная первого порядка

Теперь считаем частную производную по игреку, принимая икс за константу:

Частная производная первого порядка

Как видите, ничего сложного в этом нет, а успех с более сложными примерами – лишь дело практики.

Частная производная второго порядка

Как находится частная производная второго порядка? Так же, как и первого. Чтобы найти частные производные второго порядка, нужно просто взять производную от производной первого порядка. Вернемся к примеру выше и посчитаем частные производные второго порядка.

По иксу:

Частная производная второго порядка

По игреку:

Частная производная второго порядка

Частные производные третьего и высших порядков не отличаются по принципу вычисления. Систематизируем правила:

  1. При дифференцировании по одной независимой переменной, вторая принимается за константу.
  2. Производная второго порядка – это производная от производной первого порядка. Третьего порядка – производная от производной второго порядка и т.д.

Частные производные и полный дифференциал функции

Частый вопрос в практических заданиях – нахождение полного дифференциала функции. Для функции нескольких переменных полный дифференциал определяется, как главная линейная часть малого полного приращения функции относительно приращений аргументов.

Определение звучит громоздко, но с буквами все проще. Полный дифференциал первого порядка функции нескольких переменных выглядит так:

Частные производные и полный дифференциал функции

Зная, как считаются частные производные, нет никакой проблемы вычислить и полный дифференциал.

Частные производные – не такая уж и бесполезная тема. Например, дифференциальные уравнения в частных производных второго порядка широко используются для математического описания реальных физических процессов.

Здесь мы дали лишь общее, поверхностное представление о частных производных первого и второго порядка. Вас интересует эта тема или остались конкретные вопросы? Задавайте их в комментариях и обращайтесь к экспертам профессионального студенческого сервиса за квалифицированной и скорой помощью в учебе. С нами вы не останетесь один на один с проблемой!

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

36.
Частные производные ФНП, их нахождение.
Частные производные ФДП, их геометрический
смысл. Примеры.

Частные
производные

Частной
производной
 по x функции z
= f(x,y)
 в
точке A(x0,y0)
называется предел отношения частного
приращения по x функции
в точке A к
приращению ∆x при
стремлении ∆x к
нулю. 
Частные
производные
 функции z(x,y) находятся
по следующим формулам:  Вторые
частные производные
 функции z(x,y) находятся
по формулам: 
 

Смешанные
частные производные
 функции z(x,y) находятся
по формулам: 

Частные
производные функции нескольких переменных

Ели
одному из аргументов функции z
= f(x,y)
 придать
приращение, а другой аргумент не изменять,
то функция получит частное
приращение по одному из аргументов

эточастное приращение функции z по
аргументу x;  –
это частное приращение функции z по
аргументу у
Частной
производной функции нескольких
переменных
 по
одному из её аргументов называется
предел отношения частного приращения
функции по этому аргументу к соответствующему
приращению аргумента при условии, что
приращение аргумента стремится к
нулю: 
 –
это частная производная функции z по
аргументу x
 –
это частная производная функции z по
аргументу у
Чтобы
вычислить частную производную ФНП по
одному из её аргументов, нужно все другие
её аргументы считать постоянными и
проводить дифференцирование по правилам
дифференцирования функции одного
аргумента.

Пример
1
.
z = 2x5 +
3x2y
+ y2 –
4x + 5y — 1

Пример
2
.
Найти частные производные  функции
z = f(x;y) в точке A(x0;y0). 
 
Находим
частные производные:
 
 
 
Найдем
частные производные в точке А(1;1) 
 
 
Находим
вторые частные производные:
 
 
 
Найдем
смешанные частные производные:
 

Геометрический
смысл частных производных функции двух
переменных

Остановимся
на функции двух переменных.

Если
каждой паре значений xиз
множества ставится
в соответствие одно определённое
значение из
множества E,
то называется
функцией двух независимых друг от друга
переменных и и
обозначается zf(xy).

Множество называется
областью определения функции z,
а множество 
множеством её значений. Переменные и по
отношению к функции называются
её аргументами.

Частным
значениям аргументов

Соответствует
частное значение функции

Пример
4.
Область
определения функции xy,
выражающей зависимость площади
многоугольника от длин его сторон, может
быть записана двумя неравенствами


и

которые
определяют I квадрант на плоскости xOy.
Частное значение этой функции при =
3, =
5 составляет

В
общем случае область определения функции
двух переменных геометрически может
быть представлена некоторым множеством
точек (xy)
плоскости xOy.

Подобно
тому, как функция f(x)
геометрически изображается графиком,
можно геометрически истолковать и
уравнение f(xy).

Ставя
в соответствие каждой точке

аппликату f(xy),
мы получим некоторое множество точек
(xyz)
трёхмерного пространства – чаще всего
некоторую поверхности. Поэтому
равенство f(xy)
называют уравнением поверхности.

Пример
5. 
Пусть
задана функция

Её
область определения найдём из равенства


т.е.
 
 

Это
круг с центром в начале координат и
радиусом r.
Графиком функции

является
верхняя половина сферы

(разрешив
уравнение сферы относительно z,
получим две однозначные функции z:

и

Соседние файлы в папке Bilety

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Простое объяснение принципов решения частных производных и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.

Алгоритм решения частных производных

Вычисление частной производной функции из нескольких переменных осуществляется по тем же правилам, что и функций с одной переменной. Разница лишь той, что другие переменные не участвуют дифференцировании (вычислении производной).

Проще говоря, чтобы найти частную производную функции z = x^{8} + 32y^{4} по переменной x,переменную y будем считать константой (производная константы равна нулю), после чего находим производную функции по x с помощью таблицы производных элементарных функций – {z_{x}}' = 8x^{7}. Готово!

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать работу

Примеры решения частных производных

Задача

Найти частные производные функции u = x^{2} + 3xy + 4y^{2}.

Решение

Частная производная функции по независимой переменной x:

Производная суммы равна сумме производных. Производная от x^{2} вычисляется по правилам вычислений производных функций одного аргумента, производная от слагаемого 3xy вычисляется как производная от функции двух аргументов. При этом аргумент y считается константой. Производная от слагаемого 4y^{2} вычисляется как производная от константы.

frac{partial{u}}{partial{x}} = (x^{2})' + (3xy)' + (4y^{2})' = 2x + 3y + 0 = 2x + 3y.

Частная производная функции по независимой переменной y:

Здесь вычисления также происходят по правилам вычисления производной суммы. Производная от x^{2} вычисляется как производная от константы (независимым аргументом при этом считается y). Производная от слагаемого 3xy вычисляется как производная от функции двух аргументов. При этом аргумент x считается константой, а y – независимым аргументом. Вычисление производной от слагаемого 4y^{2} осуществляется по правилам вычисления производных функций с одним аргументом.

frac{partial{u}}{partial{y}} = (x^{2})' + (3xy)' + (4y^{2})' = 0 + 3x + 8y = 3x + 8y.

Ответ

frac{partial{u}}{partial{x}} = 2x + 3y, frac{partial{u}}{partial{y}} = 3x + 8y.

Задача

Найти частные производные функции u = e^{frac{x}{y}}.

Решение

Найдём частную производную функции по независимой переменной x:

Функция e^{frac{x}{y}} является сложной. Производной показательной функции с основанием e является сама функция. Производная показателя степени вычисляется в при условии, что y является константой и равна u = frac{1}{y}. Производная функции u равна произведению e^{frac{x}{y}} и frac{1}{y}. В результате получаем:

{u_{x}}' = frac{1}{y}e^{frac{x}{y}}.

Найдём частную производную функции по независимой переменной y:

По аналогии с предыдущим случаем производная функции будет равна произведению производных от функции e^{frac{x}{y}} и показателя её степени frac{x}{y}:

Считая x постоянной величиной, находим производную по независимому аргументу y:

(e^{frac{x}{y}})' = e^{frac{x}{y}}

(frac{x}{y})' = -frac{x}{y^{2}}

{u_{y}}' = -frac{x}{y^{2}}e^{frac{x}{y}}.

Ответ

{u_{x}}' = frac{1}{y}e^{frac{x}{y}}, {u_{y}}' = -frac{x}{y^{2}}e^{frac{x}{y}}.

Задача

Найти частные производные функции z = x^{n} + y^{n}, n - натуральное число.

Решение

Частная производная функции по независимой переменной x будет равна производной от x^{n}. Производная от слагаемого y^{n} при этом будет равна нулю как производная от константы.

frac{partial{z}}{partial{x}} = nx^{n-1}

Частная производная функции по независимой переменной y находится аналогичным образом, при этом предполагается, что x является константой.

frac{partial{z}}{partial{y}} = ny^{n-1}

Ответ

frac{partial{z}}{partial{x}} = nx^{n-1}, frac{partial{z}}{partial{y}} = ny^{n-1}

Задача

Найти частные производные функции u = ysin{x} + sin{y}.

Решение

Частная производная функции u по независимой переменной x определяется слагаемым u = ysin{x}. Производная второго слагаемого – sin{y} равна нулю, как производная от константы.

frac{partial{u}}{partial{x}} = ycos{x}

В свою очередь, частная производная функции u по независимой переменной y будет определяться обоими слагаемым:

{(ysin{x})_y}' = sin{x}

{(sin{y})_y}' = cos{y}

Таким образом, окончательно получаем:

frac{partial{u}}{partial{y}} = sin{x} + cos{y}

Ответ

frac{partial{u}}{partial{x}} = ycos{x}, frac{partial{u}}{partial{y}} = sin{x} + cos{y}

Задача

Найти частные производные функции u = x^{sin{y}}, x > 0.

Решение

При нахождении производной по независимой переменной x, функцию u = x^{sin{y}} следует рассматривать как степенную. По правилу нахождения производной степенной функции получаем:

frac{partial{u}}{partial{x}} = sin{y}cdot{x^{sin{y} - 1}}

Производная по независимой переменной y находится по правилу вычисления производной показательной функции, которая, в свою очередь, определяется по правилам нахождения производных сложных функций, т.к. переменная y входит в показатель степени виде функции sin{x}.

Производная показательной функции равна:

{(x^{sin{y}})_{y}}' = x^{sin{y}}cdot{ln{x}}

Производная показателя степени равна:

{(sin{y})}' = cos{y}

В результате получаем:

frac{partial{u}}{partial{y}} = x^{sin{y}}cdot{ln{x}}cdot{cos{y}}

Ответ

frac{partial{u}}{partial{x}} = sin{y}cdot{x^{sin{y} - 1}}, frac{partial{u}}{partial{y}} = x^{sin{y}}cdot{ln{x}}cdot{cos{y}}

Задача

Найти частные производные функции z = e^{x}cos{y} - e^{y}sin{x}.

Решение

Частная производная по независимой переменной x находится как сумма слагаемых:

{(e^{x}cos{y})_{x}}' = e^{x}cos{y}

{(- e^{y}sin{x})_{x}}' = - e^{y}cos{x}

Частная производная по независимой переменной y находится как сумма слагаемых:

{(e^{x}cos{y})_{y}}' = -e^{x}sin{y}

{(- e^{y}sin{x})_{y}}' = - e^{y}sin{x}

Ответ

frac{partial{z}}{partial{x}} = e^{x}cos{y} - e^{y}cos{x}, frac{partial{z}}{partial{y}} = -e^{x}sin{y} - e^{y}sin{x}

Задача

Найти частные производные функции z = sqrt{x^{2} + y^{2}}.

Решение

По правилу нахождения производной квадратного корня получаем, рассматривая x как независимый аргумент:

{(sqrt{x^{2} + y^{2}})_{x}}' = frac{x}{sqrt{x^{2} + y^{2}}}

Т.к. функция является сложной, то результат вычисления производной от квадратного корня – frac{1}{2sqrt{x^{2} + y^{2}}} следует домножить на производную подкоренного выражения: {({x^{2} + y^{2}})_{x}}' = 2x.

Рассматривая y в качестве независимого аргумента, получаем:

{(sqrt{x^{2} + y^{2}})_{y}}' = frac{y}{sqrt{x^{2} + y^{2}}}

По аналогии с предыдущим случаем, результат вычисления производной от квадратного корня – frac{1}{2sqrt{x^{2} + y^{2}}} следует домножить на производную подкоренного выражения: {({x^{2} + y^{2}})_{y}}' = 2y.

Ответ

frac{partial{z}}{partial{x}} = frac{x}{sqrt{x^{2} + y^{2}}}, frac{partial{z}}{partial{y}} = frac{y}{sqrt{x^{2} + y^{2}}}

Задача

Найти частные производные функции z = e^{arctg {frac{y}{x}}}.

Решение

Данная функция является сложной, поэтому процесс нахождения производной данной функции целесообразно производить в несколько этапов.

Производная показательной функции с основанием e равна самой себе. Далее необходимо найти производную показателя степени:  arctg {frac{y}{x}}. В свою очередь аргумент функции арктангенс в данном случае также представляет собой сложную функцию: frac{y}{x}. Результирующая производная будет равна произведению производных трёх функций: e^{arctg {frac{y}{x}}}, arctg {frac{y}{x}} и frac{y}{x}.

Нахождение частной производной функции по аргументу x:

frac{partial{z}}{partial{x}} = e^{arctg {frac{y}{x}}}cdot{(arctg {frac{y}{x}})_{x}}'cdot{({frac{y}{x}})_{x}}' = e^{arctg {frac{y}{x}}}cdot{frac{1}{1+({frac{y}{x}})^2}}cdot{frac{-y}{x^{2}}} = e^{arctg {frac{y}{x}}}cdot{frac{1}{frac{x^{2}+y^{2}}{x^{2}}}}cdot{frac{-y}{x^{2}}} = e^{arctg {frac{y}{x}}}cdot{frac{x^{2}}{x^{2}+y^{2}}}cdot{frac{-y}{x^{2}}} = - e^{arctg {frac{y}{x}}}cdot{frac{y}{x^{2} + y^{2}}}

Нахождение частной производной функции по аргументу y:

frac{partial{z}}{partial{y}} = e^{arctg {frac{y}{x}}}cdot{(arctg {frac{y}{x}})_{y}}'cdot{({frac{y}{x}})_{y}}' = e^{arctg {frac{y}{x}}}cdot{frac{1}{1+({frac{y}{x}})^2}}cdot{frac{1}{x}} = e^{arctg {frac{y}{x}}}cdot{frac{1}{frac{x^{2}+y^{2}}{x^{2}}}}cdot{frac{1}{x}} = e^{arctg {frac{y}{x}}}cdot{frac{x^{2}}{x^{2}+y^{2}}}cdot{frac{1}{x}} = e^{arctg {frac{y}{x}}}cdot{frac{x}{x^{2} + y^{2}}}

Ответ

frac{partial{z}}{partial{x}} = - e^{arctg {frac{y}{x}}}cdot{frac{y}{x^{2} + y^{2}}},  frac{partial{z}}{partial{y}} = e^{arctg {frac{y}{x}}}cdot{frac{x}{x^{2} + y^{2}}}

Задача

Найти частные производные первого и второго порядков функции z = xsin(x +y).

Решение

Найдём частную производную первого порядка по аргументу x:

frac{partial{z}}{partial{x}} = sin(x + y) + xcos(x + y)

Найдём частную производную второго порядка по аргументу x:

frac{partial^{2}{z}}{partial{x}^{2}} = cos(x + y) + cos(x + y) - xsin(x +y)

Найдём частную производную первого порядка по аргументу y:

frac{partial{z}}{partial{y}} = xcos(x + y)

Найдём частную производную второго порядка по аргументу y:

frac{partial^{2}{z}}{partial{y}^{2}} = -xsin(x +y)

Ответ

frac{partial{z}}{partial{x}} = sin(x + y) + xcos(x + y),  frac{partial^{2}{z}}{partial{x}^{2}} = 2cos(x + y) - xsin(x +y), frac{partial{z}}{partial{y}} = xcos(x + y), frac{partial^{2}{z}}{partial{y}^{2}} = -xsin(x +y)

Задача

Найти частные производные первого и второго порядков функции z = (frac{x}{y})^{2}.

Решение

Найдём частную производную первого порядка по аргументу x:

frac{partial{z}}{partial{x}} = 2cdot{frac{x}{y}}cdot{frac{1}{y}}

Найдём частную производную второго порядка по аргументу x:

frac{partial^{2}{z}}{partial{x}^{2}} = frac{2}{y^{2}}

Найдём частную производную первого порядка по аргументу y:

frac{partial{z}}{partial{y}} = 2cdot{frac{x}{y}}cdot{frac{-x}{y^{2}}} = -frac{2x^{2}}{y^{3}}

Найдём частную производную второго порядка по аргументу y:

frac{partial^{2}{z}}{partial{y}^{2}} = frac{6x^{2}y^{2}}{y^{6}} = frac{6x^{2}}{y^{4}}

Ответ

frac{partial{z}}{partial{x}} = frac{2x}{y^{2}},  frac{partial^{2}{z}}{partial{x}^{2}} = frac{2}{y^{2}}, frac{partial{z}}{partial{y}} = -frac{2x^{2}}{y^{3}}, frac{partial^{2}{z}}{partial{y}^{2}} = frac{6x^{2}}{y^{4}}

Данный онлайн калькулятор предназначен для решения частных производных первого и второго порядков.
Частная производная – это производная функции одной переменной, когда значение другой переменной фиксировано. Следовательно, частные производные находятся так же, как и производные функций одной переменной. Частная производная это обобщенное понятие производной, когда в функции содержится несколько переменных.

Калькулятор поможет найти частные производные функции онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Основные функции

left(a=operatorname{const} right)

  • x^{a}: x^a

модуль x: abs(x)

Производные

Для того, чтобы найти производную функции f(x)
нужно написать в строке: f[x], x. Если Вам требуется
найти производную n-го порядка, то следует написать: f[x], {x, n}. В
том случае, если Вам требуется найти частную производную функции f(x,y,z,...,t) напишите в окне гаджета: f[x, y, z,…,t], j, где j
— интересующая Вас переменная. Если нужно найти частную производную по
некоторой переменной порядка n, то следует ввести: f[x, y, z,…,t], {j,
n}, где j означает тоже, что и Выше.

Важно подчеркнуть, что калькулятор выдает пошаговое нахождение
производной при нажатии на «Show Steps» в правом верхнем углу
выдаваемого ей ответа.

Примеры
  • x*E^x, x;
  • x^3*E^x, {x,17};
  • x^3*y^2*Sin[x+y], x;
  • x^3*y^2*Sin[x+y], y,
  • x/(x+y^4), {x,6}.

Понравилась статья? Поделить с друзьями:
  • Кассовый аппарат меркурий ошибка 059 как исправить ошибку
  • Как найти копье скорпиона в крипте мк11
  • Как составить программу в паскале вычисляющую периметр треугольника
  • Как найти координаты прямой перпендикулярной данной прямой
  • Как составить цепочку железная руда зерно