Как найти частота падающего света

Тема: Найти частоту падающего света  (Прочитано 11193 раз)

0 Пользователей и 1 Гость просматривают эту тему.

При освещении вакуумного фотоэлемента светом частоты ν  фотоэлектроны задерживаются при включении обратного напряжения Uзад = 3 В. Частота излучения, соответствующая красной границе фотоэффекта для этого металла, νmin = 6∙1014 Гц. Найти частоту падающего света.

« Последнее редактирование: 03 Декабря 2014, 22:09 от Сергей »


Записан


Решение.
 Для решения задачи используем формулу Эйнштейна для фотоэффекта:
[ E=A+{{E}_{K}} (1). ]Где: Е – энергия фотона, А – работа выхода электрона из метала.
Энергия фотона определяется по формуле:[ E=hcdot nu (2). ]
Где: h = 6,63∙10-34 Дж∙с – постоянная Планка, с – скорость света в вакууме, с = 3∙108 м/с.
Работа выхода электрона из метала определяется по формуле:

[  A=hcdot {{nu }_{min }} (3). ]

Максимальная кинетическая энергия и задерживающее напряжение связаны между собой соотношением:

EК = е∙Uзад   (4).

е – модуль заряда электрона, е = 1,6 10-19 Кл.
Подставим(4) (3) и (2) в (1) выразим частоту падающего света:

[ nu =frac{hcdot {{nu }_{min }}+ecdot U}{h}. ]

ν = 6,72∙1015 Гц.
Ответ: 6,72∙1015 Гц.

« Последнее редактирование: 09 Декабря 2014, 06:26 от alsak »


Записан


Фотоны

  • Темы кодификатора ЕГЭ: фотоны, энергия фотона, импульс фотона.

  • Энергия фотона

  • Импульс фотона

  • Давление света

  • Двойственная природа света

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: фотоны, энергия фотона, импульс фотона.

В результате исследования явлений, связанных с взаимодействием света и вещества (тепловое излучение и фотоэффект), физики пришли к выводу, что свет состоит из отдельных порций энергии — фотонов. Излучение света, его распространение и поглощение происходит строго этими порциями.

Фотоны обладают энергией и импульсом и могут обмениваться ими с частицами вещества (скажем, с электронами или атомами). При этом мы говорим о столкновении фотона и частицы. При упругом столкновении фотон меняет направление движения — свет рассеивается. При неупругом столкновении фотон поглощается отдельной частицей или совокупностью частиц вещества — так происходит поглощение света.

Словом, фотон ведёт себя как частица и поэтому — наряду с электроном, протоном, нейтроном и некоторыми другими частицами — причислен к разряду элементарных частиц.

к оглавлению ▴

Энергия фотона

Выражение для энергии фотона с частотой nu мы уже знаем:

E = h nu. (1)

Часто бывает удобно работать не с обычной частотой nu, а с циклической частотой omega = 2 pi nu.

Тогда вводят другую постоянную Планка «аш с чертой»:

h^{mkern -14mu -} = frac{displaystyle h}{displaystyle 2 pi vphantom{1^a}} = 1,05 cdot 10^{-34}  Дж · с.

Выражение (1) для энергии фотона примет вид:

E = h^{mkern -14mu -} omega.

Фотон движется в вакууме со скоростью света c и потому является релятивистской частицей: описывая фотон, мы должны привлекать формулы теории относительности. А там имеется такая формула для энергии тела массы m, движущегося со скоростью v:

E = frac{displaystyle mc^2}{displaystyle sqrt{1 - frac{displaystyle v^2}{displaystyle c^2vphantom{1^a}}} vphantom{1^a}}. (2)

Если предположить, что m neq 0, то формула (2) приводит к бессмысленному заключению: энергия фотона должна быть бесконечной. Чтобы избежать этого противоречия, остаётся признать, что масса фотона равна нулю. Формула (2) позволяет сделать и более общий вывод: только безмассовая частица может двигаться со скоростью света.

к оглавлению ▴

Импульс фотона

Обладая энергией, фотон должен обладать и импульсом. Действительно, важнейшая формула теории относительности даёт связь энергии и импульса частицы:

E^2 = p^2c^2 + m^2c^4. (3)

Для фотона, имеющего нулевую массу, эта формула сводится к простому соотношению:

E = pc.

Отсюда для импульса фотона получаем:

p = frac{displaystyle E}{displaystyle cvphantom{1^a}} = frac{displaystyle h nu}{displaystyle cvphantom{1^a}}. (4)

Направление импульса фотона совпадает с направлением светового луча.

Учитывая, что отношение c/ nu есть длина волны lambda, формулу (4) можно переписать так:

p =frac{displaystyle h}{displaystyle lambda vphantom{1^a}}. (5)

В видимом диапазоне наименьшими значениями энергии и импульса обладают фотоны красного света — у них самая маленькая частота (и самая большая длина волны). При движении в сторону фиолетового участка спектра энергия и импульс фотона линейно возрастают с частотой.

к оглавлению ▴

Давление света

Свет оказывает давление на освещаемую поверхность. Такой вывод был сделан Максвеллом из теоретических соображений и получил экспериментальное подтверждение в знаменитых опытах П.Н. Лебедева. Если понимать
свет как поток фотонов, обладающих импульсом , то можно легко объяснить давление света и вывести формулу Максвелла.

Предположим, что на некоторое тело падает свет частоты nu. Лучи направлены перпендикулярно поверхности тела; площадь освещаемой поверхности равна S (рис. 1).

Рич. 1. Давление света

Пусть n — концентрация фотонов падающего света, то есть число фотонов в единице объёма.

За время t на нашу поверхность попадают фотоны, находящиеся внутри цилиндра высотой ct.

Их число равно:

N = nV = nSct.

При падении света на поверхность тела часть световой энергии отражается, а часть — поглощается. Пусть rкоэффициент отражения света; величина r < 1 показывает, какая часть световой энергии отражается от поверхности. Соответственно, величина 1 - r — это доля падающей энергии, поглощаемая телом.

Как мы теперь знаем, энергия света пропорциональна числу фотонов. Поэтому можно написать, какое количество фотонов (из общего числа N) отразится от поверхности, а какое — поглотится ею:

N_{o} = rN,   N_{n} = (1 - r)N.

Импульс каждого падающего фотона равен p = h nu/c. Поглощённый фотон испытывает неупругое столкновение с телом и передаёт ему импульс p. Отражённый фотон после упругого столкновения меняет направление своего импульса на противоположное, и поэтому импульс, переданный телу отражённым фотоном, равен 2p.

Таким образом, от каждого фотона, входящего в световой поток, тело получает некоторый импульс. Вот простая и очевидная причина того, что свет оказывает давление на освещаемую поверхность.

Суммарный импульс, полученный телом от N падающих фотонов, равен:

P = 2p cdot N_o + p cdot N_n = 2prN + p(1 - r)N = (1 + r)pN.

На нашу поверхность S действует сила F, равная импульсу, полученному телом в единицу времени:

F = frac{displaystyle P}{displaystyle t vphantom{1^a}} = (1 + r)p frac{displaystyle N}{displaystyle tvphantom{1^a}} = (1 + r)  frac{displaystyle h nu}{displaystyle cvphantom{1^a}}  frac{displaystyle nSct}{displaystyle tvphantom{1^a}} = (1 + r)h nu nS.

Давление света есть отношение этой силы к площади освещаемой поверхности:

p_{CB} = frac{displaystyle F}{displaystyle Svphantom{1^a}} = (1 + r)h nu n. (6)

Выражение h nu n имеет простой физический смысл: будучи произведением энергии фотона на число фотонов в единице объёма, оно равно энергии света в единице объёма, то есть объёмной плотности энергии w. Тогда соотношение (6) приобретает вид:

p_{CB} = (1 + r)w.

Это и есть формула для давления света, теоретически выведенная Максвеллом (в рамках классической электродинамики) и экспериментально проверенная в опытах Лебедева.

к оглавлению ▴

Двойственная природа света

В результате рассмотрения всей совокупности оптических явлений возникает естественный вопрос: что же такое свет? Непрерывно распределённая в пространстве электромагнитная волна или поток отдельных частиц — фотонов? Теория и эксперименты приводят к заключению, что оба ответа должны быть утвердительными.

1. Явления интерференции и дифракции света, характерные для любых волновых процессов, не оставляют сомнений в том, что свет есть форма волнового движения материи.

Таким образом, мы должны признать: да, свет имеет волновую природу, свет — это электромагнитная волна.

2. Однако явления взаимодействия света и вещества (например, фотоэффект) указывают на то, что свет ведёт себя как поток отдельных частиц. Эти частицы — фотоны — ведут, так сказать, самостоятельный образ жизни, обладают энергией и импульсом, участвуют во взаимодействиях с атомами и электронами. Излучение света — это рождение фотонов.

Распространение света — это движение фотонов в пространстве. Отражение и поглощение света — это соответственно упругие и неупругие столковения фотонов с частицами вещества.

Все попытки истолковать указанные явления излучения и поглощения света в рамках волновых представлений классической физики окончились неудачей. Оставалось лишь согласиться с тем, что свет имеет корпускулярную природу (от латинского слова corpusculum — маленькое тельце, частица), свет — это совокупность фотонов, мчащихся в пространстве.

Таким образом, свет имеет двойственную, корпускулярно-волновую природу — он может проявлять себя то так, то эдак. В одних явлениях (интерференция, дифракция) на передний план выходит волновая природа, и свет ведёт себя в точности как волна. Но в других явлениях (фотоэффект) доминирует корпускулярная природа, и свет ведёт себя подобно потоку частиц.

Странно всё это, не правда ли? Но что поделать — так устроена природа. Мы, люди, живём среди макроскопических тел, и наше воображение оказалось не способным полноценно представить себе явления микромира.
Природа, однако, неизмеримо шире и богаче того, что может вместить в себя человеческое воображение. Признав это и руководствуясь не столько собственным воображением, сколько наблюдениями, результатами экспериментов и весьма изощрённой математикой, люди начали успешно создавать квантовую теорию микроскопических явлений и процессов.

О некоторых парадоксальных на первый взгляд — но тем не менее подтверждённых экспериментально! — выводах квантовой теории мы поговорим в следующем листке.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Фотоны» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
07.05.2023

Начало статьи читайте здесь.

Чтобы помочь нам понять, почему они сделали эти предсказания, мы можем сравнить световую волну с водной волной. Представьте себе несколько пляжных мячей на пирсе, который простирается в океан. Пирс представляет собой металлическую поверхность, пляжные мячи представляют собой электроны, а океанские волны представляют собой световые волны.

фотоэлектрический эффект.png

Если бы одна большая волна потрясла пирс, мы ожидали бы, что энергия большой волны заставит пляжные мячи улететь с пирса с гораздо большей кинетической энергией по сравнению с одной маленькой волной. Это относится к тому во что верили физики, если бы интенсивность света была увеличена.

Ожидалось, что амплитуда света будет пропорциональна энергии света, поэтому предсказывалось, что свет с большей амплитудой приведет к появлению фотоэлектронов с большей кинетической энергией.

Классические физики также предсказали, что увеличение частоты световых волн (с постоянной амплитудой) увеличит скорость выбрасывания электронов и, следовательно, увеличит измеренный электрический ток. Используя аналогию с пляжным мячом, ожидалось, что волны, ударяющие о пирс с высокой частотой, приведут к тому, что больше пляжных мячей будут сбиваться с пирса по сравнению с волнами того же размера, которые ударяются о пирс реже.

Когда были проведены эксперименты для изучения влияния амплитуды и частоты света,
были получены следующие результаты:

  • Кинетическая энергия фотоэлектронов увеличивается с частотой света.
  • Электрический ток остается постоянным при увеличении частоты света.
  • Электрический ток увеличивается с увеличением амплитуды света.
  • Кинетическая энергия фотоэлектронов остается постоянной с увеличением
    амплитуды света.

Эти результаты полностью противоречили прогнозам, основанным на классическом описании света как волны. Чтобы объяснить, что происходит, оказалось, что нужна совершенно новая модель света.

Эта модель была разработана Альбертом Эйнштейном, который предположил, что свет иногда ведет себя, как частицы электромагнитной энергии, которые мы теперь называем фотонами.

Энергия фотона может быть рассчитана с использованием уравнения Планка:

Eфотон=hνE_{фотон} = hν,

где EфотонE_{фотон}– энергия фотона в джоулях (Дж), hh–постоянная Планка, а νν частота света в герцах.

Согласно уравнению Планка, энергия фотона пропорциональна частоте света νν, амплитуда света тогда пропорциональна количеству фотонов с заданной частотой.

Частота света и пороговая частота

Мы можем представить падающий свет как поток фотонов с энергией, определяемой частотой света. Когда фотон попадает на поверхность металла, энергия фотона поглощается электроном в металле. Изображение ниже иллюстрирует взаимосвязь между частотой света и кинетической энергией выброшенных электронов.

фотоэлектрический эффект2.png

Влияние частоты волн на фотоэмиссию.

Частота красного света (слева) меньше пороговой частоты этого металла νкрν_{кр} < ν0ν_0, таким образом, электроны не выбиваются. Зеленый (средний) и синий свет (справа) имеют νν > ν0ν_0, так что оба вызывают фотоэмиссию. Синий свет с большей энергией испускает электроны с большей кинетической энергией по сравнению с зеленым светом.

Ученые заметили, что если падающий свет имел частоту меньше минимальной частоты ν0ν_0 , то электроны не выбивались бы независимо от амплитуды света. Эта минимальная частота также называется пороговой частотой и значение ν0ν_0 зависит от металла. Для частот больше ν0ν_0 электроны будут выбиты из металла. Кроме того, кинетическая энергия фотоэлектронов будет пропорциональна частоте света.

Поскольку амплитуда света поддерживается постоянной по мере увеличения частоты света, количество фотонов, поглощаемых металлом, остается неизменным. Таким образом, скорость, с которой электроны выбрасываются из металла, также остается постоянной.

Тест по теме «Фотоэлектрический эффект»

Содержание:

Фотоэффект:

Рассмотрим фотоэффект с точки зрения классической электродинамики.

На основе волновой теории света можно предположить, что:

  • – свет любой длины волны должен вырывать электроны из металла;
  • – на вырывание электрона из металла требуется определенное время;
  • – число вырванных электронов и их энергия должны быть пропорциональны интенсивности света.

Фотоэффект в физике и его применение - формулы и определение с примерами

Александр Григорьевич Столетов (1839–1896) – русский физик. Исследовал внешний фотоэффект, открыл первый закон фотоэффекта. Исследовал газовый разряд, критическое состояние, получил кривую намагничивания железа.

Современная установка для исследования фотоэффекта

Современная установка для изучения фотоэффекта представляет собой два электрода, помещенных в стеклянный баллон, из которого выкачан воздух (рис. 210). На один из электродов через кварцевое «окошко» падает свет. В отличие от обычного стекла кварц пропускает ультрафиолетовое излучение. На электроды подается напряжение, которое можно менять с помощью потенциометра R и измерять вольтметром V. К освещаемому электроду К − катоду подсоединяют отрицательный полюс батареи. Под действием света катод испускает электроны, которые направляются электрическим полем к аноду, создается электрический ток. Значение силы тока фиксируется миллиамперметром.

Фотоэффект в физике и его применение - формулы и определение с примерами

Законы фотоэффекта Столетова

Исследования, проведенные русским ученым А.Г. Столетовым и немецким ученым Ф. Ленардом, показали, что законы фотоэффекта не соответствуют классическим представлениям.

На рисунке 211 представлена вольтамперная характеристика, полученная в результате измерений при различных значениях напряжения между электродами.

Фотоэффект в физике и его применение - формулы и определение с примерами

Из графика следует, что:

1. Сила фототока не зависит от напряжения, если оно достигает некоторого значения Фотоэффект в физике и его применение - формулы и определение с примерами

Максимальное значение силы тока Фотоэффект в физике и его применение - формулы и определение с примерами называют током насыщения.

Сила тока насыщения − это максимальный заряд, переносимый фотоэлектронами за единицу времени:

Фотоэффект в физике и его применение - формулы и определение с примерами

где n − число фотоэлектронов, вылетающих с поверхности освещаемого металла за 1 с, е − заряд электрона.

2. Сила фототока отлична от нуля при нулевом значении напряжения.

3. Если изменить направление электрического поля, соединив катод с положительным полюсом источника тока, а анод − с отрицательным, то скорость фотоэлектронов уменьшится, об этом можно судить по показаниям миллиамперметра: сила тока уменьшается при увеличении отрицательного значения напряжения. При некотором значении напряжения Фотоэффект в физике и его применение - формулы и определение с примерами который называют задерживающим напряжением, фототок прекращается. Согласно теореме об изменении кинетической энергии, работа задерживающего электрического поля равна изменению кинетической энергии фотоэлектронов:

Фотоэффект в физике и его применение - формулы и определение с примерами

При известном значении Фотоэффект в физике и его применение - формулы и определение с примерами можно найти максимальную кинетическую энергию фотоэлектронов.

Исследование фотоэффекта при освещении катода световыми потоками равной частоты, но различной интенсивности дал результат, представленный вольтамперными характеристиками, изображенными на рисунке 212.

Фотоэффект в физике и его применение - формулы и определение с примерами

Сила фототока насыщения увеличивается с увеличением интенсивности падающего света.

Вспомните! Фотоэффект – это испускание электронов веществом под действием света или любого другого электромагнитного излучения.

Величина запирающего напряжения от интенсивности света не зависит, для всех потоков она имеет одно и то же значение.

Освещение катода светом одной и той же интенсивности, но разной частоты дало серию вольтамперных характеристик, представленных на рисунке 213. Как следует из графиков, величина задерживающего напряжения Фотоэффект в физике и его применение - формулы и определение с примерами увеличивается с увеличением частоты падающего света, при уменьшении частоты падающего света уменьшается, и при некоторой частоте Фотоэффект в физике и его применение - формулы и определение с примерами задерживающее напряжение равно нулю: Фотоэффект в физике и его применение - формулы и определение с примерами При меньших частотах Фотоэффект в физике и его применение - формулы и определение с примерами фотоэффект не наблюдается.

Минимальную частоту падающего света Фотоэффект в физике и его применение - формулы и определение с примерами, при которой еще возможен фотоэффект, называют красной границей фотоэффекта.

Фотоэффект в физике и его применение - формулы и определение с примерами

На основании экспериментальных данных Столетовым были сформулированы законы фотоэффекта:

  1. Сила фототока прямо пропорциональна интенсивности светового потока.
  2. Максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от интенсивности.
  3. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота света Фотоэффект в физике и его применение - формулы и определение с примерами (максимальная длина Фотоэффект в физике и его применение - формулы и определение с примерами), при которой возможен фотоэффект, если Фотоэффект в физике и его применение - формулы и определение с примерами то фотоэффект не происходит.
  • Заказать решение задач по физике

Квантовая теория фотоэффекта

Теоретическое обоснование фотоэффекта было дано в 1905 г. А. Эйнштейном. Он предположил, что свет не только излучается квантами, как утверждал М. Планк, но и распространяется и поглощается порциями, представляет собой поток частиц − фотонов, энергия которых равна Фотоэффект в физике и его применение - формулы и определение с примерами

Сам фотоэффект состоит в том, что световые частицы, сталкиваясь с электронами металла, передают им свою энергию и импульс и сами при этом исчезают. Если энергия квантов падающего света больше той работы, которую электрон должен совершить против сил притяжения к положительно заряженным частицам вещества, то электрон вылетает из металла. Становится понятным смысл красной границы фотоэффекта: для вырывания электрона из металла энергия квантов должна быть не меньше, чем Фотоэффект в физике и его применение - формулы и определение с примерами Эта энергия и равна работе выхода электрона из данного металла. В случае, когда энергия падающих квантов больше работы выхода, максимальная кинетическая энергия электронов равна разности энергии фотона и работы выхода:

Фотоэффект в физике и его применение - формулы и определение с примерами

Это и есть формула Эйнштейна для фотоэффекта. Обычно ее пишут в виде:

Фотоэффект в физике и его применение - формулы и определение с примерами

Зависимость силы фототока от интенсивности света Эйнштейн объяснил следующим образом: число вылетающих в единицу времени электронов пропорционально интенсивности света, поскольку интенсивность определяется числом квантов, испускаемых источником в единицу времени. Мощная лампа испускает больше квантов, следовательно, число вырванных электронов светом такой лампы будет больше, чем светом менее мощной лампы.

Энергия вылетающих электронов зависит не от силы света лампы, а от того, какой частоты свет она испускает, от этого зависит энергия фотона и кинетическая энергия фотоэлектрона.

Фотоны, энергия, масса и импульс фотона

Фотон – это частица света. Он не делится на части: испускается, отражается, преломляется и поглощается целым квантом. У него нет массы покоя, неподвижных фотонов не существует.

Энергия фотона

Фотоэффект в физике и его применение - формулы и определение с примерами

Фотоэффект в физике и его применение - формулы и определение с примерами − постоянная Планка, Фотоэффект в физике и его применение - формулы и определение с примерами циклическая частота.

Масса фотона

Массу фотона определяют, исходя из закона о взаимосвязи массы и энергии:

Фотоэффект в физике и его применение - формулы и определение с примерами

Измерить массу фотона невозможно, ее следует рассматривать как полевую массу, обусловленную тем, что электромагнитное поле обладает энергией.

Импульс фотона

Фотон – частица света, следовательно, ее импульс равен: 

 Фотоэффект в физике и его применение - формулы и определение с примерами

Применение фотоэффекта в технике

Фотоэлементы:

Приборы, принцип действия которых основан на явлении фотоэффекта, называют фотоэлементами. Устройство фотоэлемента изображено на рисунке 214. Внутренняя поверхность К (катод) стеклянного баллона, из которого выкачан воздух, покрыта светочувствительным слоем с небольшим прозрачным для света участком для доступа света внутрь баллона. В центре баллона находится металлическое кольцо А (анод). От электродов сделаны выводы для подключения фотоэлемента к электрической цепи. В качестве светочувствительного слоя обычно используют напыленные покрытия из щелочных металлов, имеющих малую работу выхода, т.е. чувствительных к видимому свету.

Фотоэлементы используют для автоматического управления электрическими цепями с помощью световых пучков.

Фотореле:

Фотоэлектрическое реле срабатывает при прерывании светового потока, падающего на фотоэлемент (рис. 215). Фотореле состоит из фотоэлемента Ф, усилителя фототока, в качестве которого используют полупроводниковый триод, и электромагнитного реле, включенного в цепь коллектора транзистора. Напряжение на фотоэлемент подают от источника тока Фотоэффект в физике и его применение - формулы и определение с примерами а на транзистор − от источника тока Фотоэффект в физике и его применение - формулы и определение с примерами Между базой и эмиттером транзистора включен нагрузочный резистор R.

Когда фотоэлемент освещен, в его цепи, содержащей резистор R, идет слабый ток, потенциал базы транзистора выше потенциала эмиттера, и ток в коллекторной цепи транзистора отсутствует.

Если же поток света, падающий на фотоэлемент, прерывается, ток в его цепи сразу прекращается, переход эмиттер – база открывается для основных носителей, и через обмотку реле, включенного в цепь коллектора, пойдет ток. Реле срабатывает, и его контакты замыкают исполнительную цепь. Ее функциями могут быть остановка пресса, в зону действия которого попала рука человека, выдвигание преграды в турникете метро, автоматическое включение освещения на улицах.

Фотоэффект в физике и его применение - формулы и определение с примерами

Пример решения задачи

Определите постоянную Планка h, если известно, что электроны, вырываемые из металла светом с частотой Фотоэффект в физике и его применение - формулы и определение с примерами Гц, полностью задерживаются разностью потенциалов Фотоэффект в физике и его применение - формулы и определение с примерами а вырываемые светом с частотой Фотоэффект в физике и его применение - формулы и определение с примерами − разностью потенциалов Фотоэффект в физике и его применение - формулы и определение с примерами

Дано:

Фотоэффект в физике и его применение - формулы и определение с примерами

U1 = 6,6 B

U2 = 16,5 B

h — ?

Решение: Запишем уравнение Эйнштейна для электрона, вырванного из металла светом с частотами Фотоэффект в физике и его применение - формулы и определение с примерами соответственно: Фотоэффект в физике и его применение - формулы и определение с примерами Вычитая первое равенство из второго, получим Фотоэффект в физике и его применение - формулы и определение с примерами откуда Фотоэффект в физике и его применение - формулы и определение с примерами

Выполним расчеты: Фотоэффект в физике и его применение - формулы и определение с примерами

Ответ: h = 6,6 · 10–34 Дж · с.

  • Оптические явления в природе по физике
  • Оптические приборы в физике
  • Оптика в физике
  • Волновая оптика в физике
  • Разложение белого света на цвета и образование цветов
  • Давление света в физике
  • Химическое действие света
  • Корпускулярно-волновая природа света 

Ниже размещены условия задач и отсканированные решения. Если вам нужно решить задачу на эту тему, вы можете найти здесь  похожее условие и решить свою по аналогии.   Загрузка страницы может занять некоторое время в связи с большим количеством рисунков.  Если Вам понадобится решение задач или онлайн помощь по физике- обращайтесь, будем рады помочь.

Явление фотоэффекта заключается в испускании веществом электронов под действием падающего света. Теория фотоэффекта разработана Эйнштейном и заключается в том, что поток света представляет собой поток отдельных квантов(фотонов) с энергией каждого фотона hn. При попадании фотонов на поверхность вещества часть из них передает свою энергию электронов. Если этой энергия больше работы выхода из вещества, электрон покидает металл. Уравнение эйнштейна для фотоэффекта:  h nu = A + W_{k} ,  где W_{k} — максимальная кинетическая энергия фотоэлектрона. 

Длина волны красной границы фотоэффекта для некоторого металла составляет 307 нм. Максимальная кинетическая энергия фотоэлектронов – 1 эВ. Найти отношение работы выхода электрона к энергии падающего фотона. 

Пример  решения задачи на тему фотоэффект

Частота света красной границы фотоэффекта для некоторого металла составляет 6*1014 Гц, задерживающая разность потенциалов для фотоэлектронов – 2В. Определить частоту падающего света и работу выхода электронов. 

Пример  решения задачи на тему фотоэффект

Работа выхода электрона из металла составляет 4,28эВ. Найти граничную длину волны фотоэффекта.

Пример  решения задачи на тему фотоэффект

На медный шарик радает монохроматический свет с длиной волны 0,165 мкм. До какого потенциала зарядится шарик, если работа выхода электрона для меди 4,5 эВ?

Пример  решения задачи на тему фотоэффект

Работа выхода электрона из калия составляет 2,2эВ, для серебра 4,7эВ. Найти граничные длину волны фотоэффекта.

Пример  решения задачи на тему фотоэффект

Длина волны радающего света 0,165 мкм, задерживающая разность потенциалов для фотоэлектронов 3В. Какова работа выхода электронов?Пример  решения задачи на тему фотоэффект

Красная граница фотоэффекта для цинка 310 нм. Определить максимальную кинетическую энергию фотоэлектронов, если на цинк падает свет с длиной волны 200нм.

Пример  решения задачи на тему фотоэффект

На металл с работой выхода 2,4эВ падает свет с длиной волны 200нм. Определить задерживающую разность потенциалов. 

Пример  решения задачи на тему фотоэффект

На металл  падает свет с длиной волны 0,25 мкм, задерживающая разность потенциалов при этом 0,96В. Определить работу выхода электронов из металла. 

Пример  решения задачи на тему фотоэффект

При изменении длины волны падающего света  максимальные скорости фотоэлектронов изменились в 3/4 раза. Первоначальная длина волны 600нм, красная граница фотоэффекта 700нм. Определить длину волны после изменения. 

Пример  решения задачи на тему фотоэффект

Пример  решения задачи на тему фотоэффект

Работы выхода электронов для двух металлов отличаются в 2 раза, задерживающие разности потенциалов — на 3В. Определить работы выхода. 

Пример  решения задачи на тему фотоэффект

Максимальная скорость фотоэлектронов равно 2,8*108 м/с. Определить энергию фотона. 

Пример  решения задачи на тему фотоэффект

Энергии падающих на металл фотонов равны 1,27 МэВ. Найти максимальную скорость фотоэлектронов. 

Пример  решения задачи на тему фотоэффект

Максимальная скорость фотоэлектронов равно 0,98с, где с — скорость света в вакууме. Найти длину волны падающего света. 

Пример  решения задачи на тему фотоэффект

Энергия фотона в пучке света, падающего на поверхность металла, равно 1,53 МэВ. Определить максимальную скорость фотоэлектронов. 

Пример  решения задачи на тему фотоэффект

На шарик из металла падает свет с длиной волны 0,4 мкм, при этом шапик заряжается до потенциала 2В. До какого потенциала зарядится шарик, если длина волны станет равной 0,3 мкм?

Пример  решения задачи на тему фотоэффект

После изменения длины волны падающего света в 1,5 раза задерживающая разность потенциалов изменилась с 1,6В до 3В. Какова работа выхода?

Пример  решения задачи на тему фотоэффект

Красная граница фотоэффекта 560нм, частота падающего света 7,3*1014 Гц. Найти максимальную скорость фотоэлектронов. 

Пример  решения задачи на тему фотоэффект

Красная граница фотоэффекта 2800 ангстрем, длина волны падающего света 1600 ангстрем. Найти работу выхода и максимальную кинетическую энергию фотоэлектрона.

Пример  решения задачи на тему фотоэффект

Задерживащая разность потенциалов 1,5В, работа выхода электронов 6,4*10-19 Дж. Найти длину волны падающего света и красную границу фотоэффекта.

Пример  решения задачи на тему фотоэффект

Работа выхода электронов из металла равна 3,3 эВ. Во сколько раз изменилась кинетическая энергия фотоэлектронов. если длина волны падающего света изменилась с 2,5*10-7м до 1,25*10-7м?

Пример  решения задачи на тему фотоэффект

Найти максимальную скорость фотоэлектронов для видимого света с энергией фотона 8 эВ и гамма излучения с энергией 0,51 МэВ. Работа выхода  электронов из металла 4,7 эВ.

Пример  решения задачи на тему фотоэффект

Фототок прекращается при задерживающей разности потенциалов 3,7 В. Работа выхода электронов равна 6,3 эВ. Какая работа выхода электронов у другого металла, если там фототок прекращается при разности потенциалов, большей на 2,3В.

Пример  решения задачи на тему фотоэффект

Работа выхода электронов из металла 4,5 эВ, энергия падающих фотонов 4,9 эВ. Чему равен максимальный импульс фотоэлектронов?

Пример  решения задачи на тему фотоэффект

Красная граница фотоэффекта 2900 ангстрем, максимальная скорость фотоэлектронов 108 м/с. Найти отношение работы выхода электронов к энергии палающих фотонов. 

Пример  решения задачи на тему фотоэффект

Длина волны падающего света 400нм, красная граница фотоэффекта равна 400нм. Чему равна максимальная скорость фотоэлектронов?

Пример  решения задачи на тему фотоэффект

Длина волны падающего света 300нм, работа выхода электронов 3,74 эВ. Напряженность задерживающего электростатического поля 10 В/см.Какой максимальный путь фотоэлектронов при движении в направлении задерживающего поля?

Пример  решения задачи на тему фотоэффект

Длина волны падающего света 100 нм, работа выхода электронов 5,30эВ. Найти максимальную скорость фотоэлектронов.

Пример  решения задачи на тему фотоэффект

При длине волны радающего света 491нм задерживающая разность потенциалов 0,71В. Какова работа выхода электронов? Какой стала длина волны света, если  задерживающая разность потенциалов стала равной 1,43В?

Пример  решения задачи на тему фотоэффект

Кинетическая энергия фотоэлектронов 2,0 эВ, красная граница фотоэффекта 3,0*1014 Гц. Определить энергию фотонов.

Пример  решения задачи на тему фотоэффект

Красная граница фотоэффекта 0,257 мкм, задерживающая разность потенциалов 1,5В. Найти длину волны падающего света.

Пример  решения задачи на тему фотоэффект

Красная граница фотоэффекта 2850 ангстрем. Минимальное значение энергии фотона, при котором возможен фотоэффект?

Пример  решения задачи на тему фотоэффект

Ниже вы можете посмотреть обучаюший видеоролик на тему фотоэффекта и его законов.

Понравилась статья? Поделить с друзьями:
  • Как найти свой телефон через gps
  • Как правильно найти аспекты
  • Как найти свою задолженность на сайте судебных
  • Как найти свой адрес инстаграме через телефон
  • Как найти оружья торговцев