Как найти частота появления

При
необходимости получить данные о
закономерности появления того или иного
события в результате произведенных
испытаний, мы оп­ределяем, как часто
появлялось интересующее нас событие
по отноше­нию ко всему числу
производившихся испытаний в одних и
тех же усло­виях.

Отношение
числа появлений интересующего нас
события к числу всех произведенных
испытаний называется частотой появления
данного события.

Если
обозначить число всех испытаний N,
число появлений данного события через
М,
а частоту появления события А

через W(A),
то получим выражение для частоты:


.

Пример. Произведено
10 выстрелов в цель в определенных
одинаковых условиях и получено 6
попаданий.

Если обозначим
событие — получение попадания — через
А,
частоту его через W(A),
число всех испытаний N=
10 и число появления событий М=
6, то

.

Установим основные
свойства частоты:

I.
Частота события может выражаться в
пределах от нуля до еди­ницы.

Максимальная
величина частоты W
(А)
= 1 может быть тогда, когда при каждом
испытании имело место событие А,
т. е. М=
N.

Минимальная величина
частоты W
(А)
=0 может
быть тогда, когда событие А
не имело места ни при одном испытании,
т. е. М=0.

II.
Частота появления события изменяется
с изменением числа испы­таний. Если
в условиях предыдущего примера мы
произвели еще один выстрел и получили
попадание, то

,
если получили промах, то

W(A)
=
.

От этого примера
перейдем теперь к объяснению третьего
свойства — устойчивости частоты.

III.
На первый взгляд приведенное изменение
частоты может пока­заться произвольным,
не связанным ни с какой закономерностью.
В действительности же оказывается, что
при достаточно большом числе испы­таний
частота колеблется около какого-то
определенного числа и тем более узки
границы колебания, чем больше число
испытаний.

Французский
естествоиспытатель Бюффон подбрасывал
монету 4040 раз, при этом герб выпадал
2048 раз, т. е. частота появлений гер­ба
составила 0,5069; английский биолог Пирсон
из 12000 бросаний моне­ты получил частоту
появлений герба 0,5016, а затем из 24000
бросаний — 0,5005.

Таким образом, мы
видим, что в данных испытаниях частота
колеб­лется около числа 0,5. Опыты
показывают, что случайные события
мас­сового характера обладают такой
устойчивой частотой. Причем, эта
ус­тойчивость не исходит из определения
частоты, а является объективным свойством
данных определенных событий.

Итак, третье свойство
частоты: при достаточно большом числе
испы­таний (опытов) частота становится
устойчивой, т.е. колеблется с уве­личением
опытов около какого-то числа и пределы
колебаний тем более узки, чем больше
будет производиться испытаний.

Свойство частоты
оставаться устойчивой при большом
количестве испытаний имеет исключительно
важное значение для построения всех
выводов теории вероятностей. Это свойство
является важнейшей харак­теристикой
частоты и поэтому будет нами очень часто
использоваться в последующих рассуждениях
и доказательствах.

Приведем несколько
задач, решением которых закрепим понятие
о частоте появления событий.

Пример 1.
Стрелку выдано пять патронов. Он сделал
три выстрела и получил два попадания.
Найти частоту попадания.

Решение.
Обозначим число выстрелов, произведенных
стрелком, че­рез N,
число попаданий — М,
частоту попадания через W
(A).

Тогда

,

или около 66%.

Э

той
задачей легко подтвердить числами
первое свойство частоты: частота
попадания может выражаться числом в
пределах от нуля до единицы. Частота
попадания была бы равна 1 или 100%, если
бы стрелок из трех выстрелов дал три
попадания; если бы попаданий не было ни
одного, то частота события (попадания)
равнялась бы нулю.

В
нашем решении частота попадания
выражается числом 2/3 или примерно 66%.
Это значит, что из всех произведенных
опытов интересующий нас результат
(попадание) получен в 2/3 всех испытаний.

Пример
2
.
Найти частоту попадания в десятку,
девятку, восьмерку и т. д., если все пули
попали в мишень и получено: десяток — 3;
девяток — 4; восьмерок — 2. Как изменится
каждая частота, если, сделав еще один
выстрел, получим шестерку?

Решение:
Обозначим событие — попадание — буквой
А,
попадание в круг «10» — А10,
в
круг «9» — А9
и т. д.

Тогда

;


;


.

Если
после произведенного десятого выстрела
получено попадание в шестерку, то,
очевидно, все частоты изменятся следующим
образом:


;


;


,
а частота попадания в шестерку будет
равна при десяти выстрелах

.

Эта
задача поясняет второе свойство частоты
— частота события (по­падания) изменяется
с изменением числа испытаний. Однако
очень важ­но, чтобы это свойство
частоты рассматривалось неразрывно с
третьим: при большом числе опытов частота
от опыта к опыту изменяется на­столько
незначительно, что ее можно практически
считать неизменной, устойчивой.

Подтвердим это
следующей задачей, составленной по
результатам тренировочных стрельб из
пистолета Макарова.

Пример
3
.
После 12-ти тренировочных стрельб по
спортивной мише­ни № 4 стрелок имел
средний результат на десять выстрелов
89 очков. (Общая сумма очков по 12-ти
стрельбам равнялась 1068). На следующей
тренировке стрелок дает низкий для себя
результат — 85 очков. Как изменилась
частота попаданий — средний результат
после 13-ти стрельб?

Решение:
По 12-ти стрельбам частота попаданий,
выраженная в оч­ках, равнялась 89 из
100 возможных, т. е. 89%. После 13-ти стрельб
об­щее количество выбитых очков стало
1068+85=1153 из 1300 возможных. Следовательно,
частота попаданий стала:

или
88,7%, т.е. 88,7 очка из 100 возможных.

Как
видим, частота попадания изменилась
очень незначительно и можно считать,
что для данного стрелка частота попаданий
89 очков является устойчивой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Теория вероятностей — это раздел математики, который
изучает закономерности случайных событий.

События
можно считать случайными — это те, которые могут произойти, а могут и не
произойти.

Примерами
таких событий являются: выпадение орла или решки при подбрасывании монеты;
поражение мишени или промах при стрельбе; выпадение того или иного количества
очков при бросании игрального кубика.

Пример.

Провели
испытания. 100 раз бросали игральный кубик и подсчитали, что 6 очков выпало 17
раз — частота рассматриваемого события, то есть выпадения очков.

Отношение
частоты к общему числу испытаний называют относительной частотой этого
события.

Пусть
некоторое испытание проводилось многократно в одних и тех же условиях. При этом
фиксировалось, произошло или нет некоторое интересующее нас событие А.

Если
общее число испытаний — n,
а число испытаний, при которых произошло событие А, — m. То m называют
частотой события А, частное m и n
относительной
частотой.

Определение:

Относительной
частотой
случайного события в серии испытаний называется
отношение числа испытаний, в которых это событие наступило, к числу всех
испытаний.

В
ходе исследований выяснилось, что относительная частота появления ожидаемого
события при повторении опытов в одних и тех же условиях, может оставаться
примерно одинаковой, незначительно отличаясь от некоторого числа р.

Пример.

При
подбрасывании монеты отмечают те случаи, когда выпадает орёл.

Если
монета однородна и имеет правильную геометрическую форму, то шансы выпадения
орла или решки будут примерно одинаковы. Но при
небольшом количестве бросков такой результат может не получиться.

А
вот если испытание проводиться большое количество раз, то относительная частота
выпадения орла близка к относительной частоте выпадения решки.

Многие
учёные проводили такой эксперимент.

Так,
например, английский математик Карл Пирсон бросал монету 24 тысячи раз, и
относительная частота выпадения орла оказалось равной 0,5005.

А
наш соотечественник, Всеволод Иванович Романовский, подбрасывая монету 80 тысяч
640 раз, нашёл, что относительная частота выпадения орла в его испытании была
равна 0,4923.

Заметим,
что в обоих случаях относительная частота выпадения орла очень близка к  .

Говорят,
что вероятность выпадения орла при подбрасывании монеты правильной
геометрической формы равна .

Пример.

В
непрозрачном мешке лежит 7 зелёных и 12 синих кубиков. За раз можно доставать
только 1 из них. Какова вероятность того, что из мешка достанут синий кубик?

Всего
в мешке 19 кубиков. Значит, n=19.

Синий
кубик мы можем достать 12 раз. Получаем, что m=12.

Относительная
частота равна:

Вероятность
того, что из мешка достанут синий кубик, равна .

Пример.

Определить
относительную частоту появления буквы «о» в слове «достопримечательность».

Общее
число букв, то есть n=21.
А количество букв «о», то есть m=3.

Значит
относительная частота:

Пример.

Отмечая
число попаданий в корзину в каждой серии из 40 бросков, которые совершал
баскетболист, получили такие данные:

Какова
относительная вероятность попадания мяча в корзину для данного баскетболиста?

Определим
общее число бросков. Было 5 серий по 40 бросков, то есть n=200.

Сосчитаем
число попаданий в корзину:

Получили,
что m=184.

Относительная
вероятность попадания в корзину будет:

Пример.

Стрелок
совершил 50 выстрелов. Относительная частота попадания в цель оказалась равной
0,88. Сколько раз он промахнулся?

Зная
общее число выстрелов n=50
и относительную вероятность попадания p=0,88.
Найдем число попаданий в цель:

Стрелок
попал в цель 44 раза.

Найдём
число промахов

Стрелок
промахнулся 6 раз.

Частота события. Статистическое определение вероятности

теория вероятностей

содержание учебника

Классическое определение вероятности предполагает, что все эле­ментарные исходы равновозможны. О равновозможности исходов опы­та заключают в силу соображений симметрии (как в случае монеты или игрального кубика). Задачи, в которых можно исходить из соображений симметрии, на практике встречаются редко. Во многих случаях трудно указать основания, позволяющие считать, что все элементарные исходы равновозможны. В связи с этим появилась необходимость введения еще одного определения вероятности, называемого статистическим. Чтобы дать это определение, предварительно вводят понятие относительной частоты события.

Относительной частотой события, или частотой, называется от­ношение числа опытов, в которых появилось это событие, к числу всех произведенных опытов. Обозначим частоту события A через W(A), тогда по определению

W(A)=displaystylefrac{m}{n}     (1.4.1)
где m — число опытов, в которых появилось событие A и n — число всех произведенных опытов.

Частота события обладает следующими свойствами.

  1. Частота случайного события есть число, заключенное между ну­лем и единицей:
    0< W(A)<1.    (1.4.2)
  2. Частота достоверного события U равна единице:
    W(U)=1    (1.4.3)
  3. Частота невозможного события V равна нулю:
    W(V)=0    (1.4.4)
  4. Частота суммы двух несовместных событий A и B равна сумме частот этих событий:
    W(A+B)=W(A)+W(B)    (1.4.5)

Наблюдения позволили установить, что относительная частота об­ладает свойствами статистической устойчивости: в различных сериях многочленных испытаний (в каждом из которых может появиться или не появиться это событие) она принимает значения, достаточно близкие к некоторой постоянной. Эту постоянную, являющуюся объективной числовой характеристикой явления, считают вероятностью данного со­бытия.

Вероятностью события называется число, около которого группи­руются значения,частоты данного события в различных сериях большо­го числа испытаний.

Это определение вероятности называется статистическим.

В случае статистического определения вероятность обладает сле­дующими свойствами:
1) вероятность достоверного события равна еди­нице;
2) вероятность невозможного события равна нулю;
3) вероятность случайного события заключена между нулем и единицей;
4) вероятность суммы двух несовместных событий равна сумме вероятностей этих со­бытий.

Пример 1. Из 500 взятых наудачу деталей оказалось 8 бракован­ных. Найти частоту бракованных деталей.

Решение. Так как в данном случае m = 8, n = 500, то в соответствии с формулой (1.4.1) находим

W=displaystylefrac{8}{500}=0,016

Пример 2. Игральный кубик подброшен 60 раз, при этом шестерка появилась 10 раз. Какова частота появления шестерки?

Решение. Из условия задачи следует, что n = 60, m = 10, поэтому

W=displaystylefrac{10}{60}=frac{1}{6}

Пример 3. Среди 1000 новорожденных оказалось 515 мальчиков.Чему равна частота рождения мальчиков?
Решение. Поскольку в данном случае n=1000, m=515, то W=displaystylefrac{515}{1000}=0,515.

Пример 4. В результате 20 выстрелов по мишени получено 15 попаданий. Какова частота попаданий?

Решение. Так как n = 20, m = 15, то

W=displaystylefrac{15}{20}=frac{3}{4}=0,75

Пример 5. При стрельбе по мишени частота попаданий W = 0,75. Найти число попаданий при 40 выстрелах.

Решение. Из формулы (1.4.1) следует, что m=Wcdot n. Так как W = 0,75, n = 40, то m=0,75cdot40=30 . Таким образом, было получено 30 попаданий.

Пример 6. www.itmathrepetitor.ru Частота нормального всхода семян W = 0,97. Из высе­янных семян взошло 970. Сколько семян было высеяно?

Решение. Из формулы (1.4.1) следует, что n=displaystylefrac{m}{W}. Поскольку m = 970, W=0,97, то n=970/0,97=1000. Итак, было высеяно 1000 семян.

Пример 7. На отрезке натурального ряда от 1 до 20 найти частоту простых чисел.

Решение. На указанном отрезке натурального ряда чисел находятся следующие простые числа: 2, 3, 5, 7, 11, 13, 17, 19; всего их 8. Так как n = 20, m = 8, то искомая частота

W=displaystylefrac{8}{20}=0,4.

Пример 8. Проведены три серии многократных подбрасываний симметричной монеты, подсчитаны числа появлений герба: 1) n_1 = 4040, m_1 =2048, 2) n_2 = 12000, m_2 = 6019; 3) n_3 = 24000, m_3 = 12012. Найти частоту появления герба в каждой серии испытаний.

Решение. В соответствии с формулой (1.4.1) находим:

W_1=displaystylefrac{m_1}{n_1}=frac{2048}{4040}=0,5069

W_2=displaystylefrac{m_2}{n_2}=frac{6019}{1200}approx0,5016

W_3=displaystylefrac{m_3}{n_3}=frac{12012}{24000}approx0,5005                                                                 .

Замечание. Эти примеры свидетельствуют о том, что при многократ­ных испытаниях частота события незначительно отличается от его вероятности. Вероятность появления герба при подбрасывании монеты р = 1/2 = 0,5 , так как в этом случае n = 2, m = 1.

Пример 9. Среди 300 деталей, изготовленных на автоматическом станке, оказалось 15, не отвечающих стандарту. Найти частоту появле­ния нестандартных деталей.

Решение. В данном случае n = 300, m = 15, поэтому

W=displaystylefrac{15}{300}=0,05

Пример 10. Контролер, проверяя качество 400 изделий установил, что 20 из них относятся ко второму сорту, а остальные — к первому. Най­ти частоту изделий первого сорта, частоту изделий второго сорта.

Решение. Прежде всего, найдем число изделий первого сорта: 400 — 20 = 380. Поскольку n = 400, m_1 = 380, то частота изделий перво­го сорта

W_1=displaystylefrac{380}{400}=0,95

Аналогично находим частоту изделий второго сорта:

W_2=displaystylefrac{20}{400}=0,05

Задачи

  1. Отдел технического контроля обнаружил 10 нестандартных изде­лий в партии из 1000 изделий. Найдите частоту изготовления бракован­ных изделий.
  2. Для выяснения качества семян было отобрано и высеяно в лабо­раторных условиях 100 штук. 95 семян дали нормальный всход. Какова частота нормального всхода семян?
  3. Найдите частоту появления простых чисел в следующих отрезках натурального ряда: а) от 21 до 40; б) от 41 до 50; в) от 51 до 70.
  4. Найдите частоту появления цифры при 100 подбрасываниях сим­метричной монеты. (Опыт проводите самостоятельно).
  5. Найдите частоту появления шестерки при 90 подбрасываниях иг­рального кубика.
  6. Путем опроса всех студентов Вашего курса определите частоту дней рождения, попадающих на каждый месяц года.
  7. Найдите частоту пятибуквенных слов в любом газетном тексте.

Ответы

  1. 0,01. 2. 0,95; 0,05. 3. а) 0,2; б) 0,3; в) 0,2.

Вопросы

  1. Что такое частота события?
  2. Чему равна частота достоверного события?
  3. Чему равна частота невозможного события?
  4. В каких пределах заключена частота случайного события?
  5. Чему равна частота суммы двух несовместных событий?
  6. Какое определение вероятности называют статистическим?
  7. Какими свойствами обладает статистическая вероятность?

содержание учебника

Относительная частота и статистическая вероятность. Основные формулы и решения типовых задач
Относительная частота (частость) события А определяется равенством

W(A)=frac{m}{n},; ; ; ; (5)

где n — общее число проведенных испытаний; m — число испытаний, в которых событие А наступило (иначе — частота события А).
При статистическом определении за вероятность события принимают его относительную частоту, найденную по результатам большого числа испытаний.
Задача №1. При определении всхожести партии семян взяли пробу из 1000 единиц. Из отобранных семян не взошло 90. Какова относительная частота появления всхожего семени?
Решение. Обозначим событие: А — отобрано всхожее семя. Найдем относительную частоту события А, применив формулу (5). Общее число проведенных испытаний n = 1000. Число испытаний, в которых событие А наступило, равно m = 1000 — 90 = 910.
Относительная частота события А равна W(A)=frac{m}{n}=frac{910}{1000}=0,91.

Задача №2. Для проведения исследований на некотором поле взяли случайную выборку из 200 колосьев пшеницы. Относительная частота (частость) колосьев, имеющих по 12 колосков в колосе, оказалась равной 0,123, а по 18 колосков — 0,05. Найти для этой выборки частоты колосьев, имущих по 12 и по 18 колосков.
Решение. Рассмотрим события: A — взят колос, имеющий 12 колосков; В — взят колос, имеющий 18 колосков.
Найдем частоты m_{1} и m_{2} событий А и В применив формулу (5).
Обозначим через W_{1}(A)=frac{m_{1}}{n} относительную частоту события A, а через W_{2}(B)=frac{m_{2}}{n} относительную частоту события В. Так как число проведенных испытаний n = 200, то m_{1}=W_{1}(A)cdot n=0,125cdot 200=25,; m_{2}=W_{2}(B)cdot n=0,05cdot 200=10.

Задача №3. Многолетними наблюдениями установлено, что в некоторой области ежегодно в среднем в тридцати хозяйствах из каждых ста среднегодовой удой молока от одной коровы составляет 4 100 — 4 300 кг. Какова вероятность того, что в текущем году в одном из хозяйств этой области, отобранном случайным образом, будет получен такой среднегодовой удой?
Решение. Обозначим событие: А — в текущем году в хозяйстве области, отобранном случайным образом, среднегодовой удой молока от одной коровы составит 4 100 — 4 300 кг.
Вероятность события А найдем, воспользовавшись ее статистическим определением.
Располагая статистическими данными, найдем, что относительная частота хозяйств области, в которых ежегодно имеют указанный средне-годовой удой молока от одной коровы, равна 0,3. Так как эти данные получены в результате проведения большого числа наблюдений, выполняемых в течение многих лет, то можно принять, что вероятность события А равна Р(А) = 0,3.


Загрузить PDF


Загрузить PDF

С абсолютной частотой все довольно просто: она определяет, сколько раз конкретное число содержится в имеющемся наборе данных (объектов или значений). А вот относительная частота характеризует отношение количества конкретного числа в наборе данных. Другими словами, относительная частота – это отношение количества определенного числа к общему количеству чисел в наборе данных. Имейте в виду, что вычислить относительную частоту достаточно легко.

  1. Изображение с названием Calculate Relative Frequency Step 1

    1

    Соберите данные. Если вы решаете математическую задачу, в ее условии должен быть дан набор данных (чисел). В противном случае проведите эксперимент или исследование и соберите необходимые данные. Подумайте, в какой форме записать исходные данные.

    • Например, нужно собрать данные о возрасте людей, которые посмотрели определенный фильм. Конечно, можно записать точный возраст каждого человека, но в этом случае вы получите довольно большой набор данных с 60-70 числами в пределах от 10 до 70 или 80. Поэтому лучше сгруппировать данные по категориям, таким как «Моложе 20», «20-29», «30-39» «40-49», «50-59» и «Старше 60». Получится упорядоченный набор данных с шестью группами чисел.
    • Другой пример: врач собирает данные о температуре пациентов в определенный день. Если записать округленные числа, например, 37, 38, 39, то результат будет не слишком точным, поэтому здесь данные нужно представить в виде десятичных дробей.
  2. Изображение с названием Calculate Relative Frequency Step 2

    2

    Упорядочьте данные. Когда вы соберете данные, у вас, скорее всего, получится хаотичный набор чисел, например, такой: 1, 2, 5, 4, 6, 4, 3, 7, 1, 5, 6, 5, 3, 4, 5, 1. Такая запись кажется практически бессмысленной и с ней сложно работать. Поэтому упорядочьте числа по возрастанию (от меньшего к большему), например, так: 1,1,1,2,3,3,4,4,4,5,5,5,5,6,6,7.[1]

    • Упорядочивая данные, будьте внимательны, чтобы не пропустить ни одного числа. Посчитайте общее количество чисел в наборе данных, чтобы убедиться, что вы записали все числа.
  3. Изображение с названием Calculate Relative Frequency Step 3

    3

    Создайте таблицу с данными. Собранные данные можно организовать в виде таблицы. Такая таблица будет включать три столбца и использоваться для вычисления относительной частоты. Столбцы обозначьте следующим образом:[2]

    Реклама

  1. Изображение с названием Calculate Relative Frequency Step 5

    1

    Найдите количество чисел в наборе данных. Относительная частота характеризует, сколько раз конкретное число содержится в имеющемся наборе данных по отношению к общему количеству чисел. Чтобы найти относительную частоту, нужно посчитать общее количество чисел в наборе данных. Общее количество чисел станет знаменателем дроби, с помощью которой будет вычислена относительная частота.[3]

    • В нашем примере набор данных содержит 16 чисел.
  2. Изображение с названием Calculate Relative Frequency Step 5

    2

    Найдите количество определенного числа. То есть посчитайте, сколько раз конкретное число встречается в наборе данных. Это можно сделать как для одного числа, так и для всех чисел из набора данных.[4]

    • Например, в нашем примере число 4 встречается в наборе данных три раза.
  3. Изображение с названием Calculate Relative Frequency Step 6

    3

    Разделите количество конкретного числа на общее количество чисел. Так вы найдете относительную частоту для определенного числа. Вычисление можно представить в виде дроби или воспользоваться калькулятором или электронной таблицей, чтобы разделить два числа.[5]

    Реклама

  1. Изображение с названием Calculate Relative Frequency Step 7

    1

    Результаты вычислений запишите в созданную ранее таблицу. Она позволит представить результаты в наглядной форме. По мере вычисления относительной частоты результаты записывайте в таблицу напротив соответствующего числа. Как правило, значение относительной частоты можно округлить до второго знака после десятичной запятой, но это на ваше усмотрение (в зависимости от требований задачи или исследования). Помните, что округленный результат не равен точному ответу.[6]

    • В нашем примере таблица относительных частот будет выглядеть следующим образом:
    • x : n(x) : P(x)
    • 1 : 3 : 0,19
    • 2 : 1 : 0,06
    • 3 : 2 : 0,13
    • 4 : 3 : 0,19
    • 5 : 4 : 0,25
    • 6 : 2 : 0,13
    • 7 : 1 : 0,06
    • Итого : 16 : 1,01
  2. Изображение с названием Calculate Relative Frequency Step 8

    2

    Представьте числа (элементы), которых нет в наборе данных. Иногда представление чисел с нулевой частотой так же важно, как и представление чисел с ненулевой частотой. Обратите внимание на собранные данные; если между данными имеются пробелы, их нужно заполнить нулями.

    • В нашем примере набор данных включает все числа от 1 до 7. Но предположим, что числа 3 нет в наборе. Возможно, это немаловажный факт, поэтому нужно записать, что относительная частота числа 3 равна 0.
  3. Изображение с названием Calculate Relative Frequency Step 9

    3

    Выразите результаты в процентах. Иногда результаты вычислений нужно преобразовать из десятичных дробей в проценты. Это общепринятая практика, потому что относительная частота характеризует процент случаев появления определенного числа в наборе данных. Чтобы преобразовать десятичную дробь в проценты, нужно десятичную запятую передвинуть на две позиции вправо и приписать символ процента.

    • Например, десятичная дробь 0,13 равна 13%.
    • Десятичная дробь 0,06 равна 6% (обратите внимание, что перед 6 стоит 0).

    Реклама

Советы

  • Относительная частота характеризует наличие или возникновение определенного события в наборе событий.
  • Если сложить относительные частоты всех чисел из набора данных, вы получите единицу. Помните, что при сложении округленных результатов сумма не будет равна 1,0.
  • Если набор данных слишком большой, чтобы обработать его вручную, воспользуйтесь программой MS Excel или MATLAB; это позволит избежать ошибок в процессе вычисления.

Реклама

Источники

Об этой статье

Эту страницу просматривали 145 917 раз.

Была ли эта статья полезной?

Понравилась статья? Поделить с друзьями:
  • Как найти максимальное значение напряжения в цепи
  • Как найти размер пружины
  • Не открывается диспетчер устройств windows 7 как исправить
  • Как составить договор на возмещении электроэнергии
  • Как найти браузер на телевизоре филипс