Переменный ток имеет ряд важных характеристик, влияющих на его физические свойства. Одним из таких параметров является частота переменного тока. Если говорить с точки зрения физики, то частота – это некая величина, обратная периоду колебания тока. Если проще – то это количество полных циклов изменения ЭДС, произошедших за одну секунду.
Известно, что переменный ток заставляет электроны двигаться в проводнике сначала в одну сторону, потом — в обратную. Полный путь «туда-обратно» они совершают за некий промежуток времени, называемый периодом переменного тока. частота же является количеством таких колебаний за 1 секунду.
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос
В качестве единицы измерения частоты во всем мире принят 1 Гц (в честь немецкого ученого Г.Герца), который соответствует 1 периоду колебания за 1 секунду.
В республиках бывшего СССР стандартной считается частота тока в 50 Гц.
Это значит, что синусоида тока движется в течение 1 секунды 50 раз в одном направлении, и 50 — в обратном, 100 раз проходя чрез нулевое значение. Получается, что обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.
Для измерения частоты переменного тока применяют приборы, называемые частотомерами. Частотомеры используют несколько основных способов измерения, а именно:
Метод дискретного счета;
Метод перезаряда конденсатора;
Резонансный метод измерения частот.
Метод сравнения частот; в качестве:
Метод дискретного счета основывается на подсчете импульсов необходимой частоты за конкретный промежуток времени. Его наиболее часто используют цифровые частотомеры, и именно благодаря этому простому методу можно получить довольно точные данные.
Более подробно о частоте переменного тока Вы можете узнать из видео:
Метод перезаряда конденсатора тоже не несет в себе сложных вычислений. В этом случае среднее значение силы тока перезаряда пропорционально соотносится с частотой, и измеряется при помощи магнитоэлектрического амперметра. Шкала прибора, в таком случае, градуируется в Герцах.
Погрешность подобных частотомеров находится в пределах 2%, и поэтому такие измерения вполне пригодны для бытового использования.
Резонансный способ измерения базируется на электрическом резонансе, возникающем в контуре с подстраиваемыми элементами. Частота, которую необходимо измерить, определяется по специальной шкале самого механизма подстройки.
Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Задать вопрос
Такой метод дает очень низкую погрешность, однако применяется только для частот больше 50 кГц.
Метод сравнения частот применяется в осциллографах, и основан на смешении эталонной частоты с измеряемой. При этом возникают биения определенной частоты. Когда же частота этих биений достигает нуля, то измеряемая частота становится равной эталонной. Далее, по полученной на экране фигуре с применением формул можно рассчитать искомую частоту электрического тока.
Ещё одно интересное видео о частоте переменного тока:
Как найти показание амперметра? физика
В схеме E1 = 2 В, E2 = 4 В,
R1 = 0,5 Ом. Падение потенциала на сопротивлении
R2 равно 1 В. Найдите показание амперметра.
Сопротивле-ниями элементов и амперметра пренебречь.
Хотя бы конечную формулу пожалуйста.
То, что в решении получился отрицательный ответ, значит лишь то, что выбрано не то направление тока. Меняя знак мы получаем правильный ответ.
Итоговый ответ: 6 А.
Как найти показания амперметра формула
По закону Ома, ток в замкнутом контуре равен алгебраической сумме ЭДС, действующих в контуре, деленному на полное сопротивление цепи.
Алгебраическая сумма ЭДС равна Е=12В-10В+2В=4В
Полное сопротивление цепи равно R=r1+r2+r3+R1234+R56
R1234 состоит из двух папаллельно включенных цепочек из двух последовательно включенных сопротивлений (R1,R2 и R3,R4 соответственно)
Полное сопротивление цепи равно 4+1+4+7.2+1=17,2 Ом
Амперметр А» показывает полный ток в цепи, и он покажет 4В/17,2Ом=»0,232558А» или примерно 0,233А
Чтобы найти показания амперметра А1, найдем напряжение на R56. U56=I2*R56=I2*1
Ток I1=U56/2=I2/2=0.116279А или примерно 0,116 А
Показание вольтметра равно разности падения напряжения на сопротивлениях R2 и R4. Чтобы найти эти значения, найдем падение напряжения на всей цепочке сопротивлений R1R2R3R4. U1234=I2*R1234=I2*7,2
Падение напряжения на R2 U2=U1234/(R1+R2)*R2=I2*7,2*12/18=I2*7,2*2/3
Падение напряжения на R4 U4=U1234/(R3+R4)*R4=I2*7,2*8/12=I2*7,2*2/3
Разность напряжений на R2 и R4 равна U2-U4=I2*7,2*2/3-I2*7,2*2/3=0, следовательно, показания вольтметра будут равны нулю.
Ответ: амперметр А2 покажет ток примерно 0,233А, амперметр А1 примерно 0,116А, а вольтметр покажет 0
Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Электроника для начинающих” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр, амперметр и др.
Измерение тока.
И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:
Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутсвует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:
Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи 🙂
Важным параметром этого прибора является его внутреннее сопротивление . Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:
Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.
При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:
В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.
Пусть максимальное значение, которое может измерить амперметр составляет 1А. А схема, силу тока в которой нам нужно определить имеет следующий вид:
Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:
В данной задаче нам необходимо измерить ток . Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:
В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.
Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:
Выразим ток шунта через ток амперметра:
Измеряемый ток равен:
Подставим в это уравнение предыдущее выражение для тока шунта:
Но сопротивление шунта нам также известно (). В итоге мы получаем:
Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить 🙂
С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.
Измерение напряжения.
Прибор, предназначенный для измерения напряжения называется вольтметр, и, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся с чем это связано:
Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:
Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с . Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток (), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток и, в связи с этим напряжение на резисторе уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.
Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:
Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример 😉
Здесь мы добавили в цепь добавочное сопротивление . Перед нами стоит задача измерить напряжение на резисторе : . Давайте определим, что при таком включении будет на экране вольтметра:
Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:
Таким образом: . То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно увеличить пределы измерения вольтметра 🙂
В завершении статьи пару слов об измерении сопротивления и мощности.
Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи – омметр – и мощности – ваттметр.
В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями и заходите к нам на сайт! До скорых встреч!
Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Электроника для начинающих” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр, амперметр и др.
Измерение тока.
И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:
Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутсвует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:
Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи 🙂
Важным параметром этого прибора является его внутреннее сопротивление . Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:
Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.
При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:
В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.
Пусть максимальное значение, которое может измерить амперметр составляет 1А. А схема, силу тока в которой нам нужно определить имеет следующий вид:
Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:
В данной задаче нам необходимо измерить ток . Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:
В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.
Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:
Выразим ток шунта через ток амперметра:
Измеряемый ток равен:
Подставим в это уравнение предыдущее выражение для тока шунта:
Но сопротивление шунта нам также известно (). В итоге мы получаем:
Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить 🙂
С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.
Измерение напряжения.
Прибор, предназначенный для измерения напряжения называется вольтметр, и, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся с чем это связано:
Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:
Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с . Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток (), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток и, в связи с этим напряжение на резисторе уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.
Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:
Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример 😉
Здесь мы добавили в цепь добавочное сопротивление . Перед нами стоит задача измерить напряжение на резисторе : . Давайте определим, что при таком включении будет на экране вольтметра:
Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:
Таким образом: . То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно увеличить пределы измерения вольтметра 🙂
В завершении статьи пару слов об измерении сопротивления и мощности.
Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи – омметр – и мощности – ваттметр.
В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями и заходите к нам на сайт! До скорых встреч!
Идеальные и реальные вольтметры и амперметры в цепях постоянного тока
По закону Ома, ток в замкнутом контуре равен алгебраической сумме ЭДС, действующих в контуре, деленному на полное сопротивление цепи.
Алгебраическая сумма ЭДС равна Е=12В-10В+2В=4В
Полное сопротивление цепи равно R=r1+r2+r3+R1234+R56
R1234 состоит из двух папаллельно включенных цепочек из двух последовательно включенных сопротивлений (R1,R2 и R3,R4 соответственно)
Полное сопротивление цепи равно 4+1+4+7.2+1=17,2 Ом
Амперметр А» показывает полный ток в цепи, и он покажет 4В/17,2Ом=»0,232558А» или примерно 0,233А
Чтобы найти показания амперметра А1, найдем напряжение на R56. U56=I2*R56=I2*1
Ток I1=U56/2=I2/2=0.116279А или примерно 0,116 А
Показание вольтметра равно разности падения напряжения на сопротивлениях R2 и R4. Чтобы найти эти значения, найдем падение напряжения на всей цепочке сопротивлений R1R2R3R4. U1234=I2*R1234=I2*7,2
Падение напряжения на R2 U2=U1234/(R1+R2)*R2=I2*7,2*12/18=I2*7,2*2/3
Падение напряжения на R4 U4=U1234/(R3+R4)*R4=I2*7,2*8/12=I2*7,2*2/3
Разность напряжений на R2 и R4 равна U2-U4=I2*7,2*2/3-I2*7,2*2/3=0, следовательно, показания вольтметра будут равны нулю.
Ответ: амперметр А2 покажет ток примерно 0,233А, амперметр А1 примерно 0,116А, а вольтметр покажет 0
Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Электроника для начинающих” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр, амперметр и др.
Измерение тока.
И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:
Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутсвует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:
Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи
2. Исследование вольметров переменного напряжения |
Стр. 11 из 13 |
Оценка входного сопротивления вольтметра и соответствующей методической погрешности измерения напряжения
R0, МОм |
Rвых, Ом |
U1, B |
U2, B |
Rвх, МОм |
δ мет, |
600 |
4. Исследование влияния параметров соединительных проводов и входной цепи вольтметра на его показания в области высоких частот
Указание. Важнейшей характеристикой вольтметра является частотный диапазон. Однако на результат измерения напряжения будут влиять и характеристики цепи, используемой для подключения вольтметра к источнику сигнала. Эквивалентная схема цепи (рис. 2.3 а), образованной проводами, соединяющими электронный вольтметр с источником измеряемого напряжения, в области низких частот (когда влиянием индуктивности соединительных проводов можно пренебречь). Схема представляет собой интегрирующую цепочку, образованную выходным сопротивлением источника сигнала Rвых , входной емкостью прибора Свх и емкостью соединительных проводов
Сп. Систематическая погрешность измерения напряжения, вносимая такой цепью, будет
иметь отрицательный знак и будет тем больше по абсолютной величине, чем выше частота сигнала и больше постоянная времени Rвых (Cвх+Cп) такой цепи.
Если учесть распределенную индуктивность соединительных проводов Lп, то схема
превращается в электрический контур (рис. 2.3 б), резонансная частота которого приближенно может быть оценена по известной формуле:
.
Рис. 2.3
Таким образом, на высоких частотах, когда частота измеряемого напряжения приближается к резонансной частоте входной цепи, напряжение на входных зажимах вольтметра повышается и становится больше измеряемого напряжения. Соответствующая методическая погрешность измерения может стать положительной и по абсолютной величине достигнуть значений порядка 150 — 300 % !!! Значение
http://dvo.sut.ru/libr/mss/i145mriz/2.htm |
15.01.2006 |
2. Исследование вольметров переменного напряжения |
Стр. 12 из 13 |
относительной погрешности, возникающей вследствие явления резонанса во входной цепи
,
где U(f) — показания вольтметра при измерении напряжения сигнала с частотой f; U(0,1) — показания вольтметра при измерении напряжения сигнала с частотой 0,1 МГц, на которой можно не учитывать влияние параметров соединительных проводов на результаты измерений.
Для повышения верхней границы частотного диапазона измеряемого напряжения соединительные провода должны быть как можно короче. Высокочастотные вольтметры, предназначенные для работы в диапазоне 1 — 1000МГц, строятся по структурной схеме, начинающейся с преобразователя (обычно пикового детектора), который выполняется в виде выносного узла (пробника). С помощью пробника вольтметр можно присоединить к измеряемой цепи непосредственно, практически без соединительных проводов. Длина соединительных проводов будет определяться при этом длиной общего провода (земли), которую можно выбрать достаточно малой.
Примечание. Обратите внимание, что при использовании соединительных проводов измеряемый сигнал все равно попадает на пробник, так как в исходном положении (пробник находится в гнезде), его входной штырек соединен с входным зажимом на лицевой панели вольтметра.
4.1.Соединить вход вольтметра В7-15 (с амплитудным детектором) с выходом генератора Г4-158 проводами или соединительным кабелем.
4.2.Определить резонансную частоту цепи, образованной соединительными проводами, для чего перестраивать генератор по частоте (нажата кнопка ГРУБО), начиная с частоты 0,1 МГц.
4.3.Путем перестройки частоты генератора во всем диапазоне его рабочих
частот и регистрации показаний вольтметра в табл. 2.6, измерить амплитудночастотную характеристику цепи, образованной соединительными проводами.
Примечание. При подходе к резонансной частоте целесообразно уменьшать частотные интервалы между точками наблюдений.
4.4. Вынуть пробник из гнезда и подключить контактный штырек пробника непосредственно к выходу генератора; корпуса вольтметра и генератора соединить между собой коротким отрезком провода. Повторить измерения по п.3.3 , результаты записать в табл. 2.6.
Таблица 2.6
Результаты измерения и вычисления погрешностей,
возникающих вследствие явления резонанса во входной цепи вольтметра
http://dvo.sut.ru/libr/mss/i145mriz/2.htm |
15.01.2006 |
2. Исследование вольметров переменного напряжения |
Стр. 13 из 13 |
Частота, МГц |
Подключение проводами |
Подключение пробнико |
||
U1, В |
δ 1 |
U2, В |
δ 2 |
|
0,1 |
4.5. Вычислить погрешности измерения δ 1 и δ 2 относительно значения напряжения на частоте 0,1 МГц:
где U1 и U2 — соответственно показания вольтметра при использовании соединительных проводов и непосредственно пробника.
4.6. Построить графики зависимостей погрешностей δ 1 и δ 2 от частоты и
определить частоту измеряемого напряжения, выше которой недопустимо подключать вольтметр к измеряемой цепи соединительными проводами.
Указание. Частота измеряемого напряжения, выше которой недопустимо подключать вольтметр соединительными проводами, определяется как частота, выше которой δ 1> δ
2.
Отчет должен содержать:
1.номер и наименование лабораторной работы;
2.заполненные табл. 2.1-2.6 с их заголовками;
3.временные диаграммы импульсного сигнала по п. 1.5;
4.графики по пп. 2.8, 4.6;
5.выводы по пп. 2,4, 2.9, 3.3, 4.6.
http://dvo.sut.ru/libr/mss/i145mriz/2.htm |
15.01.2006 |
Соседние файлы в предмете Метрология, стандартизация и сертификация
- #
30.04.2013116 б16plot.log
- #