Как найти частоту движения маятника

Формулы математического маятника в физике

Формулы математического маятника

Определение и формулы математического маятника

Определение

Математический маятник — это колебательная система, являющаяся частным случаем физического маятника, вся масса которого
сосредоточена в одной точке, центре масс маятника.

Обычно математический маятник представляют как шарик, подвешенный на длинной невесомой и нерастяжимой нити. Это идеализированная система, совершающая гармонические колебания под действием силы тяжести. Хорошим приближением к математическому маятнику массивный маленький шарик, осуществляющий колебания на тонкой длинной нити.

Галилей первым изучал свойства математического маятника, рассматривая качание паникадила на длинной цепи. Он получил, что период колебаний математического маятника не зависит от амплитуды. Если при запуске мятника отклонять его на разные малые углы, то его колебания будут происходить с одним периодом, но разными амплитудами. Это свойство получило название изохронизма.

Формулы математического маятника, рисунок 1

Уравнение движения математического маятника

Математический маятник — классический пример гармонического осциллятора. Он совершает гармонические колебания, которые описываются дифференциальным уравнением:

[ddot{varphi }+{omega }^2_0varphi =0 left(1right),]

где $varphi $ — угол отклонения нити (подвеса) от положения равновесия.

Решением уравнения (1) является функция $varphi (t):$

[varphi (t)={varphi }_0{cos left({omega }_0t+alpha right)left(2right), }]

где $alpha $ — начальная фаза колебаний; ${varphi }_0$ — амплитуда колебаний; ${omega }_0$ — циклическая частота.

Колебания гармонического осциллятора — это важный пример периодического движения. Осциллятор служит моделью во многих задачах классической и квантовой механики.

Циклическая частота и период колебаний математического маятника

Циклическая частота математического маятника зависит только от длины его подвеса:

[ {omega }_0=sqrt{frac{g}{l}}left(3right).]

Период колебаний математического маятника ($T$) в этом случае равен:

[T=frac{2pi }{{omega }_0}=2pi sqrt{frac{l}{g}}left(4right).]

Выражение (4) показывает, что период математического маятника зависит только от длины его подвеса (расстояния от точки подвеса до центра тяжести груза) и ускорения свободного падения.

Уравнение энергии для математического маятника

При рассмотрении колебаний механических систем с одной степенью свободы часто берут в качестве исходного не уравнения движения Ньютона, а уравнение энергии. Так как его проще составлять, и оно является уравнением первого порядка по времени. Предположим, что трение в системе отсутствует. Закон сохранения энергии для совершающего свободные колебания математического маятника (колебания малые) запишем как:

[E=E_k+E_p=frac{mv^2}{2}+mgh=frac{mv^2}{2}+frac{mgx^2}{2l}=constleft(5right),]

где $E_k$ — кинетическая энергия маятника; $E_p$ — потенциальная энергия маятника; $v$ — скорость движения маятника; $x$ — линейное смещение груза маятника от положения равновесия по дуге окружности радиуса $l$, при этом угол — смещение связан с $x$ как:

[varphi =frac{x}{l}left(6right).]

Максимальное значение потенциальной энергии математического маятника равно:

[E_{pmax}=mgh_m=frac{mg{x^2}_m}{2l}left(7right);;]

Максимальная величина кинетической энергии:

[E_{kmax}=frac{mv^2_m}{2}=frac{m{omega }^2_0{x^2}_m}{2l}=E_{pmax}left(8right),]

где $h_m$ — максимальная высота подъема маятника; $x_m$- максимальное отклонение маятника от положения равновесия; $v_m={omega }_0x_m$ — максимальная скорость.

Примеры задач с решением

Пример 1

Задание. Какова максимальная высота подъема шарика математического маятника, если его скорость движения при прохождении положения равновесия составляла $v$?

Решение. Сделаем рисунок.

Формулы математического маятника, пример 1

Пусть ноль потенциальной энергии шарика в его положении равновесия (точка 0).В этой точке скорость шарика максимальна и равна по условию задачи $v$. В точке максимального подъема шарика над положением равновесия (точка A), скорость шарика равна нулю, потенциальная энергия максимальна. Запишем закон сохранения энергии для рассмотренных двух положений шарика:

[frac{mv^2}{2}=mgh left(1.1right).]

Из уравнения (1.1) найдем искомую высоту:

[h=frac{v^2}{2g}.]

Ответ. $h=frac{v^2}{2g}$

Пример 2

Задание. Каково ускорение силы тяжести, если математический маятник имеющий длину $l=1 м$, совершает колебания с периодом равным $T=2 с$? Считайте колебания математического маятника малыми.textit{}

Решение. За основу решения задачи примем формулу для вычисления периода малых колебаний:

[T=2pi sqrt{frac{l}{g}}left(2.1right).]

Выразим из нее ускорение:

[g=frac{4{pi }^2l}{T^2} .]

Проведем вычисления ускорения силы тяжести:

[g=frac{4{pi }^2cdot 1}{2^2}={pi }^2approx 9,87 left(frac{м}{с^2}right).]

Ответ. $g=9,87 frac{м}{с^2}$

Читать дальше: формулы пружинного маятника.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Колебательное движение. Математический маятник

  1. Механические колебания
  2. Математический маятник
  3. Параметры колебаний математического маятника
  4. Задачи
  5. Лабораторная работа №4. Исследование колебаний математического маятника

п.1. Механические колебания

Кроме прямолинейного и криволинейного движения, с которыми мы уже познакомились, существует еще один вид механического движения – колебательный.

Механические колебания — это движения тел, которые в той или иной степени повторяются через определенные промежутки времени.

Примеры колебательных движений:

  • движение маятника в часах;
  • колебание автомобиля на рессорах;
  • покачивание деревьев на ветру;
  • раскачивание качели;
  • сокращения сердца и легких;
  • движение крыльев насекомых и птиц.

п.2. Математический маятник

Математическим маятником называют тело, подвешенное на длинной нерастяжимой нити, размеры которого значительно меньше длины нити.
Нить считается нерастяжимой и невесомой, а тело – материальной точкой на этой нити.

Математический маятник В положении равновесия тело (шарик) находится внизу.
Отклонение от положения равновесия называют смещением тела, обозначают буквой x и измеряют в метрах (в СИ).
Наибольшее смещение маятника от положения равновесия называют амплитудой колебаний, обозначают буквой A.
В проекции на горизонтальную ось OX смещение изменяется в интервале (-Aleq xleq A).
В положении равновесия x=0.
Если маятник после смещения в положение 1, прошел положение равновесия 2, отклонился в положение 3, опять прошел положение 2, и вернулся в положение 1, говорят, что маятник совершил полное колебание.

п.3. Параметры колебаний математического маятника

Период колебаний математического маятника – это время, за которое маятник совершает одно полное колебание. Период колебаний равен: $$ T=2pisqrt{frac Lg} $$ где (L) – длина маятника, (g) – ускорение свободного падения.
На поверхности Земли (gapprox 9,8 м/с^2)

Частота колебаний математического маятника – это количество полных колебаний, которые маятник совершает за единицу времени: $$ f=frac 1T=frac{1}{2pi}sqrt{frac gL} $$

Период и частота колебаний – взаимно обратные величины
Период в СИ измеряют в секундах, частоту – в герцах: 1 Гц=1 c-1
Формула для периода колебаний справедлива для небольших отклонений маятника (на угол порядка 15-20° от положения равновесия).

п.4. Задачи

Задача 1. Маятник совершил 3 полных колебания за 9 с. Найдите период и частоту его колебаний. Чему равна длина нити, на которой подвешен маятник (ответ дайте в см, с округлением до целых)?

Дано:
(N=3)
(t=9 c)
__________________
(T, f, L-?)
Период колебаний: (T=frac tN)
Частота колебаний: (f=frac 1T=frac Nt)
Длина нити: $$ T=2pisqrt{frac Lg}Rightarrow sqrt{frac Lg}=frac{T}{2pi}Rightarrow frac Lg=left(frac{T}{2pi}right)^2Rightarrow L=gleft(frac{T}{2pi}right)^2 $$ Подставляем: begin{gather*} T=frac 93=3 (c)\ f=frac 13 (Гц)\ L=9,8cdotleft(frac{3}{2pi}right)^2approx 2,234 (м)approx 223 (см) end{gather*} Ответ: 3 с; 1/3 Гц; 223 см

Задача 2. Математический маятник колеблется с частотой 20?тиы кГц. Найдите период колебаний и число колебаний в минуту.

Дано:
(f=20 кГц=2cdot 10^4 Гц)
(t=1 мин=60 с)
__________________
(T, N-?)
Период колебаний: (T=frac 1f)
Частота колебаний за время (t: N=ft)
Подставляем: begin{gather*} T=frac{1}{2cdot 10^4}=0,5cdot 10^{-4} (c)=50cdot 10^{-6} (c)=50 (мкс)\ N=2cdot 10^4cdot 60=1,2cdot 10^6 end{gather*} Ответ: 50 мкс; 1,2·106

Задача 3. Расстояние от улья до цветочного поля 600 м. Пчела летит за нектаром со скоростью 8 м/с и машет крылышками с частотой 440 Гц. Возвращаясь в улей с нектаром, пчела летит со скоростью 5 м/с и машет крылышками с частотой 320 Гц. Найдите разность в количестве взмахов крылышками на пути туда и обратно.

Дано:
(s=600 м )
(v_1=8 м/с)
(f_1=440 Гц)
(v_2=5 м/с)
(f_2=320 Гц)
__________________
(triangle N-?)

Время полета из улья за нектаром (t_1=frac{s}{v_1})
Количество взмахов крылышками (N_1=f_1 t_1=f_1frac{s}{v_1})
Аналогично количество взмахов на пути назад (N_2=f_2frac{s}{v_2})
Найдем каждое из (N): begin{gather*} N_1=440cdotfrac{600}{8}=33000\ N_2=320cdotfrac{600}{5}=38400 end{gather*} На пути обратно пчела с грузом делает больше взмахов. Искомая разность: $$ triangle N=N_2-N_1=38400-33000=5400 $$ Ответ: 5400

Задача 4. Определите длину математического маятника с периодом колебаний 1с, если он находится: а) на Луне ((g_л=1,6 м/с^2)); б) на Марсе ((g_м=3,6 м/с^2)). Ответ запишите в см, с точностью до десятых.

Дано:
(T=1 с )
(g_л=1,6 м/с^2 )
(g_м=3,6 м/с^2)
__________________
(L_л, L_м-?)

Длина нити: begin{gather*} T=2pisqrt{frac Lg}Rightarrowsqrt{frac Lg} =frac{T}{2pi}Rightarrowfrac Lg=left( frac{T}{2pi}right)^2Rightarrow L = gleft(frac{T}{2pi}right)^2 end{gather*} На Луне: $$ L_л=1,6cdotleft(frac{1}{2pi}right)^2approx 0,0405 (м)approx 4,1 (см) $$ На Марсе: $$ L_м=3,6cdotleft(frac{1}{2pi}right)^2approx 0,0912 (м)approx 9,1 (см) $$ Ответ: 4,1 см; 9,1 см

п.5. Лабораторная работа №4. Исследование колебаний математического маятника

Цель работы
Исследовать, от каких величин зависит период колебаний математического маятника.

Теоретические сведения
При малых отклонениях (порядка 15-20° от вертикали) период колебаний математического маятника определяется формулой: $$ T=2pisqrt{frac Lg} $$ где (L) – длина маятника, (g) – ускорение свободного падения.
Для работы принять (gapprox 9,80665 м/с^2).
При заданном периоде колебаний для длины маятника получаем: $$ L=gleft(frac{T}{2pi}right)^2 $$

Приборы и материалы
Два лабораторных грузика по 100 г, крепкая нить (1,5-2 м), линейка (30-50 см), штатив, секундомер.

Ход работы
1. Рассчитайте длину нитей, необходимых для создания маятников с периодами колебаний (T_1=1 с; T_2=2 с).
2. Закрепите один грузик на нити и подвесьте его на штативе так, чтобы длина подвеса была равна расчетной длине (L_1).
3. Отклоните грузик на небольшой угол, отпустите его и с помощью секундомера измерьте время, за которое маятник совершит 10 полных колебаний. Повторите опыт 5 раз. Проведите расчеты для определения периода колебаний (T_{1 эксп}) по методике, изложенной в лабораторной работе №2 (см. §4 данного справочника).
4. Теперь подвесьте грузик так, чтобы длина подвеса была равна расчетной длине (L_2). Повторите серию из 5 экспериментов и определите (T_{2 эксп}).
5. При длине подвеса (L_2) подвесьте к первому грузику второй. Повторите серию из 5 экспериментов и определите (T ‘). Сравните (T ‘) и (T_{2 эксп}).
6. Сделайте выводы о проделанной работе.

Результаты измерений и вычислений

Расчет длины нитей begin{gather*} L=gleft(frac{T}{2pi}right)^2\ T_1=1 c, L_1=9,80665cdotleft(frac{1}{2pi}right)^2approx 0,248 (м)=24,8 (см)\ T_2=2 c, L_1=9,80665cdotleft(frac{2}{2pi}right)^2approx 0,9994 (м)=99,4 (см) end{gather*}

Определение (T_{1 эксп})
Инструментальная погрешность секундомера (d=frac{triangle}{2}=0,1 c)
Время 10 колебаний

№ опыта 1 2 3 4 5 Сумма
(t, c) 9,7 10,2 9,8 9,9 10,3 50
(triangle c) 0,3 0,2 0,2 0,1 0,3 1

begin{gather*} t_{cp}=frac{50}{5}=10\ triangle_{cp}=frac 15=0,2 end{gather*} Среднее абсолютное отклонение больше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t=maxleft{d;triangle_{cp}right}=maxleft{0,1;0,2right}=0,2 text{c} $$ Результат измерения времени 10 колебаний: begin{gather*} t=t_0pmtriangle t, t=(10,0pm 0,2) c end{gather*} Период колебаний в 10 раз меньше: $$ T_{1 эксп}=frac{1}{10}(t_0pmtriangle t), T_{1 эксп}=(1,00pm 0,02) c $$ Относительная погрешность измерений: $$ delta_T=frac{triangle T}{T_{1 эксп}}cdot 100text{%}=frac{0,02}{1}cdot 100text{%}=2,0text{%} $$

Определение (T_{2 эксп})
Время 10 колебаний

№ опыта 1 2 3 4 5 Сумма
(t, c) 19,7 20,1 19,8 20,2 19,7 99,5
(triangle c) 0,2 0,2 0,1 0,3 0,2 1

begin{gather*} t_{cp}=frac{99,5}{5}=19,9\ triangle_{cp}=frac 15=0,2 end{gather*} Среднее абсолютное отклонение больше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t=maxleft{d;triangle_{cp}right}=maxleft{0,1;0,2right}=0,2 text{c} $$ Результат измерения времени 10 колебаний: begin{gather*} t=t_0pmtriangle t, t=(19,9pm 0,2) c end{gather*} Период колебаний в 10 раз меньше: $$ T_{2 эксп}=frac{1}{10}(t_0pmtriangle t), T_{2 эксп}=(1,99pm 0,02) c $$ Относительная погрешность измерений: $$ delta_T=frac{triangle T}{T_{2 эксп}}cdot 100text{%}=frac{0,02}{1,99}cdot 100text{%}approx 1,0text{%} $$

Определение (T ‘) (с двумя грузиками)
Время 10 колебаний

№ опыта 1 2 3 4 5 Сумма
(t, c) 20,2 19,7 19,6 20,0 20,3 99,8
(triangle c) 0,24 0,26 0,36 0,04 0,34 1,24

begin{gather*} t_{cp}=frac{99,8}{5}=19,96\ triangle_{cp}=frac{1,24}{5}approx 0,25 end{gather*} Среднее абсолютное отклонение больше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t=maxleft{d;triangle_{cp}right}=maxleft{0,1;0,25right}=0,25 text{c} $$ Результат измерения времени 10 колебаний: begin{gather*} t=t_0pmtriangle t, t=(19,96pm 0,25) c end{gather*} Период колебаний в 10 раз меньше: $$ T’=frac{1}{10}(t_0pmtriangle t), T’=(1,996pm 0,025) c $$ Относительная погрешность измерений: $$ delta_T=frac{triangle T}{T’}cdot 100text{%}=frac{0,025}{1,996}cdot 100text{%}approx 1,3text{%} $$

Полученные на опыте интервалы для (T_{2 эксп}) и (T’) (одинаковая длина нити (L_2) и разные массы грузиков – 100 г и 200 г соответственно): begin{gather*} 1,97leq T_{2 эксп}leq 2,01\ 1,971leq T’leq 2,021 end{gather*} Таким образом, (T_{2 эксп}approx T’), т.е. период колебаний математического маятника не зависит от массы груза.

Выводы
На основании проделанной работы можно сделать следующие выводы.

В работе с помощью расчетной формулы были определены длины нитей подвеса для маятников с периодами колебаний (T_1=1 с; T_2=2 с).
Полученный на опыте период колебаний для подвеса с (L_1=24,8 см) с грузиком 100 г равен $$ T_{1 эксп}=(1,00pm 0,02) c, delta=2,0text{%} $$ Полученный на опыте период колебаний для подвеса с (L_2=99,4 см) с грузиком 100 г равен $$ T_{2 эксп}=(1,99pm 0,02) c, delta=1,0text{%} $$ Полученный на опыте период колебаний для подвеса с (L_2=99,4 см) с грузиком 200 г равен $$ T’=(1,996pm 0,025) c, delta=1,3text{%} $$ Формула (T=2pisqrt{frac Lg}) данными экспериментами подтверждена.
Период колебаний математического маятника зависит от длины подвеса и не зависит от массы грузика на подвесе.

Частота математического маятника

Автор статьи

Виктор Матвеевич Скоков

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Замечание 1

Колебаниям математический маятника — тела с точечной массой, подвешенного на упругой нити — свойственен изохронизм. Это значит, что их частота не зависит от амплитуды и массы подвешенного тела. Такая система обладает свойствами гармонического осциллятора — устройства, график движения тела, в котором представляет собой синусоиду.

Функция, описывающая гармонические колебания:

$varphi (t) = varphi_0 cdot cos(omega_0 + alpha)$, где:

  • $ alpha$- начальная фаза колебаний,
  • $varphi_0$ — их амплитуда,
  • $omega_0$ — циклическая частота.

Циклическая частота связана с длиной подвеса математического маятника зависимостью:

$omega_0 = sqrt{frac{g}{l}}$,

где $g$ — ускорение свободного падения, $l$ — длина нити.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Эта зависимость получается исходя из того, что при малых отклонениях от вертикали касательную (тангенциальную) составляющую силы, тянущей маятник по дуге, можно найти как сумму векторов силы упругости нити (направлена от тела к центру вращения вдоль нити) и силы тяжести (направлена вертикально вниз). Ускорение, создаваемое касательной силой, относится к ускорению свободного падения в следующем соотношении:

$a = g cdot frac{x}{l}$,

где $l$ — длина нити, $x$ — модуль касательной силы.

Поскольку же уравнение колебательного движения выглядит как

$a = — omega_0^2 cdot x$,

где $omega_0$ — частота циклических колебаний, можно подставить в формулу для нахождения периода колебаний полученное соотношение:

$T = frac{2pi}{omega_0}; omega_0 = sqrt{frac{g}{l}} implies T = 2pi cdot sqrt{frac{l}{g}}$

Частоту можно найти как величину, обратную периоду.

$f = frac{1}{T}$

Пример 1

Найти частоту колебаний маятника с длиной подвеса 1 м.

$T = 2 cdot 3,14 cdot sqrt{frac{1}{9,8}} approx 2 с$.

$f = frac{1}{2} = 0,5$

Ответ: 0,5 колебаний в секунду.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 22.04.2023

Похожие материалы по теме

Автор(ы):
Алексей Алексеевич Ивахно

Автор(ы):
Алексей . Малеев

Автор(ы):
Андрей Геннадьевич Блохин

Автор(ы):
Сергей Феликсович Савельев

Автор(ы):
Наталья Николаевна Пушкина

Решение любого учебного вопроса за 300

  1. Математический маятник. Частота колебаний математического маятника (формула).

Математический
маятник
 —
материальная точка, подвешенная на
невесомой нерастяжимой нити, и совершавшая
колебания в вертикальной плоскости под
действием силы тяжести. Если отклонить
маятник от положения равновесия,
то сила
тяжести и сила
упругости будут
направлены под углом. Равнодействующая
сила уже
не будет равна нулю. Под воздействием
этой силы маятник устремится к положению
равновесия, но по инерции движение
продолжится и маятник отклоняется в
другую сторону. Равнодействующая сила
его снова возвращает.

Частота
математического маятника
 —
Чем больше период колебаний математического
маятника, тем меньше частота.

  

Важно
где происходят колебания! На Луне и на
Земле один и тот же математический
маятник при одинаковых начальных
условиях колебаться будет по-разному.
Так как ускорение
свободного падения на
Луне отличается от ускорения свободного
падения на Земле.

  1. Линейная скорость материальной точки, линейное ускорение материальной точки, единицы измерения. Сложение скоростей.

линейная
скорость

— это производная от пройденного пути
по времени.

Отдельные
точки вращающегося тела имеют различные
линейные скорости 
(метр/сек).
Скорость каждой точки, будучи направлена
по касательной к соответствующей
окружности, непрерывно изменяет свое
направление. Величина
скорости  определяется
скоростью вращения тела  и
расстоянием R рассматриваемой точки от
оси вращения. Пусть за малый промежуток
времени тело
повернулось на угол
Точка, находящаяся на расстоянии R от
оси проходит при этом путь, равный :

Линейная
скорость точки по определению:

линейное
ускорение

— это производная от скорости по времени.

Формула
линейного ускорения:

a
= dv/dt = d2s/dt2,
где s – путь,пройденный телом.

Сложение
скоростей —
с помощью данного закона определяется
скорость движения тела относительно
неподвижной системы отсчёта. Она равна
векторной сумме скорости этого тела
относительно подвижной системы отсчета
и скорости самой подвижной системы
отсчета относительно неподвижной
системы

  

Для
того, чтоб было более понятно, как
работает закон сложения скоростей,
рассмотрим такой пример. Вагон движется
со скоростью 50 кмч (это будет ),
в вагоне идет человек со скоростью 3
кмч (это будет ),
найти скорость человека относительно
Земли.

У
данной задачи будет два решения. Если
человек будет идти по направлению
движения вагона, то скорость человека
относительно Земли будет 53 кмч.

  

А
если человек будет идти против движения
вагона, то скорость человека относительно
Земли будет 47 кмч.

  

В
Формуле мы использовали :

 —
Конечная
скорость тела

 — Скорость
тел в различных инерциальных системах
отчета

  1. Свободные колебания. Пружинный маятник. Частота колебаний пружинного маятника (формула).

Колебания
называются свободными
(или собственными), если они совершаются
за счет первоначальной сообщенной
энергии при последующем отсутствии
внешних воздействий на колебательную
систему (систему, совершающую колебания).

Пружинный
маятник
 —
это груз массой т,
подвешенный на абсолютно упругой пружине
и совершающий гармонические колебания
под действием упругой
силы F kx, где k  жесткость
пружины.

Частота
пружинного маятника — Чем больше
период колебаний пружинного маятника,
тем меньше частота

 —
Частота
Пружинного маятника,
 — Период
колебаний маятника

 —
Масса
груза, или масса маятника,
 —
Жесткость пружины

  1. Угловая
    скорость, частота вращения, период
    вращения (определение, единицы измерения,
    связь между величинами). Связь между
    линейной и угловой скоростями.

Угловая
скорость численно равна углу поворота
радиуса за единицу времени.

Период
и частота

Период
вращения T —
это время, за которое тело совершает
один оборот.

Частота
вращение — это количество оборотов за
одну секунду.

Частота
и период взаимосвязаны соотношением

Связь
с угловой скоростью

Линейная
скорость точки.
Направление вектора линейной скорости
всегда совпадает с касательной к
окружности
 
 Точка,
лежащая на окружности радиусом R,
за один оборот пройдет путь .
Поскольку время одного оборота тела
есть период T,
то модуль линейной скорости точки можно
найти так:

Так
как ,
то

  1. Условия
    возникновения затухающих колебаний
    (соотношение между собственной частотой
    и коэффициентом затухания). Амплитуда
    затухающих колебаний (формула).

Соотношение:

β — коэффициент затухания. Этот коэффициент
характеризует скорость затухания
колебаний, При наличии сил сопротивления
энергия колеблющейся системы будет
постепенно убывать, колебания будут
затухать.

Амплитуда колебаний —
это максимальное расстояние, на
которое удаляется
колеблющееся тело от своего положения
равновесия. Амплитуда
затухающих колебаний изменяется по
закону ,
где А0 –
начальная амплитуда. Зависимость
амплитуды показана на рис. 8.3.

Рис.
8.3. График затухающих колебаний

  1. Механическая
    работа (определение, единицы измерения).
    Мощность силы (определение, единицы
    измерения).

Механическая
рабоат

— то
скалярная физическая величина, которая
характеризует процесс перемещения тела
под действием силы и равна произведению
модуля силы F на модуль перемещения S и
на косинус угла  между
ними

 Если
тело под действием силы  совершает
перемещение ,
работа А этой
силы равна скалярному произведению
силы на вектор перемещения. Работа силы
есть скалярная величинаА=

А=

мощность
силы
 —
скалярная физическая величина N, равная
отношению работы А, совершаемой силой,
к промежутку времени ,
в течение которого она совершается:

Работа
силы, совершаемая в единицу времени,
называется мощностью.
Мощность N это
физическая величина, равная отношению
работы A к
промежутку времени t,
в течение которого совершена эта
работа: 

В
Международной системе (СИ) единица
мощности называется ватт
(Вт)
.
Ватт равен мощности силы, совершающей
работу в 1 Дж за время 1 с. 

Если
тело движется прямолинейно и на него
действует постоянная сила, то она
совершает работу .
Поэтому мощность этой силы

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Амплитуда

Примеры движения

Колебательное движение является одним из наиболее распространенных в природе. Например, можно представить себе струны музыкальных инструментов, качели или голосовые связки человека.

Маятник в физике

В физике колебаниями называются процессы, которые повторяются через равные промежутки времени. Подобные движения рассматривается посредством нескольких моделей:

  • тела, подвешенного на пружине (двигающееся по направлению вверх-вниз);
  • груза на нитке;
  • электрического контура и других.

Амплитуда, период и частота

Если подвесить одновременно два груза на две разные нити и запустить их, то можно заметить, что расстояние отклонения груза от среднего положения до крайнего — разное.

Частота амплитуды

Это величина носит название амплитуды. Обозначается буквой А и измеряется в системе Си в метрах. Также для обозначения подобного движения применяются следующие термины:

Математический маятник

  • Время, за которое маятник приходит в одно и то же положение, называется периодом колебаний.
  • Количество колебаний в единицу времени представляет собой частоту. Она измеряется в Герцах (Гц). Имеет обратную зависимость от периода.
  • Циклическая частота колебаний (угловая, круговая) представляет собой количество колебаний за 2 π секунд. Обозначается греческой буквой омега. Она вводится для упрощения расчетов в теоретической физике и электронике. Единица измерения циклической частоты рад/с.
  • Если имеется два графика функций с одинаковой частотой, но сдвинуты относительно друг друга, то различна их фаза колебаний.

Выделяют понятие свободных колебаний. Когда системе, например, математическому маятнику, придают импульс, чтобы начать движение, дальнейшие его колебания (самостоятельные) будут считаться свободными.

Математический маятник

Эта модель рассматривает движение груза, подвешенного на нитке. Описывается система, в которой масса нитки намного меньше массы груза, а ее длина намного больше его размеров.

Формула расчетаколебаний

Также нить должна быть невесомой и нерастяжимой.

Груз в этом случае считается материальной точкой.

При выполнении этих условий частота колебаний маятника и период не будут зависеть от массы груза. Движение математического маятника рассматривается при небольшом угле отклонения (α). Последний измеряется в радианах, поэтому приблизительно соответствует по значению его синусу и тангенсу. Этот же угол пропорционален отношению смещения на длину нити:

α=x/l.

Второй закон ньютона

На маятник действует синусовая составляющая силы тяжести и тангенсовая сила натяжения нити. Согласно второму закону Ньютона: ma=-mgsin (α). Откуда можно получить a=-gx/l

Вторая производная уравнения движения дает a=-(ω)^2x

Таким образом: -gx/l=-(ω)^2x -> ω ^2=g/l.

Период: T=2π /ω T=2π*sqrt (g/l)

Это формула Галилея, которая описывает движение математического маятника.

Формула частоты колебаний для математического маятника: v=sqrt (l/g)/2π.

Пружинный маятник

Подобным термином называется система, в которой движения совершает груз, подвешенный на легкой пружине.

Пружинный маятник

Тело находится в положении равновесия, если пружина не деформирована. Если ее растянуть или сжать, то система начнет колебания под действием силы упругости, которая направлена на приведение маятника в положение равновесия.

Сила упругости пропорциональна смещению тела (x), но направлена противоположно. Коэффициент пропорциональности между этими двумя величинами носит название жесткости пружины (k). Таким образом:

F=-kx.

Сила упругости достигает наибольшей величины в положении максимального отклонения тела (амплитуда, смещение) от равновесия. В этой точке наибольшую величину имеет и ускорение.

Формулы расчета

По мере того, как тело приближается к положению равновесия, уменьшается сила упругости и ускорение. В средней точки обе величины равны нулю, но ненулевое значение имеет скорость тела. Поэтому груз не останавливается, а продолжает движение.

После прохождения положения равновесия он двигается в обратном направлении по инерции, а сила упругости тянет его назад. Благодаря трению воздуха скорость уменьшается, и маятник останавливается.

Все эти модели можно отнести к классическому гармоническому осциллятору — системе, которая имеет одну степень свободы и описывается единственным уравнением.

Явление резонанса

Резонанс

Это понятие имеет особое значение для описания колебаний. Если имеется некое воздействие, частота которого приближается к собственной частоте системы, то последняя реагирует резким увеличением амплитуды.

Явление резонанса можно представить себе на примере того же математического маятника. Для этого необходимо маятник привязать к веревке, к которой привязать еще один такой же, но с более длинной нитью. При этом длина нитки второго маятника может регулироваться. Если привести в движение оба маятника, а длину второй нитки постепенно изменять, то можно будет заметить, что амплитуда увеличивается по мере приближения размеров обеих ниток.

В этом случае первый маятник будет приемником колебаний, а второй — передатчиком. Причиной увеличения амплитуды является колебание подвески с такой же частотой.

Колебательный контур

Является еще одним примером колебаний, на котором основаны все радиоприемники. Контур играет роль приемника сигнала.

Колебательный контур

В простейшем примере представляет собой замкнутую цепь из катушки индуктивности и конденсатора. При определенных обстоятельствах в подобном контуре могут возникать и поддерживаться электрические колебания.

Для возбуждения колебаний необходимо подключить источник постоянного напряжения к конденсатору и зарядить его. После этого источник убрать, а цепь замкнуть.

Конденсатор разряжается через катушку индуктивности, а в цепи создается ток, интенсивность которого увеличивается по мере разряда конденсатора. Вокруг катушки создается магнитное поле.

Колебательный контур с резистором

Электрический заряд конденсатора преобразовался в магнитное поле. После этого магнитное поле катушки будет уменьшаться, а конденсатор обратно заряжаться. Процесс повторяется циклически и описывается теми же характеристиками, что и механические колебания: частотой, амплитудой и периодом.

Они являются свободными и затухающими. Чтобы их поддерживать, необходимо периодически заряжать конденсатор.

Звук и электромагнитные волны

Таблица электромагнитных волн в физике

Понятие частоты вводится и для звуковых и электромагнитных волн. Первые представляют собой колебания плотности среды. Вторые — изменение со временем напряженности магнитного и электрического полей.

От частоты звука зависит его тональность. Этим свойством пользуются для стандартизации описания музыки и создания музыкальных инструментов — каждой ноте соответствует своя частота.

До 16 Гц человеческое ухо не воспринимает, так же как и выше 20 КГЦ. Более высокие частоты используются в эхолокации, ультразвуковой диагностике.

Примеры частоты и длинны электромагнитных волн волн

Частота электромагнитных волн также определяет их способность взаимодействовать с человеческим организмом. Рентгеновское излучение проходит насквозь, при этом взаимодействуя с молекулами, вызывая их ионизацию. Ультразвук провоцирует процессы загара, фотосинтеза. Радиоволновое излучение практически не оказывает прямого воздействия, но хорошо подходит для передачи информации. В видимом диапазоне частота определяет цвет.

Есть также такая характеристика, как частота колебаний молекул. Она зависит от температуры тела и определяет его агрегатное состояние.

Таким образом, частота колебаний описывает большое количество процессов и оказывает воздействие на их характеристики.

Понравилась статья? Поделить с друзьями:
  • Как составить свою родословную генеалогическое древо семьи
  • Если понравилась картинка как ее найти
  • Как найти массу топлива формула
  • Как найти размер зарплаты
  • Как найти каналы в печке