Как найти частоту излучения электромагнитных волна

Длина, скорость и частота электромагнитной волны.


Онлайн калькулятор перевода длины волны в частоту для широкого диапазона частот, включая радиоволны, микроволны, инфракрасное излучение,
видимый свет, ультрафи- олетовое излучение, рентгеновские и гамма лучи.

Электромагнитные колебания — это взаимосвязанные колебания электрического и магнитного полей, проявляющиеся в периодическом изменении
напряжённости (E) и индукции (B) поля в электроцепи или пространстве. Эти поля перпендикулярны друг другу в направлении движения волны
(Рис.1) и, в зависимости от частоты, представляют собой: радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое
излучение, рентгеновские либо гамма-лучи.

Длина, скорость и частота электромагнитной волны
Рис.1

Длина волны, обозначаемая буквой λ и измеряемая в метрах —
это расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе.
Другими словами, это расстояние, на котором фаза электромагнитной волны вдоль направления распространения меняется на 2π.

Время, за которое волна успевает преодолеть это расстояние (λ), т. е. интервал времени, за который периодический колебательный процесс
повторяется, называется периодом колебаний, обозначается буквой (тау) или Т и измеряется в метрах.

Частота электромагнитных колебаний связана с периодом простейшим соотношением:
f (Гц) = 1 / T (сек).

Скорость распространения электромагнитных волн в вакууме (v) равна скорости
света и составляет величину:
v = С = 299792458 м/сек.
В среде эта скорость уменьшается: v = С / n, где
n > 1 — это показатель преломления среды.
Абсолютный показатель преломления любого газа (в том числе воздуха) при обычных условиях мало чем отличается от единицы, поэтому
с достаточной точностью его можно не учитывать в условиях распространения электромагнитных волн в воздушном пространстве.

Соотношение, связывающее длину волны со скоростью распространения в общем случае, выглядит следующим образом:
λ (м) = v (м/сек) *Т (сек) = v (м/сек) / f (Гц).

И окончательно для воздушной среды:

λ (м) = 299792458 *Т (сек) = 299792458 / f (Гц).

Прежде чем перейти к калькуляторам, давайте рассмотрим шкалу частот и длин волн непрерывного диапазона электромагнитных волн,
которая традиционно разбита на ряд поддиапазонов. Соседние диапазоны могут немного перекрываться.

   Диапазон   Полоса частот   Длина волны 
 Сверхдлинные радиоволны    3…30 кГц  100000…10000 м
 Длинные радиоволны    30…300 кГц  10000…1000 м
 Средние радиоволны    300…3000 кГц  1000…100 м
 Короткие радиоволны    3…30 МГц  100…10 м
 Метровый радиодиапазон    30…300 МГц  10…1 м
 Дециметровый радиодиапазон    300…3000 МГц  1…0,1 м
 Сантиметровый СВЧ диапазон    3…30 ГГц  10…1 см
 Микроволновый СВЧ диапазон    30…300 ГГц  1…0,1 см
 Инфракрасное излучение    0,3…405 ТГц  1000…0,74 мкм
 Красный цвет    405…480 ТГц  740…625 нм
 Оранжевый цвет    480…510 ТГц  625…590 нм
 Жёлтый цвет    510…530 ТГц  590…565 нм
 Зелёный цвет    530…600 ТГц  565…500 нм
 Голубой цвет    600…620 ТГц  500…485 нм
 Синий цвет    620…680 ТГц  485…440 нм
 Фиолетовый цвет    680…790 ТГц  440…380 нм
 Ультрафиолетовое излучение    480…30000 ТГц  400…10 нм
 Рентгеновское излучение    30000…3000000 ТГц  10…0,1 нм
 Гамма излучение   3000000…30000000 ТГц    0,1…0,01 нм

А теперь можно переходить к калькуляторам.

КАЛЬКУЛЯТОР РАСЧЁТА ДЛИНЫ ВОЛНЫ ПО ЧАСТОТЕ

   Частота электромагнитных колебаний f  

     


   Показатель преломления среды (по умолч. 1)  
     

  

   Длина волны   
     

КАЛЬКУЛЯТОР РАСЧЁТА ЧАСТОТЫ ПО ДЛИНЕ ВОЛНЫ

   Длина электромагнитной волны в вакууме λ      

     


  

   Частота   
     

В радиочастотной практике имеет распространение величина Kp, называемая коэффициентом укорочения. Однако здесь
существует некоторая путаница. Одни источники интерпретируют эту величину, как отношение длины волны в среде к длине волны в вакууме,
т. е. численно равной Kp = 1/n, где n — это, как мы помним, показатель преломления среды.
Другие, наоборот — как отношение длины волны в вакууме к длине волны в среде, т. е. Kp = n.
Поэтому надо иметь в виду — если Kp > 1, то значение показателя преломления среды, которое следует подставлять в калькулятор n = Kp, а
если Kp < 1, то n = 1/Kp.

Частота и длина волны

Электромагнитная волна характеризуется одним главным параметром — числом гребней, которые за секунду проходят мимо наблюдателя (или поступают в детектор). Эту величину называют частотой излучения ν. Поскольку для всех электромагнитных волн скорость в вакууме (с) одинакова, по частоте легко определить длину волны λ:

λ = с/ν.

Мы просто делим путь, пройденный светом за секунду, на число колебаний за то же время и получаем длину одного колебания. Длина волны — очень важный параметр, поскольку она определяет пограничный масштаб: на расстояниях заметно больше длины волны излучение подчиняется законам геометрической оптики, его можно описывать как распространение лучей. На меньших расстояниях совершенно необходимо учитывать волновую природу света, его способность обтекать препятствия, невозможность точно локализовать положение луча и т. п.

Из этих соображений, в частности, следует, что невозможно получить изображение объектов, если их размер порядка или меньше длины волны излучения, на которой ведется наблюдение. Это, в частности, ставит предел возможностям микроскопов. В видимом свете невозможно рассмотреть объекты размером менее полмикрона; соответственно, увеличение больше чем 1-2 тысячи раз для оптического микроскопа лишено смысла.

Далее: История открытия электромагнитных волн



Загрузить PDF


Загрузить PDF

Частота (или частота волны) — это число полных колебаний или циклов волны, совершенных в единицу времени. Есть несколько различных способов вычислить частоту в зависимости от данной вам информации.

  1. Изображение с названием Calculate Frequency Step 1

    1

    Формула: f = V / λ[1]

    • где f — частота, V — скорость волны, λ — длина волны.
    • Пример: вычислите частоту звуковой волны, если длина волны равна 322 нм, а скорость звука равна 320 м/сек.
  2. Изображение с названием Calculate Frequency Step 2

    2

    Преобразуйте единицы измерения длины волны в метры (если необходимо). Если длина волны дается в нанометрах, вам нужно конвертировать это значение в метры, разделив его на количество нанометров в одном метре.[2]

    • Обратите внимание, что при работе с очень малыми или очень большими числами лучше записывать их в экспоненциальном формате. В этой статье числа будут даны как в обычном, так и в экспоненциальном формате.
    • Пример: λ = 322 нм
      • 322 нм x (1 м / 10^9 нм) = 3,22 x 10^-7 м = 0,000000322 м
  3. Изображение с названием Calculate Frequency Step 3

    3

    Разделите скорость волны на ее длину. Для вычисления частоты (f) разделите скорость волны (V) на ее длину (λ), выраженную в метрах.[3]

    • Пример: f = V / λ = 320 / 0.000000322 = 993788819,88 = 9,94 x 10^8
  4. Изображение с названием Calculate Frequency Step 4

    4

    Запишите ответ. Рядом поставьте единицу измерения частоты — Герц (Гц).

    • Пример: частота этой волны равна 9,94 х 10^8 Гц.

    Реклама

  1. Изображение с названием Calculate Frequency Step 5

    1

    Формула: f = C / λ. Формула для вычисления частоты волны в вакууме практически идентична формуле для вычисления частоты волны в средах. В вакууме не существует факторов, влияющих на скорость волны, поэтому в формуле используется постоянная величина скорости света, с которой распространяются электромагнитные волны в вакууме.[4]

    • В формуле f — частота, С — скорость света, λ — длина волны.
    • Пример: вычислите частоту электромагнитной волны, если ее длина равна 573 нм.
  2. Изображение с названием Calculate Frequency Step 6

    2

    Преобразуйте единицы измерения длины волны в метры (если необходимо). Если длина волны дается в нанометрах, вам нужно конвертировать это значение в метры, разделив его на количество нанометров в одном метре.

    • Обратите внимание, что при работе с очень малыми или очень большими числами лучше записывать их в экспоненциальном формате. В этой статье числа будут даны как в обычном, так и в экспоненциальном формате.
    • Пример: λ = 573 нм
      • 573 нм х ( 1 м / 10^9 нм) = 5,73 х 10^-7 м = 0,000000573
  3. Изображение с названием Calculate Frequency Step 7

    3

    Разделите скорость света на длину волны. Скорость света является постоянной величиной, которая равна 3,00 х 10^8 м/с. Разделите эту величину на длину волны (в метрах).[5]

    • Пример: f = С / λ = 3,00 х 10^8 / 5,73 х 10^-7 = 5,24 х 10^14
  4. Изображение с названием Calculate Frequency Step 8

    4

    Запишите ответ. Рядом поставьте единицу измерения частоты — Герц (Гц).

    • Пример: частота этой волны равна 5,24 х 10^14 Гц.

    Реклама

  1. Изображение с названием Calculate Frequency Step 9

    1

    Формула: f = 1 / T.[6]
    Частота обратно пропорциональна времени, которое необходимо для совершения одного колебания волны.

    • В формуле f — частота, Т — время, которое необходимо для совершения одного колебания волны.
    • Пример А: вычислите частоту волны, если ей необходимо 0,32 с для совершения одного колебания.
    • Пример B: за 0,57 секунд волна совершает 15 колебаний. Вычислите частоту этой волны.
  2. Изображение с названием Calculate Frequency Step 10

    2

    Разделите число колебаний на время. Если в задаче дано время, затрачиваемое на 1 колебание, то в этом случае просто разделите 1 на время (Т). Если в задаче дано время, затрачиваемое на несколько колебаний, то в этом случае разделите данное количество колебаний (n) на время (Т).[7]

    • Пример А: f = 1 / T = 1 / 0,32 = 3,125
    • Пример B : f = n / T = 15 / 0,57 = 26,316
  3. Изображение с названием Calculate Frequency Step 11

    3

    Запишите ответ. Рядом поставьте единицу измерения частоты — Герц (Гц).

    • Пример А: частота волны равна 3,125 Гц.
    • Пример B: частота волны равна 26,316 Гц.

    Реклама

  1. Изображение с названием Calculate Frequency Step 12

    1

    Формула: f = ω / (2π)[8]

    • где f — частота, ω — угловая частота, π — число Пи (математическая константа).
    • Пример: волна вращается с угловой частотой 7,17 радиан в секунду. Вычислите частоту этой волны.
  2. Изображение с названием Calculate Frequency Step 13

    2

    Умножьте Пи на два.

    • Пример: 2 * π = 2 * 3,14 = 6,28
  3. Изображение с названием Calculate Frequency Step 14

    3

    Разделите угловую частоту (в радианах в секунду) на удвоенное число пи (6,28).[9]

    • Пример: f = ω / (2π) = 7,17 / (2 * 3,14) = 7,17 / 6,28 = 1,14
  4. Изображение с названием Calculate Frequency Step 15

    4

    Запишите ответ. Рядом поставьте единицу измерения частоты — Герц (Гц).

    • Пример: частота волны равна 1,14 Гц.

    Реклама

Что вам понадобится

  • Калькулятор
  • Карандаш
  • Бумага

Об этой статье

Эту страницу просматривали 113 996 раз.

Была ли эта статья полезной?

Электромагнитные волны (также называют как электромагнитное излучение) — это распространение в пространстве переменных электрических и магнитных полей. Другими словами, это поперечные волны, распространяющиеся со скоростью 300 000 км/с в вакууме. Электромагнитные волны включают: радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолет, рентгеновские и гамма-лучи. Приведенные волны различаются по длине и частоте.

В этой статье вы узнаете, что такое электромагнитные волны, как они используются, а также важные формулы, которые математически их описывают.

Что такое электромагнитная волна?

Название «электромагнитные волны» состоит из двух частей — «электромагнитные» и «волны». Волны» говорит о том, что что-то периодически колеблется вверх и вниз. Добавление слова «электромагнитный» говорит о том, что это «что-то» — электрические и магнитные поля.

Это означает, что электромагнитные волны (также называемые электромагнитным излучением) описывают периодическое колебание электрического и магнитного полей. Поля не колеблются беспорядочно вверх и вниз, а связаны друг с другом так, что электрическое поле перпендикулярно магнитному полю (см. рисунок 1).

Электромагнитная волна

Рис. 1. Электромагнитная волна

Когда мы помещаем куда-либо положительный или отрицательный электрический заряд, в пространстве вокруг него возникают силы, действующие на другие заряды; например, явление поляризации (разделение электрических зарядов в проводнике). Мы говорим, что электрический заряд создает вокруг себя электрическое поле, и это поле оказывает влияние на другие заряды. Это электрическое поле отвечает за протекание электрического тока.

Если заряд, создающий поле, перемещается, т.е. приближается к одним зарядам и удаляется от других, то действующие силы будут меняться. Из этого следует, что поле будет меняться. Поэтому мы можем иметь дело с полем, постоянным во времени (статическим), или с полем, изменяющимся во времени. Если электрическое поле в проводнике постоянно, то постоянна и сила тока. Если поле меняется, то меняется и электрический ток.

То же самое справедливо и для магнитных сил — они возникают в пространстве вокруг магнита, электромагнита или проводника, в котором течет электрический ток. Это означает, что эти тела являются источниками магнитного поля. Если источники поля неподвижны, а электрический ток в обмотках электромагнита или одиночного проводника имеет постоянное значение, то создаваемое поле будет статическим. Движение источников и изменение силы тока создадут переменное поле.

Вы уже знаете, что изменение положения магнита относительно проводника может вызвать протекание в нем электрического тока. Поскольку для этого потока необходимо электрическое поле, следует, что переменное магнитное поле создает электрическое поле. Вы также знаете, что при протекании электрического тока в проводнике возникает магнитное поле вокруг проводника, и если электрический ток течет то в одну, то в другую сторону, или его интенсивность увеличивается или уменьшается, то магнитное поле, создаваемое этим электрическим током, будет переменным.

Что происходит, когда в каком-либо месте возникает переменное магнитное поле? Сразу же появится переменное электрическое поле. Там не обязательно должен быть проводник. А когда в определенном месте появляется изменяющееся электрическое поле (например, при движении)? Да, вы правы — в этом месте появится переменное магнитное поле. Именно так эти поля переносятся в пространстве.

Деформация поверхности воды распространяется, создавая волну, а сгущение воздуха, вызванное движением струны, передается по воздуху, создавая звуковую волну. В отношении переменных электрических и магнитных полей мы говорим об электромагнитной волне. Во второй половине 19 века теория распространения волн была разработана Джеймсом Клерком Максвеллом. Известно, что он как-то сказал, что это чрезвычайно красивая теория, которая никогда не будет полезна.

Электромагнитные волны были открыты Генрихом Герцем в 1886 году. Теория Максвелла была подтверждена, но Герц не дожил до рождения радио.

Как видно из вышесказанного, для того чтобы возбудить электромагнитную волну, необходимо где-то индуцировать изменение магнитного или электрического поля. А как узнать, что волна куда-то дошла? Если мы возбудим механическую волну на одном берегу озера, то, когда она достигнет лодки, плывущей по воде на другом берегу, мы заметим, что она начнет подниматься и опускаться. Электромагнитная волна, создаваемая переменными электрическим и магнитным полями, вызывает электрический ток в замкнутой цепи приемника. Наиболее важное различие между обоими типами волн заключается в том, что механическая волна требует материальной среды, в которой она может распространяться. Электромагнитная волна может распространяться в вакууме.

Свойства электромагнитных волн

Существует ряд свойств, которыми обладают электромагнитные волны. В этом подразделе мы перечислим наиболее важные свойства и их значение.

  • Среда распространения. В то время как механические волны нуждаются в среде для распространения, электромагнитные волны могут распространяться и в вакууме. Электромагнитные волны могут распространяться не только в вакууме, но и в газах, таких как воздух, в жидкостях, таких как вода, или в твердых телах, таких как стекловолокно. Такое разнообразие сред распространения позволяет использовать электромагнитные волны для многих технологических и нетехнологических применений.
  • Скорость распространения. Электромагнитные волны распространяются в вакууме со скоростью около c = 3*108 м / с. Это также скорость, с которой распространяется свет. Это открытие стало первым указанием на то, что свет является электромагнитным излучением.
  • Тип распространения. Если бы вы посмотрели в направлении электромагнитной волны и увидели, например, колебания электрического поля, вы бы заметили, что электрическое поле колеблется перпендикулярно направлению распространения волны. Поэтому электромагнитные волны являются поперечными волнами. Благодаря этому свойству электромагнитное излучение может быть поляризовано. Магнитное поле всегда перпендикулярно электрическому полю.
  • Цвет. Каждая электромагнитная волна имеет длину волны. Длина волны и частота волны могут быть преобразованы друг в друга (подзаголовок «Формулы»). Определенный цвет соответствует определенной длине волны (следовательно, и определенной частоте). Эта взаимосвязь между длиной волны и цветом иллюстрируется электромагнитным спектром.

Формулы

В этом разделе мы покажем вам, как преобразовать длину волны, частоту и энергию электромагнитной волны.

Связь длины волны с частотой и энергии с частотой.

В вакууме все типы электромагнитных волн распространяются с одинаковой скоростью (c). В любой другой среде считаем, что электромагнитные волны распространяются со скоростью v.

Если обозначить длину волны через λ, а частоту через f, то получится следующее: с = λ * f (1), где c — скорость света.

Однако это соотношение также применимо к волнам, которые распространяются не со скоростью c, а со скоростью v. Длина волны показывает пространственное расстояние между двумя гребнями или впадинами волны. Обратная величина частоты дает временное расстояние между двумя гребнями или впадинами. Поэтому длина волны имеет единицу измерения метр [ м ], а частота — единицу c-1 = 1 / c .

Между энергией E волны и ее частотой f действует соотношение: E = h * f (2), где h — постоянная Планка.

Если мы возьмем первое соотношение и преобразуем его к частоте, то получим f = c / λ .

Если мы теперь заменим частоту f во второй формуле на c / λ , то получим E = h * c / λ = ( h*c ) / λ .

Это означает, что все три величины связаны друг с другом. Таким образом, если вы задали одну из трех величин, вы можете рассчитать две другие. Например, если вы знаете длину волны, вы можете использовать формулу f = c / λ и вычислить частоту, а далее использовать формулу E = ( h*c ) / λ для того, чтобы вычислить энергию электромагнитной волны E.

Преобразование единиц измерения.

При выполнении таких преобразований всегда следите за тем, чтобы единицы измерения правильно соотносились друг с другом. Энергия E имеет единицу измерения джоуль (Дж), поэтому мы ожидаем, что выражение ( h*c ) / λ также имеет единицу измерения джоуль. Скорость света c имеет единицу измерения метр в секунду [ м / c ], длина волны λ имеет единицу измерения метр [ м ] и постоянная Планка имеет единицу измерения [ Дж*с ].

Таким образом, выражение ( h*c ) / λ имеет единицу измерения: ( Дж * с * м / c ) / м = Дж.

Виды электромагнитных волн и их диапазоны длин

Вид волны Длина волны
Радиоволны Более 1 м
Микроволны От 1 мм до 1 м
Инфракрасные от 700 нм до 1 мм
Видимый свет от 380 нм до 700 нм
Ультрафиолетовые от 10 нм до 380 нм
Рентгеновские лучи от 5 пм do 10 нм
Диапазоны длин электромагнитных волн

Волны располагаются в порядке возрастания частоты и уменьшения длины, поскольку чем длиннее волна, тем ниже ее частота. Волны с высокой частотой, т.е. ультрафиолетовые, рентгеновские и гамма-лучи, несут в себе высокую энергию. Взаимодействие этих волн с живыми организмами может привести к повреждению клеток или даже смерти (при высокой дозе излучения).

Применение

Радиоволны.

Радио- и телевизионные волны имеют самые низкие частоты. Они используются в основном для общения. Они позволяют передавать изображения и звук, что является основой радио- и телевизионных станций. Радиоволны делятся на длинные и короткие в зависимости от их длины. Коротковолновые радиостанции используют разные частоты для разных частей страны. Существуют также станции, которые вещают на одной частоте для всей страны — тогда используются так называемые длинные волны.

Радиоволны также использовались в астрономических наблюдениях. В космосе есть небесные тела, которые являются естественными источниками радиоволн. Радиотелескопы (рисунок 2) используются в обсерваториях для проведения так называемого прослушивания, то есть исследования отдаленных частей космоса.

Радиотелескоп

Рис. 2. Радиотелескоп расположен в северной части Чили в пустыне Атакама. Его диаметр составляет 12 м, а масса — 125 тонн. Он был построен в результате сотрудничества между Институтом радиоастрономии Макса Планка, Онсальской обсерваторией (OSO) и Европейской южной обсерваторией (ESO).

Микроволны.

Микроволны чаще всего ассоциируются с микроволновой печью, и это лишь одно из многих возможных применений. Они производятся специальными электронными трубками. Микроволны легко распространяются по воздуху, даже при неблагоприятных атмосферных условиях (туман, осадки). Именно поэтому они используются в радарах — устройствах, применяемых для определения местоположения. Радары используются в метеорологии, например, для отслеживания дождевых облаков. Микроволны также используются в радио- и спутниковой связи, т.е. между спутником и Землей (телефоны, факсы, передача данных) и между спутниками. Частота, соответствующая микроволнам, также используется в: мобильной телефонии, GPS-навигации, связи Bluetooth и беспроводных компьютерных сетях WLAN.

Помните! Микроволны — это электромагнитные волны, используемые в радарах, спутниковой связи и GPS-навигации.

Инфракрасное излучение.

Инфракрасное излучение испускается всеми телами с температурой выше абсолютного нуля. Источниками инфракрасного излучения являются горячий утюг, лампочка, кожа человека, солнце и т.д. Некоторые термометры работают путем измерения частоты излучения, испускаемого кожей. Поскольку человеческое тело является источником инфракрасного излучения, для наблюдения в ночное время можно использовать камеры ночного видения и тепловизоры. Гадюки наблюдают за окружающей средой таким же образом, поскольку у них есть рецепторы, которые работают как приборы ночного видения.

Поверхности твердых тел и жидкостей нагреваются инфракрасным излучением, поскольку частота волны и частота колебаний молекул твердых тел и жидкостей одинаковы. Инфракрасное излучение не нагревает газы, поэтому астрономы используют это свойство для наблюдения за зарождающимися звездами в туманностях. Инфракрасное излучение также нашло применение в передаче данных — в камерах сотовой связи IRDA и в оптических волокнах. Для считывания компакт-дисков используются лазеры, излучающие свет с длиной волны 650-790 нм.

Инфракрасный снимок

Рис. 3. Инфракрасный снимок. Источник: NASA

Помните! Инфракрасный свет излучается различными телами, например, лампочками, Солнцем, человеческим телом. Он нагревает твердые вещества и жидкости, на которые падает. Он используется, например, в камерах ночного видения и тепловизорах.

Видимый свет.

Видимый свет, т.е. свет, регистрируемый человеческим зрением, находится в диапазоне от 400 нм до 780 нм. Глаз воспринимает волны различных частот и их комбинации, а мозг интерпретирует их как цвета.

Ультрафиолет (УФ) — это излучение, которое достигает нас вместе с солнечными лучами. Он необходим для выработки витамина D в организме человека, но избыток этого излучения может иметь серьезные последствия. Когда вы загораете, загар возникает под воздействием ультрафиолетового излучения, но иногда кожа обгорает. Длительный загар вызывает повреждение коллагеновых волокон кожи и ускоряет ее старение (образование морщин).

Слишком высокие дозы ультрафиолетового излучения могут привести к необратимым изменениям кожи, вплоть до рака. Поэтому важно защитить себя от этого излучения. Рекомендуется использовать кремы с УФ-фильтрами (чем выше фактор защиты от солнца, тем лучше), которые действительно защищают кожу. Помните также, что ультрафиолетовое излучение включает в себя свет электрической дуги, который образуется при электросварке (мы видим такой свет, например, при сварке трамвайных рельсов). Если смотреть на такую дугу в течение нескольких секунд, это повредит зрению.

Ультрафиолетовое излучение.

Ультрафиолетовое излучение можно использовать для считывания водяных знаков на банкнотах (см. рисунок 4). Его источником являются кварцевые лампы. Ультрафиолет оказывает неблагоприятное воздействие на живые организмы, поэтому его используют в больницах, например, для стерилизации помещений или медицинского оборудования. Ультрафиолетовое излучение также используется в криминалистике для наблюдения биологических следов, например, крови.

Водяные знаки на банкнотах

Рис. 4. Водяные знаки на банкнотах, которые считываются с помощью ультрафиолета

Помните! Ультрафиолет — это электромагнитная волна с частотой выше, чем у видимого света. Источниками ультрафиолета являются Солнце и кварцевые лампы. Он используется, в частности, для стерилизации больничных палат и в судебной медицине.

Рентгеновское излучение.

В 1895 году Вильгельм Рентген открыл рентгеновские лучи (Х-лучи). Его источником являются специальные лампы. Они испускают излучение в результате замедления блуждающих электронов на металлическом электроде. Рентгеновские лучи широко используются в медицинской диагностике (рентген, маммография и другие), поскольку они проникают через кожу и поглощаются костями. Слишком высокая доза этого излучения может привести к повреждению внутренних органов и поражениям, поэтому во время обследований используются экраны — фартуки из резины с содержанием оксида свинца. Такое излучение может повредить генетический материал клеток и привести к генетическим изменениям в потомстве.

Гамма-излучение — это электромагнитная волна с самой высокой частотой и самой короткой длиной волны. Оно гораздо более проникающее, чем рентгеновские лучи, и может свободно проникать через бумагу, картон, алюминий. Но, в тоже время, гамма-излучение отлично поглощается слоем свинца. Источниками этого излучения являются различные радиоактивные элементы. Некоторые из них используются в медицине и радиотерапии.

Список использованной литературы

  1. Аксенович Л.А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л.А. Аксенович, Н.Н. Ракина, К.С. Фарино; Под ред. К.С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 434-436.
  2. А так ли хорошо знакомы вам электромагнитные волны? // Квант. — 1993. — № 3. — С. 56-57.
  3. Кудряшов Ю. Б., Перов Ю. Ф. Рубин А. Б. Радиационная биофизика: радиочастотные и микроволновые электромагнитные излучения. Учебник для ВУЗов. — М.: ФИЗМАТЛИТ, 2008. — 184 с — ISBN 978-5-9221-0848-5

Вспомним, что волна — это колебания, распространяющиеся в пространстве. Механическая волна представляет собой колебания, распространяющиеся в вещественной среде. Тогда электромагнитная волна — это электромагнитные колебания, которые распространяются в электромагнитном поле.

Как появляются и распространяются электромагнитные волны

Представьте себе неподвижный точечный заряд. Пусть его окружают еще много таких зарядов. Тогда он будет действовать на них с некоторой кулоновской силой (и они на него). А теперь представьте, что заряд сместился. Это приведет к изменению расстояния по отношению к другим зарядам, а, следовательно, и к изменению сил, действующих на них. В результате они тоже сместятся, но с некоторым запаздыванием. При этом начнут смещаться и другие заряды, которые взаимодействовали с ними. Так распространяется электромагнитные взаимодействия.

Теперь представьте, что заряд не просто сместился, а он начал быстро колебаться вдоль одной прямой. Тогда по характеру движения он будет напоминать шарик, подвешенный к пружине. Разница будет только в том, что колебания заряженных частиц происходят с очень высокой частотой.

Вокруг колеблющегося заряда начнет периодически изменяться электрическое поле. Очевидно, что период изменений этого поля, будет равен периоду колебаний заряда. Периодически меняющееся электрическое поле будет порождать периодически меняющееся магнитное поле. Это магнитное поле, в свою очередь, будет создавать переменное электрическое поле, но уже на большем расстояние от заряда, и т.д. В результате появления взаимно порождаемых полей в пространстве, окружающем заряд, возникает система взаимно перпендикулярных, периодически меняющихся электрических и магнитных полей. Так образуется электромагнитная волна, которая распространяется от колеблющегося заряда во все стороны.

Электромагнитная волна не похожа на те возмущения вещественной среды, которые вызывают механические волны. Посмотрите на рисунок. На нем изображены векторы напряженности E и магнитной индукции B в различных точках пространства, лежащих на оси Oz, в фиксированный момент времени. Никаких гребней и впадин среды при этом не появляется.

Урок 10. электромагнитные волны - Физика - 11 класс - Российская электронная школа

В каждой точке пространства электрические и магнитные пол меняются во времени периодически. Чем дальше расположена точка от заряда, тем позднее ее достигнут колебания полей. Следовательно, на разных расстояниях от заряда колебания происходят с различными фазами. Колебания векторов E и B в любой точке совпадают по фазе.

Определение

Длина электромагнитной волны — расстояние между двумя ближайшими точками, в которых колебания происходят в одинаковых фазах.

Длина электромагнитной волны обозначается как λ. Единица измерения — м (метр).

Обратите внимание на рисунок выше. Векторы магнитной индукции и напряженности поля, являющиеся периодически изменяющимися величинами, в любой момент времени перпендикулярны направлению распространения волны. Следовательно, электромагнитная волна — поперечная волна.

Условия возникновения электромагнитных волн

Электромагнитные волны излучаются только колеблющимися заряженными частицами. При этом важно, чтобы скорость их движения постоянно менялась, т.е. чтобы они двигались с ускорением.

Наличие ускорения — главное условие возникновения электромагнитных волн.

Электромагнитное поле может излучаться не только колеблющимся зарядом, но и заряженной частицей, перемещающейся с постоянно меняющейся скоростью. Интенсивность электромагнитного излучения тем больше, чем больше ускорение, с которым движется заряд.

Представим заряд, движущийся с постоянной скоростью. Тогда создаваемые им электрическое и магнитное поля будут сопровождать его как шлейф. Только при ускорении заряда поля «отрываются» от частицы и начинают самостоятельное существование в форме электромагнитных волн.

Это интересно!

Впервые существование электромагнитных волн предположил Максвелл, который посчитал, что они должны распространяться со скоростью света. Но экспериментально они были обнаружены лишь спустя 10 лет после смерти ученого. Их открыл Герц. Он же подтвердил, что скорость распространения электромагнитных волн равна скорости света: c = 300 000 км/с.

Плотность потока электромагнитного излучения

Излученные электромагнитные волны несут с собой энергию. Рассмотрим поверхность площадью S, через которую электромагнитные волны переносят энергию.

На рисунке выше прямые линии указывают направления распространения электромагнитных волн. Это лучи — линии, перпендикулярные поверхностям, во всех точках которых колебания происходят в одинаковых фазах. Такие поверхности называются волновыми поверхностями.

Определение

Плотность потока электромагнитного излучения, или интенсивность волны — отношение электромагнитной энергии ΔW, проходящей за время Δt через перпендикулярную лучам поверхность площадью S, к произведению площади S на время Δt.

Плотность потока электромагнитного излучения обозначается как I. Единица измерения — Вт/м2 (ватт на квадратный метр). Поэтому плотность потока электромагнитного излучения фактически представляет собой мощность электромагнитного излучения, проходящего через единицу площади поверхности.

Численно плотность потока электромагнитного излучения определяется формулой:

I=ΔWSΔt

Выразим I через плотность электромагнитной энергии и скорость ее распространения с. Выберем поверхность площадью S, перпендикулярную лучам, и построим на ней как на основании цилиндр с образующей cΔt (см. рисунок ниже).

Объем цилиндра: ΔV = ScΔt. Энергия электромагнитного поля внутри цилиндра равна произведению плотности энергии на объем: ΔW = wcΔtS. Вся эта энергия за время Δt пройдет через правое основание цилиндра. Поэтому получаем:

I=wcΔtSSΔt=wc

Следовательно, плотность потока электромагнитного излучения равна произведению плотности электромагнитной энергии на скорость ее распространения.

Определение

Плотность электромагнитной энергии — энергия электромагнитного излучения в единице объема. Обозначается как w. Единица измерения — Дж/м3.

Пример №1. Плотность потока излучения равна 6 мВт/м2. Найти плотность энергии электромагнитной волны.

I=wc

Отсюда:

w=Ic=6·1033·108=2·1011 (Джм3)

Точечный источник излучения

Источники излучения электромагнитных волн могут быть весьма разнообразными. Простейшим является точечный источник.

Точечный источник — источник излучения, размеры которого много меньше расстояния, на котором оценивается его действие.

Предполагается, что точечный источник посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью. В действительности таких источников не существует. Но за такие источники излучения можно принять звезды, так как расстояние между ними существенно больше размеров самих звезд.

Энергия, которую переносят электромагнитные волны, с течением времени распределяется по все большей и большей поверхности. Поэтому энергия, передаваемая через поверхность единичной площадки за единицу времени, т. е. плотность потока излучения, уменьшается по мере удаления от источника.

Поместим точечный источник в центр сферы радиусом R. Площадь поверхности сферы S = 4πR2. Если считать, что источник по всем направлениям за время Δt излучает суммарную энергию ΔW, получим:

I=ΔWSΔt=ΔW4πΔt·1R2

Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника.

Пример №2. Плотность потока электромагнитного излучения на расстоянии 5 метров от точечного источника составляет 20 мВт/м2. Найти плотность потока электромагнитного излучения на расстоянии 10 метров от этого источника.

Расстояние по условию задачи увеличилось вдвое. Так как плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника, при увеличении расстояния вдвое интенсивность излучения уменьшится в 4 раза. То есть, она станет равной 5 мВт/м2.

Зависимость плотности потока излучения от частоты

Напряженность электрического поля и магнитная индукция электромагнитной волны пропорциональны ускорению заряда. Ускорение при гармонических колебаниях пропорционально квадрату частоты. Поэтому напряженность электрического поля и магнитная индукция также пропорциональны квадрату частоты:

E~a~ω2, B~a~ω2

Плотность энергии электрического поля пропорциональна квадрату напряженности поля. Энергия магнитного поля, как это можно показать, пропорциональна квадрату магнитной индукции. Полная плотность энергии электромагнитного поля равна сумме плотностей энергий электрического и магнитного полей. Поэтому плотность потока излучения I пропорциональна:

I~w
~(E2+B2)

Вспомним, что:

E~ω2, B~ω2

Тогда:

I~ω4

Плотность потока излучения пропорциональна четвертой степени частоты. Так, при увеличении частоты колебаний зарядов в 2 раза энергия, излучаемая ими, возрастает в 16 раз. При увеличении частоты в 3 раза, энергия излучения увеличивается в 81 раз, и т.д.

Пример №3. Частота электромагнитной волны уменьшилась в 4 раза. Найти, во сколько раз изменилась плотность потока излучения.

Так как плотность потока излучения пропорциональна четвертой степени частоты, мы можем найти плотность потока излучения путем извлечения корня из числа 4 дважды:

44=4=21,4

Плотность потока излучения уменьшилась в 1,4 раза.

Свойства электромагнитных волн

Современные радиотехнические устройства позволяют провести очень наглядные опыты по наблюдению свойств электромагнитных волн. При этом лучше всего пользоваться волнами сантиметрового диапазона. Эти волны излучаются специальным генератором сверхвысокой частоты (СВЧ). Электрические колебания генератора модулируют звуковой частотой. Принятый сигнал после детектирования подается на громкоговоритель.

Свойство 1 — Поглощение электромагнитных волн
Если расположить рупоры друг против друга и добиться хорошей слышимости звука в громкоговорители, а затем поместить между ними диэлектрик, звук будет менее громким.
Свойство 2 — Отражение электромагнитных волн
Если диэлектрик заменить металлической пластиной, то звук перестанет быть слышимым. Волны не достигают приемника вследствие отражения. Отражение происходит под углом, равным углу падения, как и в случае световых и механических волн. Чтобы убедиться в этом, рупоры располагают под одинаковыми углами к большому металлическому листу. Звук исчезнет, если убрать лист или повернуть его.
Свойство 3 — Преломление электромагнитных волн
Электромагнитные волны изменяют свое направление (преломляются) на границе диэлектрика. Это можно обнаружить с помощью большой треугольной призмы из парафина. Рупоры располагают под углом друг к другу, как и при демонстрации отражения. Металлический лист заменяют затем призмой. Убирая призму или поворачивая ее, наблюдают исчезновение звука.
Свойство 4 — Поперечность электромагнитных волн
Поместим между генератором и приемником решетку из параллельных металлических стержней. Решетку расположим так, чтобы стержни были горизонтальными или вертикальными. При одном из этих положений, когда электрический вектор параллелен стержням, в них возбуждаются токи, в результате чего решетка начинает отражать волны, подобно сплошной металлической пластине. Когда же вектор перпендикулярен стержням, токи в них не возбуждаются и электромагнитная волна проходит через решетку.

Шкала электромагнитных волн

Электромагнитные волны имеют большое разнообразие. Они классифицируются по длине волны λ или связанной с ней частоте ν. Шкала электромагнитных волн включает в себя:

  • радиоволны;
  • оптическое излучение;
  • ионизирующее излучение.

Укажем частоты и длины указанных волн, а также их подробную классификацию в таблице.

Наименование диапазона волн Длины волн (м) Частоты (Гц)
Радиоволны
Инфразвук, звук >105 <3∙103
Сверхдлинные волны (СДВ) 104–105 3∙103–3∙104
Длинные волны (ДВ) 103–104 3∙104–3∙105
Средние волны (СВ) 102–103 3∙105–3∙106
Короткие волны (КВ) 10–100 3∙106–3∙107
Ультракороткие (УКВ):

  • Метровые (МВ)
  • Дециметровые (ДМВ)
  • Сантиметровые (СМВ)
  • Миллиметровые (ММВ)
  • Субмиллиметровые
 

  • 1–10
  • 0,1–1
  • 10–2–0,1
  • 10–3–10–2
  • 10–4–10–3
 

  • 3∙107–3∙108
  • 3∙109–3∙1010
  • 3∙1010–3∙1011
  • 3∙1011–3∙1012
  • 3∙1012–3∙1013
Оптические волны
Инфракрасное излучение 0,78∙10–6–10–4 3∙1011–4∙1014
Видимый свет 0,38∙10–6–0,78∙10–6 4∙1014–7,5∙1014
Ультрафиолетовое излучение 10–7–0,38∙10–6 7,5∙1011–3∙1015
Ионизирующее излучение
Рентгеновское излучение 5∙10–12–10–8 3∙1016–6∙1019
Гамма-излучение <5∙10–12 >6∙1019

Частоты и длины волн электромагнитного излучения видимого спектра смотрите на рисунке ниже.

Задание EF17496

В электромагнитной волне, распространяющейся со скоростью v, происходят колебания векторов напряжённости электрического поля E и индукции магнитного поля B. При этих колебаниях векторы v, E, B. имеют взаимную ориентацию:

Ответ:

а) BE, Bv, Ev

б) BE, Bv, Ev

в) BE, Bv, Ev

г) BE, Bv, Ev


Алгоритм решения

1.Вспомнить, какие величины периодически изменяются при распространении электромагнитной волны.

2.Вспомнить, какое взаимное расположение имеют векторы меняющихся величин электромагнитной волны.

3.Вспомнить, какой является электромагнитная волна — продольной или поперечной.

Решение

Электромагнитная волна представляет собой распространяющиеся с течением времени в пространстве электромагнитные колебания, характеризующиеся периодическим изменением в точках пространства вектора напряженности E  и вектора магнитной индукции B. Эти векторы лежат и изменяются во взаимно перпендикулярных плоскостях. Поэтому вектора напряженности E  и вектор магнитной индукции B перпендикулярны (BE).

Электромагнитная волна — поперечная волна. Это значит, что векторы периодически меняющихся величин расположены перпендикулярно направлению распространения волны. Направление волны определяется направлением вектора ее скорости. Следовательно, вектор напряженности E  и вектор магнитной индукции B перпендикулярны вектору скорости распространения волны (Bv, Ev).

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17601

Какой объект, согласно классической электродинамике, не излучает электромагнитных волн?

Ответ:

а) ускоренно движущийся заряд

б) электромагнит, подключённый к генератору переменного тока

в) линия электропередачи

г) покоящийся электромагнит, подключённый к аккумулятору


Алгоритм решения

  1. Вспомнить основное условие возникновения электромагнитных волн.
  2. Проанализировать возможные источники электромагнитных волн и установить, в каком из них необходимое условие не выполняется.

Решение

Главное условие возникновения электромагнитных волн — наличие у движущегося заряда ускорения. Следовательно, ускоренно движущийся заряд излучает электромагнитные волны.

По линиям электропередачи протекает переменный ток, который периодически меняет свое направление. Следовательно, заряды внутри проводников движутся ускоренно, ведь для того, чтобы поменялась скорость (по модулю и направлению), необходимо наличие ускорения. Следовательно, линии электропередач тоже излучают электромагнитные волны. По этой же причине электромагнит, подключённый к генератору переменного тока, также излучает волны.

Покоящийся электромагнит, подключённый к аккумулятору, не может излучать электромагнитные волны. Аккумулятор — источник постоянного тока. Поэтому заряды движутся с постоянной скоростью (без ускорения), и сам электромагнит покоится (не имеет ускорения).

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17566

Выберите среди приведённых примеров электромагнитное излучение с минимальной длиной волны.

Ответ:

а) рентгеновское

б) ультрафиолетовое

в) видимое

г) инфракрасное


Алгоритм решения

  1. Вспомнить расположение видов волн на шкале.
  2. Определить тип волн, имеющих самую короткую длину волны из перечисленных вариантов.

Решение

Шкала электромагнитных волн классифицирует волны по длине или частоте волн. Чем меньше длина волны, тем выше ее частота. Наибольшей длиной волны обладают радиоволны, затем идем инфракрасное, видимое и ультрафиолетовое излучение. После — ионизирующее излучение (рентгеновское и гамма-излучение). Следовательно, наименьшей длиной волн из перечисленных вариантов обладает рентгеновское излучение.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 8.7k

Понравилась статья? Поделить с друзьями:
  • Как исправить ошибку в кс го не находит сервера
  • Как в локаторе найти человека айфона геопозицию
  • Как найти эдс для источника тока
  • Как найти проценты к итогу
  • Как найти уравнение касательной линии