Как найти частоту колебаний кинетической энергии

Автор статьи

Алексей Алексеевич Ивахно

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Колебания — это самая общая форма движения динамических систем около положения равновесия. При малых отклонениях от положения равновесия колебания обычно являются гармоническими. В этом заключается их особенная значимость.

Уравнение вида:

$frac{d^2x}{dt^2}+omega^2x=0 (1),$

где $omega^2$ — циклическая частота колебаний; $x$ -расстояние положения равновесия

называют уравнением механических гармонических колебания. Колебания происходят вдоль оси $X$.

Решением уравнения (1) можно считать функции:

$x=Asin (omega t+varphi)$ или

$x=Acos (omega t+varphi_1)$,

где $A$ — амплитуда колебаний.

Систему, которая реализует данные малые колебания, называют линейным или гармоническим осциллятором. Примером гармонического осциллятора может служить

  1. малое тело, подвешенное на упругую пружину (Пружинный маятник);
  2. физический маятник (Тело, которое совершает колебания относительно точки (или оси, проходящей через точку тела), не являющейся его центром масс);
  3. математический маятник; (Малое тело, совершающее колебания на длинном, нерастяжимом, невесомом подвесе).

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Определение 1

Собственными называют колебания системы под воздействием только внутренних сил при отсутствии внешних воздействий.

В полной механической энергии гармонического осциллятора выделяют:

  • потенциальную энергию;
  • и кинетическую энергию.

Потенциальная энергия

Говорить о потенциальной энергии можно только, если действующие силы потенциальны. Если колебательные движения между двумя точками являются одномерным, то автоматически обеспечивается условие потенциальности и всякую силу, зависящую только от координат, можно считать потенциальной.

Если рассматривается линейный осциллятор, то обычно считают, что потенциальная энергия точки равна нулю в положении равновесия. Считая, что осциллятор заставляет совершать колебания сила упругости;

$F=-kx(2)$

и зная, как связана потенциальная энергия и потенциальная сила, (для одномерного случая: $F=-frac{dU}{dx}$), потенциальную энергию линейного осциллятора определим как:

«Энергия гармонических колебаний» 👇

$U(x)=frac{kx^2}{2}=frac{momega^2x^2}{2}=frac{mA^2omega_0^2}{2}cos^2 (omega t+varphi)= frac{mA^2omega_0^2}{4}(1+cos 2(omega t +varphi)) (3).$

Из формулы (3) видно, что потенциальная энергия при колебаниях изменяется с течением времени, так как изменяется $x$. Частота колебаний потенциальной энергии $2omega$.

Кинетическая энергия.

Кинетическая энергия тела – это энергия движения, она зависит от скорости перемещения материальной точки, задается выражением:

$E_k=frac{mv^2}{2}=frac{mdot{x}^2}{2}=frac{mA^2omega_0^2}{2}sin^2 (omega t+varphi) =frac{mA^2omega_0^2}{4}(1-cos 2(omega t +varphi)) (4).$

Кинетическая энергия является переменной во времени физической величиной. Колебания ее происходят с частотой $2omega$ (эта частота в два раза больше, чем частота колебаний $x$)

Закон сохранения энергии при гармонических колебаниях

Как было отмечено, кинетическая энергия и потенциальная энергия являются переменными во времени величинами, однако, их сумма у гармонического осциллятора, выполняющего свободные колебания, не изменяется:

$frac{mdot{x}^2}{2}+frac{momega^2x^2}{2}=frac{momega^2A^2}{2}=const$.

Полная энергия системы ($E$) не изменяется, поскольку при гармонических колебаниях выполняется закон сохранения механической энергии, так как сила упругости является консервативной.

Закон сохранения энергии позволяет сделать два существенных вывода

Вывод первый. Наибольшая кинетическая энергия осциллятора равна его наибольшей энергии потенциальной энергии.

Данный вывод очевиден, так как потенциальная энергия осциллятора максимальна при смещении точки выполняющей колебания на максимально возможное расстояние, при этом скорость, а соответственно и кинетическая энергия осциллятора равна нулю.

Наибольшую кинетическую энергию колебательная система имеет тогда, когда она проходит положение равновесия ($x=0$), то есть потенциальная энергия равна нулю.

$frac{mV^2}{2}=frac{momega^2A^2}{2}(5),$

где $V$ — максимальная скорость.

Вывод второй. Средняя кинетическая энергия осциллятора равна его средней потенциальной энергии.

Средняя кинетическая энергия.

Пусть параметр $f$ функция времени, тогда средняя ее величина на отрезке времени от $t_1$ до $t_2$ равна:

$f_{sr}=frac{1}{t_2-t_1}int_1^2f(t)dt (6),$

где пределы интегрирования обозначают 1 — время $t_1$; 2 — $t_2$.

Если функцию $f(t)$ изобразить на графике (рис.1), то ее среднее значение будет соответствовать высоте прямоугольника, площадь которого ограничивают функция $f$ и ось $t$ на заданном отрезке времени.

Замечание 1

Площадь под осью $t$ считают отрицательной.

График. Автор24 — интернет-биржа студенческих работ

Рисунок 1. График. Автор24 — интернет-биржа студенческих работ

Запишем закон движения осциллятора как:

$x(t)=Acos (omega t+varphi) (7)$,

его скорость равна:

$dot{x}=-Aomegasin (omega t+varphi) (8).$

Выражение для потенциальной энергии представим как:

$U(t) = frac{omega^2A^2}{2}cos^2 (omega t+varphi) (9)$.

Кинетическую энергию представит выражение:

$E_k=frac{omega^2A^2}{2}sin^2 (omega t+varphi) $

Отрезком времени, на котором будем брать среднее, станет период колебаний, вернее одного колебания. Нахождение средних значений кинетической и потенциальной энергии сводят к поиску средних от $cos^2 (omega t+varphi)$ и $sin^2 (omega t+varphi)$:

$(sin^2 (omega t+varphi))_{sr}=frac{1}{T}int_0^T cos^2 (omega t+varphi)dt=frac{1}{T}int_0^Tfrac{1}{2}(1-cos 2(omega t+varphi)dt)=frac{1}{2},$

где $T$ — период колебаний; $omega T=2pi.$

По аналогии получаем:

$sin^2 (omega t+varphi)_sr=frac{1}{2}.$

В результате имеем:

  • средняя по времени потенциальная энергия гармонического колебания за один период равна:

    $U_{sr}=frac{momega^2A^2}{4}(10),$

  • средняя по времени кинетическая энергия составила:

    $E_{k,sr}=frac{momega^2A^2}{4}(11)$.

Сравнивая (10) и (11) мы видим, что:

$U_{sr}= E_{k,sr}=frac {1}{2}E$,

где $E$ — полная механическая энергия гармонических колебаний.

то есть средняя по времени кинетическая энергия осциллятора равна средней по времени потенциальной энергии.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

  1. Колебания.

  2. Механические
    колебания.

  3. Превращения
    энергии при механических колебаниях.

  4. Период колебаний.

  5. Частота колебаний.

  6. Циклическая
    частота колебаний.

  7. Амплитуда
    механических колебаний.

  8. Гармонические
    колебания.

  9. Фаза гармонического
    колебания.

  10. Аналитическое
    представление колебаний.

  11. Графическое
    представление колебаний.

  12. Скорость точки в
    гармоническом колебании.

  13. Ускорение точки
    в гармоническом колебании.

  14. Динамика
    гармонического колебания.

  15. Период колебаний
    пружинного маятника.

  16. Математический
    маятник. Квазиупругая сила.

  17. Колебания тела,
    плавающего на поверхности жидкости.

  18. Колебания однородной
    жидкости в U
    – образной трубке.

  19. Колебания тела в
    сферической чаше.

  20. Энергия гармонического
    колебания.

  21. Затухающие
    колебания.

  22. Вынужденные
    колебания.

  23. Резонанс.

  24. Свободные колебания.
    Собственная частота.

  25. Автоколебания.

1. Колебания.
Колебаниями
вообще называют периодические изменения
состояния системы, при которых периодически
изменяются значения различных физических
величин, характеризуют данную систему.
Например, периодические изменения
давления и плотности воздуха, напряжения
и силы электрического тока есть колебания
этих величин.

Математически
периодичность означает, что, если

— есть периодическая функция времени с
периодом Т,
то при любом t
выполняется
равенство

2. Механические
колебания

– движения тела, которые точно или почти
точно повторяются через равные интервалы
времени.

Механические
колебания возникают в системах, имеющих
положение устойчивого равновесия.
Согласно с принципом минимума потенциальной
энергии, в положении устойчивого
равновесия потенциальная энергия
системы минимальна. Когда тело выводят
из положения устойчивого равновесия,
его потенциальная энергия возрастает.
При этом возникает сила, направленная
к положению равновесия (возвращающая
сила), и чем дальше от положения равновесия
отклоняется тело, тем больше его
потенциальная энергия и тем больше
модуль возвращающей силы. Например, при
отклонении пружинного маятника от
положения равновесия, роль возвращающей
силы играет сила упругости, модуль
которой изменяется пропорционально
отклонению

,
где х
отклонение маятника от положения
равновесия. Потенциальная энергия
пружинного маятника изменяется
пропорционально квадрату смещения

.

Аналогично возникают
колебания нитяного маятника и шарика,
движущегося по дну сферической чаши
радиуса R,
который можно рассматривать как нитяной
маятник с длиной нити равной радиусу
чаши (Рис.78).

3.Превращения
энергии при механических колебаниях
.
Если отсутствуют силы трения, то полная
механическая энергия тела, совершающего
колебательное движение, остаётся
постоянной. В процессе колебаний
происходят периодические взаимные
превращения потенциальной и кинетической
энергии тела. Проведем рассуждения на
примере колебаний нитяного маятника .
Для упрощения рассуждений примем
потенциальную энергию маятника в
положении равновесия равной нулю. В
крайнем отклонённом положении
потенциальная энергия маятника
максимальна, а кинетическая энергия
равна нулю, т.к. в этом положении маятник
находится в покое. При движении к
положению равновесия высота маятника
над поверхностью Земли уменьшается,
уменьшается и потенциальная энергия,
при этом возрастают его скорость и
кинетическая энергия. В положении
равновесия потенциальная энергия равна
нулю, а кинетическая энергия максимальна.
Продолжая движение по инерции, маятник
проходит положение равновесия. После
прохождения положения равновесия
кинетическая энергия маятника убывает,
но возрастает его потенциальная энергия.
Когда произойдёт остановка маятника,
его кинетическая энергия станет равной
нулю, а потенциальная энергия достигнет
максимума и всё повторится в обратном
порядке.

По закону сохранения
энергии потенциальная энергия маятника
в крайнем отклоненном положении равна
его кинетической в момент прохождения
положения равновесия.

В процессе колебаний
в любой момент времени полная механическая
энергия маятника равна его потенциальной
в крайнем отклонённом положении или
кинетической энергии в момент прохождения
положения равновесия

где

высота
маятника в крайнем отклоненном положении,

скорость
в момент прохождения положения
равновесия.

4. Период
колебания

– минимальный интервал времени , через
который происходит повторение движения,
или интервал времени, в течение которого
происходит одно полное колебание. Период
(Т)
измеряется в секундах.

5. Частота
колебании


определяет число полных колебаний,
совершаемых за одну секунду. Частота и
период связаны соотношением


,


.

Частота измеряется
в герцах (Гц). Один герц – одно полное
колебание совершаемое за одну секунду

6. Циклическая
частота или круговая частота


определяет число полных колебаний,
свершаемых за

секунд


.

Частота – величина
положительная

,


.

7. Амплитуда
механических колебаний

– максимальное отклонение тела от
положения равновесия. В общем случае
колебаний амплитуда есть максимальное
значение, которое принимает периодически
изменяющаяся физическая величина.

8. Гармонические
колебания

– колебания, в которых колеблющаяся
величина изменяется по закону синуса
или косинуса (по гармоническому закону):

Здесь

амплитуда
колебаний,

циклическая
частота.

9
.
Фаза
гармонического колебания –

величина

,
стоящая под
знаком синуса или косинуса. Фаза
определяет значение колеблющейся
величины в данный момент времени,

начальная
фаза, т.е. в момент начала отсчёта времени

Простейшим
примером гармонических колебаний
является колебание проекции на оси
координат точки m
движущейся равномерно по окружности

радиуса А
в плоскости XOY,
центр которой совпадает с началом
координат (рис. 79)

Для простоты
положим

,
т.е.

тогда

Многие известные
колебательные системы можно лишь
приближенно считать гармоническими
лишь приближенно при очень малых
отклонениях. Главным условием
гармонического колебания является
постоянство циклической частоты и
амплитуды. Например, при колебаниях
нитяного маятника, угол отклонения от
вертикали изменяется неравномерно,
т.е. циклическая частота

не постоянна. Если отклонения очень
малы, то движение маятника происходит
очень медленно и неравномерностью
движения можно пренебречь, полагая

.
Чем медленнее движение, тем меньше
сопротивление среды, те меньше потери
энергии и меньше изменения амплитуды.

Итак, малые колебания
можно приближенно считать гармоническими.

1
0.
Аналитическое
представление колебаний

– запись колеблющейся величины в виде
функции

,
выражающей зависимость величины от
времени.

11. Графическое
представление колебаний –
представление
колебаний
в виде графика функции

в координатных осях OX
и t
.

Например, аналитически
гармоническое колебания записывается
в виде

,
а его графическое представление
изображается синусоидой — сплошная
линия на Рис.80.

12.
Скорость точки при гармоническом
колебании

– получим, дифференцируя по времени
функцию х(t)


,
где

амплитуда скорости, пропорциональна
циклической частоте и амплитуде смещения.

Итак, скорость V
по синусоидальному закону с таким же
периодом T,
что и смещение
х
в пределах

.
Фаза скорости

опережает фазу смещения на

.
Это значит, что скорость максимальна,
когда точка проходит положение равновесия


,
а при максимальных смещениях точки

её скорость равна нулю . График скорости
представлен пунктирной линией на рис
Рис.80

13. Ускорение
точки при гармонических колебаниях
получим,
дифференцируя скорость по времени или
дифференцируя смещение х
дважды по времени :


,

где

— амплитуда ускорения пропорциональная
амплитуде смещения и квадрату циклической
частоты.

У
скорение
точки при гармонических колебаниях
изменяется по синусоидальному закону
с тем же периодом Т,
что и смещение в пределах

Фаза ускорения опережает фазу смещения
на

.
Ускорение равно нулю в момент прохождения
точкой положения равновесия, На Рис.81
график ускорения изображен пунктирной
линией, сплошная линия изображает
график смещения.

Учитывая, что

ускорение запишем в виде


,

т.е. ускорение в
гармоническом колебании пропорционально
смещению и всегда направлено к положению
равновесия ( против смещения). Удаляясь
от положения равновесия точка движется
ускоренно, приближаясь к положению
равновесия точка движется ускоренно.

14. Динамика
гармонического колебания.

Умножив ускорение точки, совершающей
гармоническое колебание, на её массу
получим согласно второму закону Ньютона
силу, действующую на точку

Обозначим

Теперь запишем силу, действующую на
точку


.

Из последнего равенства
следует, что гармонические колебания
вызываются силой пропорциональной
смещению и направленной против смещения,
т.е. к положению равновесия.

15. Период
колебаний пружинного маятника.
Пружинный
маятник совершает колебания под
действием силы упругости

.

Сила пропорциональная
смещению и направленная к положению
равновесия вызывает гармонические
колебания точки. Поэтому колебания
пружинного маятника гармонические.
Коэффициент жесткости равен


.

Помня, что

получим период свободных колебаний
пружинного маятника


.

Частота пружинного
маятника равна


.

1
5.
Математический
маятник

материальная точка, подвешенная на
бесконечно тонкой, невесомой, нерастяжимой
нити, совершающая колебания в вертикальной
плоскости, под действием силы тяжести.

Груз, подвешенный
на нити, размеры которого пренебрежимо
малы по сравнению с длиной нити , можно
приближенно считать математическим
маятником. Часто такой маятник называют
нитяным маятником.

Рассмотрим малые
колебания математического маятника
длиной l.
В положении равновесия сила тяжести
уравновешена силой натяжения нити,
т.е.

.

Если отклонить
маятник на малый угол

,
то сила тяжести и сила натяжения,
направленные под углом друг к другу, в
сумме дают равнодействующую силу

,которая
направлена к положению равновесия. На
Рис.82 отклонение маятника от вертикали
равно


.

Угол

настолько мал, что циклическую частоту,
т.е. угловую скорость вращения нити
можно считать постоянной. Поэтому

и смещение маятника запишем в виде


.

Таким образом,
малые колебания математического маятника
есть гармонические колебания. Из Рис.
82 следует, что сила

,
но

,
следовательно


,

где m,
g,
и l
постоянные величины. Обозначим

и получим модуль возвращающей силы в
виде

.
Если учесть, что сила

всегда направлена к положению равновесия,
т.е. против смещения, то её выражение
запишем в виде

.

Итак, сила, вызывающая
колебания математического маятника
пропорциональна смещению и направлена
против смещения, как при колебаниях
пружинного маятника, т.е характер этой
силы такой же как и силы упругой. Но по
природе упругая сила есть сила
электромагнитная. Сила же вызывающая
колебания математического маятника по
своей природе есть сила гравитационная
– неэлектромагнитная поэтому её называют
квазиупругой

силой. Любая сила, которая действует
как сила упругая, по природе не является
электромагнитной, называется квазиупругой
силой. Это позволяет нам записать
выражение периода колебаний математического
маятника в виде


.

Из этого равенства
следует, что период колебаний
математического маятника не зависит
от массы маятника, но зависит от его
длины и ускорения свободного падения.
Зная период колебаний математического
маятника и его длину, можно определить
ускорение свободного падения в любой
точке на поверхности Земли.

17. Колебания
тела, плавающего на поверхности жидкости.
Для простоты
рассмотрим тело массы m
в форме цилиндра с площадью основания
S.
Тело плавает
частично погрузившись в жидкость,
плотность которой

(Рис.
83).

Пусть в положении
равновесия глубина погружения

.
При этом равнодействующая силы Архимеда

и силы тяжести

равна нулю


.

Если изменить
глубину погружения на х
то сила Архимеда станет равной

и модуль равнодействующей силы F
станет отличен от нуля

Учитывая, что

получим


.

Обозначая

,
модуль силы F
в виде

.

Если глубина
погружения увеличивается, т.е. тело
смещается вниз, сила Архимеда становится
больше силы тяжести и равнодействующая
F
направлена вверх, т.е. против смещения.
Если же глубина погружения уменьшается
, т.е. смещается вверх от положения
равновесия, сила Архимеда становится
меньше силы тяжести и равнодействующая
F
направлена вниз, т.е. против смещения.

Итак, сила F
всегда направлена против смещения и
её модуль пропорционален смещению

.

Э
та
сила квазиупругая и она вызывает
гармонические колебания тела, плавающего
на поверхности жидкости. Период этих
колебаний вычисляется по общей для
гармонических колебаний формуле


.

18. Колебания
однородной жидкости в
U-трубке.
Пусть однородная жидкость массы m,
плотность которой

налита
в U
– образную трубку, площадь сечения
которой S
(Рис.84) В состоянии равновесия высоты
столбов в обоих коленах трубки одинаковы,
по закону сообщающихся сосудов для
однородной жидкости.

Если жидкость
вывести из состояния равновесия, то
высоты столбов жидкости в коленах будут
периодически изменяться, т.е. жидкость
в трубке будет совершать колебан
ия.

Пусть в некоторый
момент времени высота столба жидкости
в правом колене на х
больше . чем в левом. Это значит, что на
жидкость в трубке действует сил тяжести
жидкости в столбе высотой х,

,
где

— объём столба жидкости высотой x.
Произведение

величина постоянная, следовательно

.

Таким образом,
модуль силы F
пропорционален разности высот столбов
жидкости в коленах, т.е. пропорционален
смещению жидкости в трубке. Направление
этой силы всегда противоположно смещению,
т.е.

.

Следовательно
эта сила вызывает гармонические колебания
жидкости в трубке. Период этих колебаний
запишем по правилу для гармонических
колебаний


.

19. Колебания
тела в сферической чаше.

Пусть тело скользит без трения в
сферической чаше радиуса R
(Рис. 78). При малых отклонениях от положения
равновесия колебания этого тела можно
рассматривать как гармонические
колебания математического маятника,
длина которого равна R,
с периодом равным


.

20. Энергия
гармонического колебания
.
В качестве примера рассмотрим колебания
пружинного маятника. При смещении х
его потенциальная энергия равна


.
В
этот же момент его кинетическая энергия
равна


.

Учитывая, что

получим
полную механическую энергию маятника


.

Или подставив

,


.

Эта формула
позволяет вычислить полную механическую
энергию любой системы, совершающей
гармонические колебания.

21. Затухающие
колебания.

Механические колебания происходят в
средах, оказывающих сопротивление
движению. Поэтому энергия колебательного
движения расходуется на работу по
преодолению сил трения.

Е
сли
силы трения не очень велики, то амплитуда
колебаний постепенно уменьшается и
колебания прекратятся. График затухающего
колебания представлен на Рис. 85. Это
периодическое движение, амплитуда
которого постепенно уменьшается.

Если сила трения
очень велика, то затухающие колебания
не происходят. Тело , выведенное из
положения равновесия какими-либо силами,
после прекращения действия этих сил
возвращается в положение равновесия и
останавливается. Такое движение
называется апериодическим (непериодическим).
График апериодического движения
представлен на Рис.86.

2
2.
Вынужденные
колебания

– незатухающие колебания системы,
которые вызываются внешними периодически
меняющимися с течением времени силами
( вынуждающие силы).

Если вынуждающая
сила изменяется по гармоническому
закону


,

где

амплитуда
вынуждающей силы,

её
циклическая частота, то в системе могут
установиться вынужденные гармонические
колебания с циклической частотой равной
частоте вынуждающей силы


.

23. Резонанс
– резкое возрастание амплитуды
вынужденных колебаний при совпадении
частоты вынуждающей силы с частотой
свободных колебаний системы


.
Если колебание происходит в среде,
оказывающей сопротивление, то график
зависимости амплитуды вынужденных
колебаний от частоты вынуждающей силы
выглядит так как на Рис.87

Вынуждающая сила,
частота которой совпадает с частотой
свободных колебаний системы, даже при
очень малых амплитудах вынуждающей
силы может вызвать колебания с очень
большой амплитудой.

24. Свободные
колебания. Собственная частота системы.

Свободными колебаниями называют
колебания системы, происходящие под
действием её внутренних сил. Для
пружинного маятника внутренней силой
является сила упругости. Для математического
маятника, который состоит из самого
маятника и Земли, внутренней силой
является сила тяжести. Для тела, плавающего
на поверхности жидкости, внутренней
силой является сила Архимеда.

25. Автоколебания
– незатухающие
колебания, происходящие в среде, за счет
источника энергии не обладающего
колебательными свойствами, компенсирующего
потери энергии на преодоление сил
трения. Автоколебательные системы
получают равные порции энергии через
равные интервалы времени например,
через один период. Примером автоколебательной
системы являются часы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Механические колебания и волны

Механические колебания – периодически повторяющееся перемещение материальной точки, при котором она движется по какой-либо траектории поочередно в двух противоположных направлениях относительно положения устойчивого равновесия.

Отличительными признаками колебательного движения являются:

  • повторяемость движения;
  • возвратность движения.

Для существования механических колебаний необходимо:

  • наличие возвращающей силы – силы, стремящейся вернуть тело в положение равновесия (при малых смещениях от положения равновесия);
  • наличие малого трения в системе.

Механические волны – это процесс распространения колебаний в упругой среде.

Содержание

    • Виды волн
  • Гармонические колебания
  • Амплитуда и фаза колебаний
  • Период колебаний
  • Частота колебаний
  • Свободные колебания (математический и пружинный маятники)
  • Вынужденные колебания
  • Резонанс
  • Длина волны
  • Звук
  • Основные формулы по теме «Механические колебания и волны»

Виды волн

  • Поперечная – это волна, в которой колебание частиц среды происходит перпендикулярно направлению распространения волны.

Поперечная волна представляет собой чередование горбов и впадин.
Поперечные волны возникают вследствие сдвига слоев среды относительно друг друга, поэтому они распространяются в твердых телах.

  • Продольная – это волна, в которой колебание частиц среды происходит в направлении распространения волны.

Продольная волна представляет собой чередование областей уплотнения и разряжения.
Продольные волны возникают из-за сжатия и разряжения среды, поэтому они могут возникать в жидких, твердых и газообразных средах.

Важно!
Механические волны не переносят вещество среды. Они переносят энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.

Гармонические колебания

Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:

где ​( x )​ – координата тела – смещение тела от положения равновесия в данный момент времени; ​( A )​ – амплитуда колебаний; ​( omega t+varphi_0 )​ – фаза колебаний; ​( omega )​ – циклическая частота; ​( varphi_0 )​ – начальная фаза.

Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.

Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.

Скорость гармонических колебаний
Скорость гармонических колебаний есть первая производная координаты по времени:

где ​( v )​ – мгновенное значение скорости, т. е. скорость в данный момент времени.

Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:

Ускорение гармонических колебаний
Ускорение гармонических колебаний есть первая производная скорости по времени:

где ​( a )​ – мгновенное значение ускорения, т. е. ускорение в данный момент времени.

Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:

Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:

где ​( F )​ – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.

Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:

Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:

где ​( W_k )​ – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.

Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:

При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно.
В положении равновесия:

  • потенциальная энергия равна нулю;
  • кинетическая энергия максимальна.

При максимальном отклонении от положения равновесия:

  • кинетическая энергия равна нулю;
  • потенциальная энергия максимальна.

Полная механическая энергия гармонических колебаний
При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:

Важно!
Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы.

Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.

Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).

Амплитуда и фаза колебаний

Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия.
Обозначение – ​( A, (X_{max}) )​, единицы измерения – м.

Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени.
Обозначение – ​( varphi )​, единицы измерения – рад (радиан).

Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний.
Фаза гармонических колебаний в процессе колебаний изменяется.
( varphi_0 )​ – начальная фаза колебаний.
Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.

Важно!
Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.

Период колебаний

Период колебаний – это время одного полного колебания.
Обозначение – ​( T )​, единицы измерения – с.

Период гармонических колебаний – постоянная величина.

Частота колебаний

Частота колебаний – это число полных колебаний в единицу времени.
Обозначение – ​( nu )​, единицы времени – с-1 или Гц (Герц).

1 Гц – это частота такого колебательного движения, при котором за каждую секунду совершается одно полное колебание:

Период и частота колебаний – взаимно обратные величины:

Циклическая частота – это число колебаний за 2π секунд.
Обозначение – ​( omega )​, единицы измерения – рад/с.

Свободные колебания (математический и пружинный маятники)

Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.

Условия возникновения свободных колебаний:

  • при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.

При наличии сил трения свободные колебания будут затухающими.
Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.

Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.

Период колебаний математического маятника:

Частота колебаний математического маятника:

Циклическая частота колебаний математического маятника:

Максимальное значение скорости колебаний математического маятника:

Максимальное значение ускорения колебаний математического маятника:

Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:

Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:

Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:

Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту ​( h )​, определяется по формуле:

где ​( l )​ – длина нити, ​( alpha )​ – угол отклонения от вертикали.

Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.

Период колебаний пружинного маятника:

Частота колебаний пружинного маятника:

Циклическая частота колебаний пружинного маятника:

Максимальное значение скорости колебаний пружинного маятника:

Максимальное значение ускорения колебаний пружинного маятника:

Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:

Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:

Важно!
Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий.

Вынужденные колебания

Вынужденные колебания – это колебания, происходящие под действием внешней периодически изменяющейся силы.

Вынужденные колебания, происходящие под действием гармонически изменяющейся внешней силы, тоже являются гармоническими и незатухающими. Их частота равна частоте внешней силы и называется частотой вынужденных колебаний.

Резонанс

Резонанс – явление резкого возрастания амплитуды колебаний, которое происходит при совпадении частоты вынуждающей силы и собственной частоты колебаний тела.

Условие резонанса:

( v_0 )​ – собственная частота колебаний маятника.

На рисунке изображены резонансные кривые для сред с разным трением. Чем меньше трение, тем выше и острее резонансная кривая.

Явление резонанса учитывается при периодически изменяющихся нагрузках в машинах и различных сооружениях.
Также резонанс используется в акустике, радиотехнике и т. д.

Длина волны

Длина волны – это расстояние, на которое волна распространяется за один период, т. е. это кратчайшее расстояние между двумя точками среды, колеблющимися в одинаковых фазах.
Обозначение – ​( lambda )​, единицы измерения – м.

Расстояние между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разряжениями в продольной волне равно длине волны.

Скорость распространения волны – это скорость перемещения горбов и впадин в поперечной волне и сгущений или разряжений в продольной волне.

Звук

Звук – это колебания упругой среды, воспринимаемые органом слуха.

Условия, необходимые для возникновения и ощущения звука:

  • наличие источника звука;
  • наличие упругой среды между источником и приемником звука;
  • наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
  • мощность звука должна быть достаточной для восприятия.

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.

Классификация звуковых волн:

  • инфразвук (​( nu )​ < 16 Гц);
  • звуковой диапазон (16 Гц < ( nu ) < 20 000 Гц);
  • ультразвук (( nu ) > 20 000 Гц).

Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.

Скорость звука зависит

  • от упругих свойств среды:

в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;

  • от температуры среды:

в воздухе при температуре 0°С – 331 м/с,
в воздухе при температуре +15°С – 340 м/с.

Характеристики звуковой волны

  • Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
  • Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
  • Тембр – это окраска звука.

Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.
Шум – хаотическая смесь тонов.

Основные формулы по теме «Механические колебания и волны»

Механические колебания и волны

3 (59.1%) 156 votes

Содержание:

Гармонические колебания:

Некоторые движения, встречающиеся в быту, за равные промежутки времени повторяются. Такое движение называется периодическим движением. Часто встречается движение, при котором тело перемещается то в одну, то в другую сторону относительно равновесного состояния. Такое движение тела называется колебательным движением или просто колебанием.

Колебания, совершаемые телом, которое выведено из равновесного состояния в результате действия внутренних сил, называются собственными (свободными) колебаниями. Величина удаления от равновесного состояния колеблющегося тела называется его смещением (Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Для наблюдения механических колебаний ознакомимся с колебаниями груза, закрепленного на конце пружины (рис. 5.1). На этом рисунке груз, закрепленный на пружине, сможет двигаться без трения с горизонтальным стержнем, так как силу тяжести шарика приводит в равновесие реакционная сила стержня.
Коэффициент упругости пружины – Гармонические колебания в физике - формулы и определение с примерами, а ее масса ничтожна мала и можно ее не учитывать. Считаем, что масса системы сосредоточена в грузе, а упругость в пружине.

Если груз, который находится в равновесии, потянем вправо на расстояние Гармонические колебания в физике - формулы и определение с примерами и отпустим, то под действием силы упругость, которая появляется в пружине, груз смещается в
сторону равновесного состояния.

Гармонические колебания в физике - формулы и определение с примерами

С течением времени смещение груза уменьшается относительно Гармонические колебания в физике - формулы и определение с примерами, но скорость груза при этом увеличивается. Когда груз доходит до равновесного состояния, его смещение (Гармонические колебания в физике - формулы и определение с примерами) равняется нулю и соответственно сила упругости равняется нулю. Но груз по инерции начинает двигаться в левую сторону. Модуль силы упругости, которая появляется в пружине, тоже растет. Однако из-за того, что сила упругости постоянно направлена против смещения груза, она начинает тормозить груз. В результате движение груза замедляется, и, в результате, прекращается. Теперь груз под воздействием эластической силы сжатой пружины начинает двигаться в сторону равновесного состояния.
Для определения закономерности изменения в течение времени системы, которая периодически совершает колебания, заполним воронку песком, подвесим на веревке, подложим бумагу под систему и раскачаем воронку. В ходе колебания начинаем равномерно вытягивать бумагу из-под системы. В результате мы увидим, что следы песка на бумаге образуют синусоиду. Из этого можно сделать следующий вывод: смещение периодически колеблющегося тела по истечении времени изменяется по закону синусов и косинусов. При этом самое большое значение смещения равняется амплитуде (Гармонические колебания в физике - формулы и определение с примерами):

Гармонические колебания в физике - формулы и определение с примерами

здесь: Гармонические колебания в физике - формулы и определение с примерами– циклическая частота, зависящая от параметров колеблющихся систем, Гармонические колебания в физике - формулы и определение с примерами – начальная фаза, (Гармонические колебания в физике - формулы и определение с примерами) фаза колебания с течением времени Гармонические колебания в физике - формулы и определение с примерами.
Из математики известно, что Гармонические колебания в физике - формулы и определение с примерами поэтому формулу (5.2.) можно записать в виде

Гармонические колебания в физике - формулы и определение с примерами

Колебания, в которых с течением времени параметры меняются по закону синуса или косинуса, называются гармоническими колебаниями

Значит, пружинный маятник, вышедший из равновесного состояния, совершает гармоническое колебание. Для того чтобы система совершала гармоническое колебание: 1) при выходе тела из равновесного состояния, для возвращения его в равновесное состояние должна появиться внутренняя сила; 2) колеблющееся тело должно обладать инертностью и на него не должны оказывать воздействие силы трения и сопротивления. Эти условия называется условиями проявления колебательных движений. 

Основные параметры гармонических колебаний

a) период колебания Гармонические колебания в физике - формулы и определение с примерами – время одного полного колебания:

Гармонические колебания в физике - формулы и определение с примерами)

б) частота колебания Гармонические колебания в физике - формулы и определение с примерами – количество колебаний, совершаемых за 1 секунду:

Гармонические колебания в физике - формулы и определение с примерами

Единица Гармонические колебания в физике - формулы и определение с примерами
c) циклическая частота Гармонические колебания в физике - формулы и определение с примерами – количество колебаний за Гармонические колебания в физике - формулы и определение с примерами секунд:

Гармонические колебания в физике - формулы и определение с примерами

С учетом формул (5.5) и (5.6) уравнение гармонических колебаний (5.2) можно записать в следующей форме.

Гармонические колебания в физике - формулы и определение с примерами

Большинство величин, количественно описывающих гармонические колебания, смещения которых с течением времени меняются по закону синусов или косинусов (скорость, ускорение, кинетическая и потенциальная энергия), тоже гармонически меняются. 
Это подтверждается следующими графиками и уравнениями:

Гармонические колебания в физике - формулы и определение с примерами

Пример решения задачи:

Точка совершает гармоническое колебательное движение. Максимальное смещение и скорость соответственно равны 0,05 м и 0,12 м/с. Найдите максимальное ускорение и скорость колебательного движения, а также ускорение точки в момент, когда смещение равно 0,03 м.

Дано:

Гармонические колебания в физике - формулы и определение с примерами

Найти:

Гармонические колебания в физике - формулы и определение с примерами

Формула и решение:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания пружинного маятника

В 1985 году в городе Мехико произошла ужасная катастрофа, причина которой было землетрясение: 5526 человек погибли, 40 ООО человек ранены, 31000 человек остались без крова. Из проведенных затем исследований ученые выяснили, что главной причиной разрушений во время землетрясения является совпадение частоты свободных колебаний зданий с частотой вынужденных колебаний Земли. Поэтому при возведении новых зданий в сейсмически активной зоне необходимо, чтобы эти частоты не совпадали. Это даст возможность уменьшить последствия землетрясения. С этой целью важно знать, от чего зависят частота и период колебаний.

Одной из простейших колебательных систем, совершающих гармонические колебания, является пружинный маятник.

Пружинный маятник — это колебательная система, состоящая из пружины и закрепленного на ней тела. Колебания, возникающие в пружинном маятнике, являются гармоническими колебаниями:

Под гармоническими колебаниями подразумеваются колебания, возникающие под действием силы, прямо пропорциональной перемещению и направленной против направления перемещения.

Исследование колебаний пружинного маятника имеет большое практическое значение, например, при вычислении колебаний рессор автомобиля при езде; в исследовании воздействия колебаний на фундамент зданий и тяжелых станков, в определении эластичности ушных перепонок при диагностике лор-заболеваний. По этой причине изучение колебаний пружинного маятника является актуальной проблемой.

С целью уменьшения количества сил, действующих на колебательную систему, целесообразно использовать горизонтально расположенную колебательную систему пружина-шарик (d).

Гармонические колебания в физике - формулы и определение с примерами

В этой системе действия силы тяжести и реакции опоры уравновешивают друг друга. При выведении шарика из состоянии равновесия, например, при растяжении пружины до положения Гармонические колебания в физике - формулы и определение с примерами сила упругости, возникающая в ней, сообщает шарику ускорение и приводит его в колебательное движение. По II закону Ньютона уравнение движения маятника можно записать так:

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Формула (4.9) является уравнением свободных гармонических колебаний пружинного маятника.

Где Гармонические колебания в физике - формулы и определение с примерами — масса шарика, закрепленного на пружине, Гармонические колебания в физике - формулы и определение с примерами — проекция ускорения шарика вдоль оси Гармонические колебания в физике - формулы и определение с примерами — жесткость пружины, Гармонические колебания в физике - формулы и определение с примерами -удлинение пружины, равное амплитуде колебания. Для данной колебательной системы отношение Гармонические колебания в физике - формулы и определение с примерами— постоянная положительная величина (так как масса и жесткость не могут быть отрицательными). При сравнении уравнения колебаний (4.9) пружинного маятника с выражением для другого вида периодического движения — известным выражением центростремительного ускорения при равномерном движении по окружности получается, что отношение Гармонические колебания в физике - формулы и определение с примерами соответствует квадрату циклической частоты Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, уравнение движения пружинного маятника можно записать и так:

Гармонические колебания в физике - формулы и определение с примерами

Уравнение (4.12) показывает, что колебания пружинного маятника с циклической частотой Гармонические колебания в физике - формулы и определение с примерами являются свободными гармоническими колебаниями. Из математики известно, что решением этого уравнения является:

Гармонические колебания в физике - формулы и определение с примерами

Так как тригонометрическая функция является гармонической функцией, то и колебания пружинного маятника являются гармоническими колебаниями.

Здесь Гармонические колебания в физике - формулы и определение с примерами фаза колебания, Гармонические колебания в физике - формулы и определение с примерами — начальная фаза. Единица измерения фазы в СИ — радиан (1 рад). Фазу также можно измерять в градусах: Гармонические колебания в физике - формулы и определение с примерами Значение начальной фазы зависит от выбора начального момента времени. Начальный момент времени можно выбрить так, чтобы Гармонические колебания в физике - формулы и определение с примерами В этом случае формулу гармонических колебаний пружинного маятника можно записать так:

Гармонические колебания в физике - формулы и определение с примерами или Гармонические колебания в физике - формулы и определение с примерами

Из сравнения выражений (4.11) и (4.5) определяются величины, от которых зависят период и частота колебаний пружинного маятника: 

Гармонические колебания в физике - формулы и определение с примерами

Из выражений (4.14) и (4.15) видно, что период и частота пружинного маятника зависят от жесткости пружины и массы груза, подвешенного к нему.

Гармонические колебания математического маятника

До наших дней дошла такая историческая информация: однажды в 1583 году итальянский ученый Г. Галилей, находясь в храме города Пиза, обратил внимание на колебательное движение люстры, подвешенной на длинном тросе. Он, сравнивая колебания люстры со своим пульсом, определил, что, несмотря на уменьшение амплитуды колебания, время, затрачиваемое на одно полное колебание (период колебания) люстры, не изменяется. Затем Галилей в результате многочисленных проведенных исследований, изменяя длину нитевого маятника, массу подвешенного к нему груза, высоту расположения маятника (по сравнению с уровнем моря), определил, от чего зависят период и частота колебаний маятника.

Гармонические колебания возникают также под действием силы тяжести. Это можно наблюдать с помощью математического маятника.

Математический маятник — это идеализированная колебательная система, состоящая из материальной точки, подвешенной на невесомой и нерастяжимой нити.

Для исследования колебаний математического маятника можно использовать систему, состоящую из тонкой длинной нити и шарика (b).

Гармонические колебания в физике - формулы и определение с примерами

Сила тяжести Гармонические колебания в физике - формулы и определение с примерами действующая на шарик в положении равновесия маятника, уравновешивается силой натяжения нити Гармонические колебания в физике - формулы и определение с примерами Однако, если вывести маятник из состояния равновесия, сместив его на малый угол Гармонические колебания в физике - формулы и определение с примерами в сторону, то возникают две составляющие вектора силы тяжести -направленная вдоль нити Гармонические колебания в физике - формулы и определение с примерами и перпендикулярная нити Гармонические колебания в физике - формулы и определение с примерами Сила натяжения Гармонические колебания в физике - формулы и определение с примерами и составляющая силы тяжести Гармонические колебания в физике - формулы и определение с примерами уравновешивают друг друга. Поэтому равнодействующая сила будет равна составляющей Гармонические колебания в физике - формулы и определение с примерами «пытающейся» вернуть тело в положение равновесия (см.: рис. b). Учитывая вышеуказанное и ссылаясь на II закон Ньютона, можно написать уравнение колебательного движения тела массой Гармонические колебания в физике - формулы и определение с примерами в проекциях на ось ОХ:

Гармонические колебания в физике - формулы и определение с примерами

Приняв во внимание, что:

Гармонические колебания в физике - формулы и определение с примерами

Для уравнения движения математического маятника получим:

Гармонические колебания в физике - формулы и определение с примерами

Где Гармонические колебания в физике - формулы и определение с примерами — длина математического маятника (нити), Гармонические колебания в физике - формулы и определение с примерами — ускорение свободного падения, Гармонические колебания в физике - формулы и определение с примерами — амплитуда колебания.

Для данной колебательной системы отношение Гармонические колебания в физике - формулы и определение с примерами — постоянная положительная величина, потому что ускорение свободного падения и длина нити не могут быть отрицательными. Если сравнить уравнения (4.16) и (4.10), с легкостью можно увидеть, что отношение Гармонические колебания в физике - формулы и определение с примерами также соответствует квадрату циклической частоты Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, уравнение движения математического маятника можно записать и так:

Гармонические колебания в физике - формулы и определение с примерами

Уравнение (4.19) показывает, что колебания математического маятника являются гармоническими колебаниями с циклической частотой со. Из математики вы знаете, что решением этого уравнения является нижеприведенная функция:

Гармонические колебания в физике - формулы и определение с примерами

Так как эта функция является гармонической, то и колебания математического маятника являются гармоническими колебаниями.

Отсюда определяются величины, от которых зависят период и частота колебаний математического маятника:

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, период и частота колебаний математического маятника зависят от длины маятника и напряженности гравитационного поля в данной точке.

Скорость и ускорение при гармонических колебаниях

Вы уже знакомы с основными тригонометрическими функциями и умеете строить графики тригонометрических уравнений, описывающих гармонические колебания.

При гармонических колебаниях маятника его смещение изменяется по гармоническому закону, поэтому не трудно доказать, что его скорость и ускорение также изменяются по гармоническому закону. Предположим, что смещение изменяется по закону косинуса и начальная фаза равна нулю

Гармонические колебания в физике - формулы и определение с примерами

Так как скорость является первой производной смещения (координат) по времени, то:

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Как видно из выражения (4.23), скорость, изменяющаяся по гармоническому закону, опережает колебания смещения по фазе на Гармонические колебания в физике - формулы и определение с примерами (а).

Гармонические колебания в физике - формулы и определение с примерами

Максимальное (амплитудное) значение скорости зависит от амплитуды, частоты и периода колебаний:

Гармонические колебания в физике - формулы и определение с примерами

Так как ускорение является первой производной скорости по времени, то получим:

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Как видим, колебания ускорения, изменяющегося по гармоническому закону, опережают колебания скорости по фазе на Гармонические колебания в физике - формулы и определение с примерами а колебания смещения на

Гармонические колебания в физике - формулы и определение с примерами (см.: рис. а). Максимальное (амплитудное) значение ускорения зависит от амплитуды, частоты и периода колебаний:

Гармонические колебания в физике - формулы и определение с примерами

Превращения энергии при гармонических колебаниях 

Гармонические колебания в физике - формулы и определение с примерами

Теоретический материал

Потенциальная и кинетическая энергия свободных гармонических колебаний в замкнутой системе периодически превращаются друг в друга.

В таблице 4.4 дано сравнение превращений энергий в пружинном и математическом маятниках. Как видно из таблицы, потенциальная энергия колебательной системы в точке возвращения Гармонические колебания в физике - формулы и определение с примерами имеет максимальное значение:

Гармонические колебания в физике - формулы и определение с примерами

Если же маятник находится в точке равновесия, потенциальная энергия минимальна:

Гармонические колебания в физике - формулы и определение с примерами

Кинетическая энергия системы, наоборот, в точке возвращения минимальна Гармонические колебания в физике - формулы и определение с примерами а в точке равновесия максимальна: 

Гармонические колебания в физике - формулы и определение с примерами

На рисунке (а) даны графики зависимости потенциальной и кинетической энергии при гармоническом колебательном движении от смещения.

Гармонические колебания в физике - формулы и определение с примерами

Полная механическая энергия замкнутой колебательной системы в произвольный момент времени Гармонические колебания в физике - формулы и определение с примерами остается постоянной (трение не учитывается):

a) для пружинного маятника:

Гармонические колебания в физике - формулы и определение с примерами

b) для математического маятника:

Гармонические колебания в физике - формулы и определение с примерами

Если принять во внимание изменение смещения и скорости по гармоническому закону в формулах потенциальной и кинетической энергии колебательного движения, то станет очевидно, что при гармонических колебаниях эти энергии так же изменяются по гармоническому закону (b):  

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Как было отмечено выше, полная энергия системы не изменяется по гармоническому закону:

Гармонические колебания в физике - формулы и определение с примерами

Полная энергия гармонических колебаний прямо пропорциональна квадрату амплитуды колебаний.

Если же в системе существует сила трения, то его полная энергия не сохраняется — изменение полной механической энергии равно работе силы трения. В результате колебания затухают: Гармонические колебания в физике - формулы и определение с примерами

Превращения энергии при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергий. Кинетической энергией тело обладает вследствие своего движения, а потенциальная энергия определяется взаимодействием тела с другими телами или полями. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силу трения не учитывают, то его механическая энергия сохраняется.

Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол а (рис. 7), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами
Рис. 7. Превращения энергии при колебаниях математического маятника
 

Поскольку при прохождении положения равновесия его потенциальная энергия равна нулю, то кинетическая энергия (а следовательно, и скорость) будет максимальна:

Гармонические колебания в физике - формулы и определение с примерами

Из закона сохранения механической энергии следует (рис. 8), что

Гармонические колебания в физике - формулы и определение с примерами(1)

Отсюда найдем модуль максимальной скорости маятника:

Гармонические колебания в физике - формулы и определение с примерами    (2)

Высоту Гармонические колебания в физике - формулы и определение с примерами можно выразить через длину маятника l и амплитуду колебаний А.

Гармонические колебания в физике - формулы и определение с примерами

Если колебания малые, то Гармонические колебания в физике - формулы и определение с примерами Из треугольника KCD на рисунке 8 находим

Гармонические колебания в физике - формулы и определение с примерами

Отсюда

Гармонические колебания в физике - формулы и определение с примерами

Подставив выражение для Гармонические колебания в физике - формулы и определение с примерами в формулу I (2), получим

Гармонические колебания в физике - формулы и определение с примерами

Подставляя выражения для Гармонические колебания в физике - формулы и определение с примерами и Гармонические колебания в физике - формулы и определение с примерами в соотношение (1), находим

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную.

В любом промежуточном положении

Гармонические колебания в физике - формулы и определение с примерами

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 9). В крайних точках, когда координата груза принимает значение Гармонические колебания в физике - формулы и определение с примерами, модуль его скорости равен нулю (v = 0) и кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, получаем, что механическая энергия гармонического осциллятора пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда x = 0, вся энергия осциллятора переходит в кинетическую энергию груза:

Гармонические колебания в физике - формулы и определение с примерами

где Гармонические колебания в физике - формулы и определение с примерами— модуль максимальной скорости груза при колебаниях.

В промежуточных точках полная механическая энергия

Гармонические колебания в физике - формулы и определение с примерами

Отсюда можно вывести выражение для модуля скорости Гармонические колебания в физике - формулы и определение с примерами груза в точке с

координатой х:    

Гармонические колебания в физике - формулы и определение с примерами

Так как Гармонические колебания в физике - формулы и определение с примерами

Энергия при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергии. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силой трения пренебрегают, то его механическая энергия сохраняется. Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол Гармонические колебания в физике - формулы и определение с примерами (рис. 10), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Поскольку при прохождении положения равновесия потенциальная энергия равна нулю Гармонические колебания в физике - формулы и определение с примерами то из закона сохранения механической энергии следует (см. рис. 10), что Гармонические колебания в физике - формулы и определение с примерами т. е. кинетическая энергия маятника (а следовательно, и скорость) рис. ю. Определение^иhmax будет максимальна:

Гармонические колебания в физике - формулы и определение с примерами

Запишем закон сохранения механической энергии, подставив в него выражения для потенциальной и кинетической энергии:

Гармонические колебания в физике - формулы и определение с примерами

Отсюда найдем модуль максимальной скорости маятника:

Гармонические колебания в физике - формулы и определение с примерами

Высоту Гармонические колебания в физике - формулы и определение с примерами можно выразить через длину Гармонические колебания в физике - формулы и определение с примерами маятника и амплитуду Гармонические колебания в физике - формулы и определение с примерами колебаний. Если колебания малые, то Гармонические колебания в физике - формулы и определение с примерами Из Гармонические колебания в физике - формулы и определение с примерами (см. рис. 10) находим:
Гармонические колебания в физике - формулы и определение с примерами

или Гармонические колебания в физике - формулы и определение с примерами

Подставив выражение (3) для Гармонические колебания в физике - формулы и определение с примерами в формулу (2), получим:
Гармонические колебания в физике - формулы и определение с примерами

Подставляя выражения (3) для Гармонические колебания в физике - формулы и определение с примерами и (4) для Гармонические колебания в физике - формулы и определение с примерами в соотношение (1), находим:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную (рис. 11). В любом промежуточном положении
Гармонические колебания в физике - формулы и определение с примерами

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 12).

Гармонические колебания в физике - формулы и определение с примерами

В крайних положениях, когда Гармонические колебания в физике - формулы и определение с примерами модуль скорости маятника Гармонические колебания в физике - формулы и определение с примерами и кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, из соотношения (6) следует, что механическая энергия пружинного маятника пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда Гармонические колебания в физике - формулы и определение с примерами вся энергия пружинного маятника переходит в кинетическую энергию груза:

Гармонические колебания в физике - формулы и определение с примерами

где Гармонические колебания в физике - формулы и определение с примерами — модуль максимальной скорости груза при колебаниях.

В положениях между крайними точками полная энергия

Гармонические колебания в физике - формулы и определение с примерами

С учетом выражений для координаты Гармонические колебания в физике - формулы и определение с примерами и проекции скорости груза Гармонические колебания в физике - формулы и определение с примерами а также для Гармонические колебания в физике - формулы и определение с примерами находим его потенциальную энергию Гармонические колебания в физике - формулы и определение с примерами и кинетическую энергию Гармонические колебания в физике - формулы и определение с примерами в произвольный момент времени 

Тогда полная механическая энергия пружинного маятника в этот же. момент времени есть величина постоянная и равная:

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, начальное смещение Гармонические колебания в физике - формулы и определение с примерами определяет начальную потенциальную, а начальная скорость Гармонические колебания в физике - формулы и определение с примерами определяет начальную кинетическую энергию колеблющегося тела. При отсутствии в системе потерь энергии процесс колебаний сопровождается только переходом энергии из потенциальной в кинетическую и обратно.

Заметим, что частота периодических изменений кинетической (потенциальной) энергии колеблющегося тела в два раза больше частоты колебаний маятника. Действительно, дважды за период механическая энергия тела будет полностью превращаться в потенциальную (в двух крайних положениях маятника) и дважды за период — в кинетическую (при его прохождении через положение равновесия) (рис. 13).

Гармонические колебания в физике - формулы и определение с примерами

Пример №1

Математический маятник при колебаниях от одного крайнего положения до другого смещается на расстояние Гармонические колебания в физике - формулы и определение с примерами см и при прохождении положения равновесия достигает скорости, модуль которой Гармонические колебания в физике - формулы и определение с примерами Определите период Гармонические колебания в физике - формулы и определение с примерами колебании маятника.
Дано:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами
Решение

По закону сохранения механической энергии

Гармонические колебания в физике - формулы и определение с примерами

Отсюда: 

Гармонические колебания в физике - формулы и определение с примерами
Ответ: Гармонические колебания в физике - формулы и определение с примерами

Пример №2

Груз массой Гармонические колебания в физике - формулы и определение с примерами г находится на гладкой горизонтальной поверхности и закреплен на легкой пружине жесткостью Гармонические колебания в физике - формулы и определение с примерами Его смешают на расстояние Гармонические колебания в физике - формулы и определение с примерами см от положения равновесия и сообщают в направлении от положения равновесия скорость, модуль которой Гармонические колебания в физике - формулы и определение с примерами Определите потенциальную Гармонические колебания в физике - формулы и определение с примерами и кинетическую Гармонические колебания в физике - формулы и определение с примерами энергию груза в начальный момент времени. Запишите кинематический закон движения груза.

Дано:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами
Решение Потенциальная энергия груза:
Гармонические колебания в физике - формулы и определение с примерами
Кинетическая энергия груза:
Гармонические колебания в физике - формулы и определение с примерами

Начальное смещение груза не является амплитудой, так как вместе с начальным отклонением грузу сообщили и скорость. Однако полная энергия может быть выражена через амплитуду колебаний:

Гармонические колебания в физике - формулы и определение с примерами

Отсюда
Гармонические колебания в физике - формулы и определение с примерами
Циклическая частота:
Гармонические колебания в физике - формулы и определение с примерами
В начальный момент времени Гармонические колебания в физике - формулы и определение с примерами координата груза Гармонические колебания в физике - формулы и определение с примерами Отсюда начальная фаза:
Гармонические колебания в физике - формулы и определение с примерами
Тогда закон гармонических колебаний имеет вид (рис. 14):

Гармонические колебания в физике - формулы и определение с примерами

Ответ: Гармонические колебания в физике - формулы и определение с примерамиГармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

  • Вынужденные колебания в физике
  • Электромагнитные колебания
  • Свободные и вынужденные колебания в физике
  • Вынужденные электромагнитные колебания
  • Закон Архимеда
  • Движение жидкостей
  • Уравнение Бернулли
  • Механические колебания и волны в физике

Частота колебаний, теория и онлайн калькуляторы

Частота колебаний

Гармонические колебания, частота и др их характеристики

Определение

Колебаниями называют такие движения или процессы, которые повторяются.

По своей природе колебания делят на механические, электромагнитные и др. Разные виды колебаний описывают при помощи одинаковых уравнений и при этом используют одинаковые характеристики.

Колебания являются свободными (собственными), если они происходят за счет энергии, которая получена колебательной системой один раз и в дальнейшем внешние воздействия на эту систему отсутствуют.

Самым простым видом колебаний являются гармонические колебания. Гармоническими колебаниями называют такие колебания, при которых колеблющаяся величина изменяется во времени по закону синуса или косинуса. Пусть происходят гармонические колебания никоторого параметра $s$, тогда они описываются как:

[s=A{cos ({omega }_0t+varphi ) } left(1right),]

где $A=s_{max}$ — амплитуда колебаний; ${omega }_0$ — циклическая (круговая) частота колебаний; $varphi $ — начальная фаза колебаний (фаза при $t=0$); $({omega }_0t+varphi )$ — фаза колебаний. Величина $s$ лежит в пределах $-Ale sle $+A.

Промежуток времени через который повторяются определенные состояния системы (T) называют периодом. За время равное периоду колебаний фаза изменяется на величину равную $2pi $, поэтому:

[T=frac{2pi }{{omega }_0}left(2right).]

Разные процессы, повторяющиеся через равные промежутки времени (периодические процессы) можно представить в виде совокупности наложенных гармонических колебаний.

Определение частоты колебаний

Определение

Физическая величина обратная периоду колебаний называется частотой колебаний ($nu $). Частота колебаний — это количество полных колебаний, которые совершаются за единицу времени.

[nu =frac{1}{T}left(3right).]

Из (2) и (3) следует, что циклическая частота равна:

[{omega }_0=2pi nu left(4right).]

Единицей измерения частоты в Международной системе единиц (СИ) является герц или обратная секунда:

[left[nu right]=с^{-1}=Гц.]

Герц — единица измерения частоты периодического процесса, при которой за время в одну секунду протекает один цикл процесса. Единица измерения частоты периодического процесса называется в честь немецкого ученого Г. Герца.

Циклическая частота измеряется в радианах, деленных на секунду:

[left[{omega }_0right]=frac{рад}{с}.]

Частота дискретных событий, частота вращения

Определение

Частотой дискретных колебаний ($n$) — называют физическую величину, которая равна количеству действий (событий) в единицу времени.

Если время, которое занимает одно событие обозначить как $tau $, то частота дискретных событий равна:

[n=frac{1}{tau }left(5right).]

Единицей измерения частоты дискретных событий является обратная секунда:

[left[nright]=frac{1}{с}.]

Секунда в минус первой степени равна частоте дискретных событий, если за время, равное одной секунде происходит одно событие.

Частотой вращения ($n$) — называют величину, равную количеству полных оборотов, которое совершает тело в единицу времени. Если $tau $ — время, затрачиваемое на один полный оборот, то:

[n=frac{1}{tau }left(6right).]

Примеры задач с решением

Пример 1

Задание. Каковы: циклическая частота колебаний и частота колебаний величины $r$, если ее гармонические колебания заданы уравнением:

[r=0,5{cos left(3pi t+frac{pi }{4}right)(м) . }]

Решение.Рассмотрим уравнение колебаний параметра $r$:

[r=0,5{cos left(3pi t+frac{pi }{4}right)left(мright)(1.1) . }]

Из этого уравнения мы видим, что амплитуда колебаний равна $r_{max}=0,5 (м)$; ${omega }_0=3pi $ ($frac{рад}{с}$). Частоту колебаний ($nu $) найдем, используя формулу:

[{omega }_0=2pi nu left(1.2right).]

Выразим $nu $, имеем:

[nu =frac{{omega }_0}{2pi } left(1.3right).]

Подставляя ${omega }_0=3pi $textit{ }($frac{{rm рад}}{{rm с}}$) получаем:

[nu =frac{3pi }{2pi }=frac{3}{2}left(Гцright).]

Ответ. ${omega }_0=3pi $ $frac{рад}{с};;$ $nu $=1,5 Гц

Пример 2

Задание. Шар массой $M$ закреплен на пружине коэффициент упругости, которой равен $k$. Шар лежит на гладкой горизонтальной поверхности (рис.1). Горизонтально летела пуля, ее скорость составляла $v_0 $, была направлена в сторону шара и в момент удара была параллельна оси пружины, масса пули $m$. После удара о шар пуля застряла в нем. Какова частота колебаний шара, вызванных ударом пули. Шар может скользить по столу без трения. Массу пружины и сопротивление воздуха не учитывать.

Частота колебаний, пример 2

Решение. После того, как пуля ударила по шарику и застряла в нем, данная система будет совершать колебания. Так как по условию задачи колебания можно считать свободными (трения нет), то колебания шарика (с пулей) на пружине являются свободными и гармоническими, их можно описать как, например изменение координаты шарика, который примем за материальную точку:

[x=x_m{sin left({omega }_0t+varphi right)left(2.1right). }]

В таких колебаниях кинетическая энергия переходит в потенциальную энергию и наоборот, поэтому можно записать закон сохранения энергии в виде:

[frac{(m+M)v^2_m}{2}=frac{kx^2_m}{2} left(2.2right),]

где $frac{(m+M)v^2_m}{2}$ — кинетическая энергия системы в момент, сразу следующий за ударом, скорость шарика с пулей максимальна; $frac{kx^2_m}{2}$ — потенциальная энергия сжатой пружины в момент максимального ее сжатия, когда шарик с пулей перестаёт двигаться.

Амплитуду скорости колебаний найдем как:

[v_x=frac{dx}{dt}=frac{d}{dt}(x_m{sin left({omega }_0t+varphi right)=x_m{omega }_0{cos left({omega }_0t+varphi right)to v_m= }x_m{omega }_0(2.3). }]

Подставим $v_m$ в (2.2), имеем:

[frac{(m+M){x_m}^2{{omega }_0}^2}{2}=frac{kx^2_m}{2}to {omega }_0=sqrt{frac{k}{m+M}}left(2.4right).]

Применим выражение:

[nu =frac{{omega }_0}{2pi } left(2.5right).]

Найдем частоту колебаний системы:

[nu =frac{1}{2pi }sqrt{frac{k}{m+M}}.]

Ответ. $nu =frac{1}{2pi }sqrt{frac{k}{m+M}}$

Читать дальше: частота.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Понравилась статья? Поделить с друзьями:
  • Как составить инвентаризационную опись образец
  • Как исправить нечеткое фото в фотошопе
  • Как найти на компьютере создать презентацию
  • Как найти человека на майле по имени
  • Elite dangerous как найти товар нужный