Как найти частоту приложенного напряжения

Частоты питающего напряжения

Современные промышленные вентильные преобразователи для электропривода с асинхронными электродвигателями

Регулирование угловой скорости асинхронного электропривода изменением

частоты питающего напряжения

Принципиальная возможность регулирования угловой скорости асинхронного двигателя изменением частоты питающего напряжения следует непосредственно из выражения:

.

Питание асинхронных двигателей осуществляется при этом не от общей сети, а от преобразователя частоты ПЧ, показанного на рис. 8, энергия к которому подводится от сети постоянной частоты f и напряжения U. На выходе преобразователя, как правило, меняется не только частота f1, но и напряжение U1. Для преобразования частоты могут быть использованы полупроводниковые устройства, различающиеся по принципу действия и конструкции.

При регулировании частоты возникает также необходимость регулирования напряжения источника питания. Действительно, э. д. с. обмотки статора асинхронного двигателя пропорциональна частоте и потоку:

С другой стороны, пренебрегая в первом приближении падением напряжения на сопротивлениях обмотки статора, т. е. полагая , можно записать: , Или

Из приведенного выражения следует, что при неизменном напряжении источника питания и регулировании его частоты изменяется магнитный поток асинхронного двигателя. В частности, уменьшение частоты приводит к возрастанию потока и как следствие к насыщению машины и увеличению тока намагничивания, что связано с ухудшением энергетических показателей двигателя, а в ряде случаев и с его недопустимым нагревом. Увеличение частоты приводит к снижению потока двигателя, что при постоянном моменте нагрузки на валу в соответствии, с выражением приводит к возрастанию тока ротора, т. е. к перегрузке его обмоток по току при недоиспользованной стали. Кроме того, с этим связано снижение максимального момента и перегрузочной способности двигателя. Для наилучшего использования асинхронного двигателя при регулировании скорости изменением частоты необходимо регулировать напряжение одновременно в функции частоты и нагрузки.

Регулирование напряжения лишь в функции одной частоты с учетом характеристики механизма может быть реализовано в разомкнутых системах частотного управления.

Регулирование напряжения в функции нагрузки можно осуществить, как правило, лишь в замкнутых системах, в которых при использовании обратных связей напряжение при данной частоте может изменяться в зависимости от нагрузки.

По мере снижения частоты при падает доля э. д. с. по отношению к приложенному напряжению вследствие относительного возрастания падения напряжения в сопротивлении статора с ростом нагрузки, что приводит к уменьшению магнитного потока, а, следовательно, к снижению электромагнитного момента. Как следствие убывания магнитного потока и абсолютного критического скольжения по мере снижения частоты падает максимальный момент и снижается жесткость механических характеристик

Рисунок 9 – Механические характеристики асинхронного двигателя при частотном управлении по закону .

Изменение частоты источника питания позволяет регулировать скорость асинхронного двигателя как выше, так и ниже основной. Обычно при регулировании выше основной скорости частота источника питания превышает номинальную не более чем в 1,5 2 раза. Указанное ограничение обусловлено, прежде всего, прочностью крепления обмотки ротора. Кроме того, с ростом частоты питания заметно увеличиваются величины мощности потерь, связанные с потерями в стали статора. Регулирование скорости вниз от основной, как правило, осуществляется в диапазоне до 10 15. Нижний предел частоты ограничен сложностью реализации источника питания с низкой частотой, возможностью неравномерности вращения и рядом других факторов. Таким образом, частотное регулирование скорости асинхронного двигателя может осуществляться в диапазоне до 20–30.

Если при регулировании частоты напряжение изменяется таким образом, что Ф=const, то допустимый момент на валу асинхронного двигателя при частотном регулировании скорости также будет неизменным ( ).

Этот способ регулирования позволяет получить жесткие механические характеристики. Потери мощности при частотном управлении невелики. Это следует из выражения

с учетом того, что двигатель при изменении частоты работает на линейных участках механических характеристик, т. е. при малых скольжениях s. При наличии соответствующего преобразователя частоты можно получить любую плавность регулирования. Важно отметить, что указанные положительные свойства можно реализовать с бесконтактным асинхронным короткозамкнутым двигателем, который является наиболее простым, надежным и дешевым электрическим двигателем.

Частотное регулирование угловой скорости электроприводов переменного тока с двигателями с короткозамкнутым ротором находит все большее применение в различных отраслях техники. Например, в установках текстильной промышленности, где с помощью одного преобразователя частоты, питающего группу асинхронных двигателей, находящихся в одинаковых условиях, плавно и одновременно регулируются их угловые скорости. Примером другой установки с частотно-регулируемыми асинхронными двигателями с короткозамкнутым ротором могут служить транспортные рольганги в металлургической промышленности, некоторые конвейеры и др.

Частотное регулирование угловой скорости асинхронных двигателей широко применяется в индивидуальных установках, когда требуется получение весьма высоких угловых скоростей (например, для центрифуг, шлифовальных станков, для привода электрошпинделей в металлорежущих станках с частотой вращения до 20 000 об/мин).

Экономические выгоды частотного регулирования особенно существенны для приводов, работающих в повторно-кратковременном режиме, где имеет место частое изменение направления вращения с интенсивным торможением.

Основным недостатком электроприводов с частотным управлением является необходимость использования преобразователей частоты, которые в настоящее время характеризуются относительной сложностью по схемному исполнению и высокой стоимостью. Этот недостаток ограничивает применение частотноуправляемых электроприводов. Тем не менее, преимущества этих приводов столь значительны, что на протяжении многих лет и в настоящее время ведутся интенсивные работы по созданию преобразователей частоты для регулирования скорости асинхронных двигателей.

В случае создания приемлемых по сложности и стоимости преобразователей частоты частотноуправляемый привод с асинхронным короткозамкнутым двигателем получит широкое распространение в технике.

Основное применение в настоящее время находит частотный способ регулирования числа оборотов асинхронных двигателей реализуемый с помощью автономных инверторов напряжения построенных на полностью управляемых полупроводниковых приборах. Автономный инвертор преобразует постоянный ток в переменный, частота которого зависит от частоты коммутации полупроводниковых приборов.

Здесь выделяются два способа регулирования:

Для одновременного регулирования напряжения и частоты (амплитудно-частотное регулирование) можно использовать управляемый выпрямитель или импульсный регулятор для регулирования напряжения, а выходной инвертор для регулирования частоты. Рассмотрим подробнее работу инвертора с амплитудно-частотным регрегулированием

При частотном способе регулирования скорости необходимо регулировать и величину напряжения. Необходимым элементом системы электропривода является преобразователь частоты и напряжения на вход которого подаются стандартное напряжение u1 cчастота f1 c, а с выхода имаются регулируемое напряжение u1 реги регулируемая частота f1 рег. Рис.10

Статические ПЧ могут быть без звена постоянного тока с непосредственной связью питающей сети и нагрузкии с промежуточным звеном постоянного тока.

Один их вариантов схем силовой части тиристорного преобразователя с непосредственной связью (НПЧ) приведён на рис 11.

НПЧ состоит из трёх одинаковых комплектов тиристоров 1, 2, 3, обеспечивающих питание трёх обмоток статора. К тиристорам подключены начала обмоток статора С1, С2, С3, а концы этих обмоток С4, С6, С6 подключены к нулевой точке трансформатора Т. Каждая фаза схемы работает независимо от остальных, поэтому принцип её действия можно рассмотреть на примере одной фазы, полагая, что нагрузка имеет активный характер (рис. 10). При активно – индуктивной нагрузке, которой являются обмотки статора, меняется лишь форма напряжения.

Так как период Tрегэтого напряжения больше, чем период сетевого напряжения T 1 , то частота напряжения на статоре асинхронного двигателя всегда меньше, чем частота питающего напряжения. Кроме того, недостатком этой схемы является необходимость нулевого вывода трансформатора.

Схема ПЧ со звеном постоянного тока состоитиз двух основных блоков (рис. 13): Управляемого выпрямителя и инвертора.

Напряжение сети стандартной u1 частоты f1 подаётся на вход управляемого выпрямителя, преобразующего переменное напряжение u1 в постоянное Е0, которое можно регулировать в широких пределах с помощью блока управления выпрямителем. Выпрямленное и регулируемое напряжение Е0, подаётся на вход инвертора, который преобразует его в трёхфазное напряжение регулируемой частоты f1 рег, поступающее на асинхронный двигатель. Частота выходного напряжения инвертора f1 рег регулируется блоком управления инвертором в функции сигнала управления Uу. ПЧ со звеном постоянного тока позволяют плавно регулировать частоту напряжения на статоре как ниже, так и выше сетевой.

Автономные инверторы делятся на инверторы напряжения АИН и тока АИТ.

В автономных инверторах для коммутации тока используются дополнительные элементы – тиристоры, диодыконденсаторы и катушки индуктивности.

источнику напряжения (например, управляемому выпрямителю) на выходе которого устанавливается конденсатор большой ёмкости. Автономные инверторы тока АИТ питаются от источика тока (например, управляемого выпрямителя через реактор большой индуктивности. Управляющими воздействиями здесь для АД являются частота и ток статора. В ПЧ со звеном постоянного тока регулирование напряжения на нагрузке (статоре АД) производится двумя способами – или с помощью специального регулятора напряжения, или самим инвертором. В первом случае может быть использован управляемый выпрямитель ( амплитудное регулирование напряжения ) или широтно – импульсное регулирование (ШИМ). Второй способ связан с совмещение функций регулирования частоты и напряжения в самом инверторе.

Источник

Период, частота, амплитуда и фаза переменного тока

Период и частота переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2. Радиан.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ? .

? = 6,28*f = 2f

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Как определить частоту переменного тока

Содержание

  • 1 Что такое частота
  • 2 Как определяется
    • 2.1 Измерение частоты
    • 2.2 Расчёт частоты тока
  • 3 Заключение
  • 4 Видео по теме

В силу различных преимуществ большинство энергетических систем — от общегосударственных до бытовых, функционируют на переменном токе. Однако мало кто считается с тем, что кроме параметров напряжения и тока системы, важную роль играет также частота тока. Например, в функционале популярных мультитестеров измерение частоты переменного тока отсутствует. Между тем значения этой величины, которые выходят за требуемые пределы, грозят тяжёлыми последствиями. Мгновенно происходит разбалансированность системы энергоснабжения с неминуемыми катастрофическими последствиями для целых регионов.

Графическое отображение переменного тока

Графическое отображение переменного тока

Что такое частота

Производство электроэнергии в подавляющем большинстве ситуаций называют контролируемым. Эту работу проделывают генераторы, преобразующие механическую энергию ротора турбины в электрическую. Как показано на схеме, на поверхности ротора имеется обмотка из медной проволоки, поэтому он представляет собой непрерывно вращающийся электромагнит.

Схематическое изображение генератора

Схематическое изображение генератора

Во время вращения ротора, созданное вокруг него магнитное поле, наводит электрический ток. Его направление периодически изменяется на противоположное, поскольку месторасположение полюсов электромагнита чередуется после каждого оборота ротора. Соответственно, ток тоже меняет своё направление два раза за цикл вращения.

Следствием и мерой скорости этих изменений является частота, которая измеряется количеством изменений месторасположения полюсов в секунду. Единица частоты получила наименование герц и обозначается двумя буквами — Гц. Таким образом, можно сказать, что генератор, который снабжён парой магнитных полюсов, вращающихся с угловой скоростью 3000 мин-1, будет производить ток частотой 50 Гц.

Мощность переменного тока изменяется по синусоидальному закону с чередованием положительных и отрицательных полюсов. При переходе каждого цикла из положительной области в отрицательную происходит соответствующее перемещение электронов. В конечном счете, эти циклы создают электрический нагрев или рассеивание мощности. Независимо от направления движения тока (т. е., положительного или отрицательного), если силы тока (напряжения) достаточно для удовлетворения требований электрического устройства, оно будет работать.

Синусоида переменного тока

Синусоида переменного тока

Таким образом, количество полных циклов за секунду, когда переменный ток переходит от положительного полюса к отрицательному, называется частотой, а сам временной отрезок называется периодом. С точки зрения электрического тока частотой принято считать количество повторений синусоиды, а другими словами — это полное колебание, состоящее из положительной и отрицательной составляющих. Следовательно, частота и период связаны между собой обратно пропорциональной зависимостью:

Определение частоты

Определение частоты

Частота и период переменного тока варьируются в зависимости от страны, причём не обязательно привязываются к местному стандарту напряжения. Например, в США, Канаде и других странах со стандартным линейным напряжением 110…120 В эталоном частоты является 60 Гц. В большинстве стран, где значения переменного напряжения равняются 220…240 В (в том числе и в нашей стране), за стандартную частоту принято 50 Гц, однако Южная Корея, Филиппины и многие страны Карибского бассейна используют 220…240 В с частотой 60 Гц. А есть ещё и Япония, где напряжение в сети достигает 100 В, но стандартная частота переменного тока в разных районах составляет 50 и 60 Гц.

Большинство электронных устройств могут работать, потребляя переменный ток, если его частота 50 или 60 Гц. Но, для электроприборов, использующих довольно мощные приводы, рассчитанные на конкретную частоту (холодильники, морозильники, стиральные и сушильные машины), разница в 10 Гц уже значительна. В первую очередь это касается устройств, включающихся периодически. Их электромоторам приходится вращаться то быстрее, то медленнее, что отрицательно сказывается на их долговечности. В таких случаях необходимо использовать преобразователи частоты или трансформаторы напряжения.

Внешний вид преобразователя частоты

Внешний вид преобразователя частоты

Как определяется

Существует два способа установить, чему равна частота и амплитуда переменного тока — применять специальные приборы либо воспользоваться результатами расчётов.

Измерение частоты

Для измерения частоты переменного тока используется принцип механического резонанса. Он является достаточно простым, хотя и не очень точным. Основывается на том факте, что для каждого физического объекта, обладающего упругими свойствами, существует определенное значение частоты, при которой он начинает вибрировать.

Примером подобного устройства является камертон. Если по нему ударить, он будет довольно продолжительное время вибрировать со звуком, зависящим от его длины. Чем длиннее камертон, тем ниже будет резонансная частота и наоборот.

Если представить себе ряд камертонов с постепенно увеличивающимися размерами, установленными на общем основании, то это основание станет вибрировать с частотой измеряемого напряжения или тока. Для этого устройство следует снабдить электромагнитом.

Измерения частоты тока выполняются с помощью набора «камертонов», в качестве которых используются полоски листового металла. Это устройство называется частотомером вибрирующего геркона.

Схема вибрационного частотомера

Схема вибрационного частотомера

Используя частотомер, можно наглядно увидеть, как концы всех полосок встряхиваются в зависимости от того, как меняется величина переменного напряжения, приложенного к катушке. Тот из лепестков, который будет ближе всего к резонансной частоте переменного тока, станет вибрировать наиболее интенсивно.

Особой точностью вибрационные частотомеры не отличаются, зато характеризуются простотой своего изготовления. Их применяют в небольших электроремонтных мастерских, а также в быту с целью калибровки частоты вращения двигателя.

Хотя подобный прибор будет иметь малую точность, этого нельзя сказать о самом принципе измерения. Заменив механический резонатор на электрический, можно получить частотомер на основе катушки индуктивности и параллельно включённого конденсатора. Вместе они образуют колебательный контур.

Один или оба компонента этого контура могут быть регулируемыми. В цепь включается измерительный блок, который показывает максимальную амплитуду напряжения на конденсаторе и катушке. Ручки регулировки предварительно откалибровываются, чтобы иметь возможность выставлять резонансную частоту для любого варианта настройки. Частота считывается после настройки устройства на максимальное показание шкалы измерителя.

Схема электрического частотомера

Схема электрического частотомера

Фактически частотомер реализует схему настраиваемого фильтра, после чего отсчёт показаний происходит как в мостовой схеме (она вначале балансируется для условного нулевого состояния, после чего выполняется отсчёт). До тех пор, пока катушка и/или конденсатор смогут перехватывать достаточное поле магнитного или электрического рассеивания от тестируемой цепи, устройство будет сохранять свою работоспособность.

Метод не требует прямого подключения к цепи, поэтому часто применяется в бытовых условиях. Наиболее точные результаты дают электронные частотомеры.

Внешний вид электронного частотомера

Внешний вид электронного частотомера

Расчёт частоты тока

Для расчёта требуется знать период или временной отрезок, в течение которого значение переменного тока повторяется и образует одну полную волну. Между периодом и частотой переменного тока имеется зависимость, которую отражает следующая формула:

Определение частоты электротока

Определение частоты электротока

Если известно значение циклической частоты ɷ и амплитуда А, то по схожей зависимости можно вычислить силу тока I:

Определение силы электротока

Определение силы электротока

Определение угловой частоты выполняется с помощью такого уравнения:

Формула угловой скорости

Формула угловой скорости

Заключение

Учитывая тенденцию к постепенному уменьшению производства электроэнергии с использованием традиционных видов топлива, всё чаще возникают вопросы оптимального управления частотными параметрами систем энергетики. Идеальным выходом их положения считают такой, при котором данные функции будут реализованы вследствие применения более стабильных и доступных форм генерации. К ним стоит отнести атомную энергетику, использование энергии солнца и ветра.

Видео по теме



В данной заметке продолжаем исследовать частоту и её расчёт. Суть предыдущей заметки на эту тему сводится к двум тезисам:

  1. Обнаружены случаи неправильного определения частоты сети 6-35 кВ и, как следствие, ложной работы АЧР. Причина – переходный процесс перемежающегося однофазного замыкания на землю.
  2. Рецепт – измерять частоту по междуфазному напряжению.

На этот раз рассмотрим ещё один неочевидный фактор, влияющий на точность измерения частоты.

Вообще, для многих задач электроэнергетики частота сети должна определяться очень точно. К примеру, в одном из стандартов ПАО «ФСК ЕЭС» (СТО 56947007-29.200.80.210-2015) указывается, что предел допускаемой абсолютной погрешности измерения частоты не должен превышать ±0,01 Гц. В теории этот показатель достижим, и все производители соответствующих устройств со спокойной совестью заявляют такую точность.  Но давайте проверим, что мы имеем на самом деле. Для чистоты эксперимента проведем его в условиях, в которых снимали метрологические характеристики сами производители. Это будет в практически «стерильной» лаборатории. Найдем в этой лаборатории какой-нибудь современный микропроцессорный контроллер с заявленной погрешностью измерения частоты не более ±0,01 Гц. Затем подадим на найденный контроллер от эталонного источника напряжения напряжение с частотой, к примеру, 45 Гц и посмотрим, что устройство покажет. Проведём анализ увиденного и в результате придем к тому или иному выводу.

Все вышеуказанное нами было скрупулезно проделано и получено следующее. Сначала подали фазное напряжение. Осциллограмма этого напряжения, записанная контроллером, приведена на рис. 1.

osc3_1
Рис. 1. Исследуемое фазное напряжение uA c частотой 45 Гц

Теперь самое интересное – рис. 2, на котором показана осциллограмма частоты, определённой по этому фазному напряжению, рассчитанная по переходу через ноль.

osc3_2
Рис. 2. Расчёт частоты фазного напряжения с усреднением на 5 периодах (погрешность 0,055 Гц)

Что мы видим? А видим мы то, что погрешность  измерения частоты в 5,5 раз превышает максимальное заявленное значение! И это в лабораторных условиях… И то же самое происходит с контроллерами почти всех производителей.

Попробуем тот же рецепт, что и в прошлый раз? Результат представлен на рис. 3.

osc3_3
Рис. 3. Расчёт частоты по линейному напряжению uAB с усреднением на 5 периодах (погрешность 0,002 Гц)

Итак, промежуточный вывод: частоту необходимо рассчитывать из линейного напряжения.

Интереса ради мы повторили эксперимент для частоты 50 Гц. Напряжение опять подали фазное. Результат на рис. 4.

osc3_4
Рис. 4. Расчёт частоты по фазному напряжению uA с усреднением на 5 периодах

Погрешность не превысила ±0,002 Гц… Почему так получилось? Почему расчёт частоты для напряжений с частотой 45 Гц и 50 Гц так сильно разнятся?Постараемся ответить на этот вопрос. Оценим спектральную плотность мощности исследуемых напряжений. Спектр фазного напряжения с частотой 45 Гц, который удалось разглядеть, приведен на рис. 5. На нем отчётливо видны гармоники (вторая, третья, пятая и т.д.). Они-то и портят измерение частоты? Нет, дело в том, что гармоники по своей сути не могут исказить период периодического сигнала, они искажают только форму сигнала. Если присмотреться, то помимо гармоник в спектре можно обнаружить негармонические составляющие. А вот эти «товарищи» как раз частоту-то и портят.

osc3_5
Рис. 5. Спектр фазного напряжения uA (есть частоты 45, 50, 100, 135, 150, 200, 225 и 250 Гц)

По логике вещей выходит, что в спектре междуфазного напряжения негармонических составляющих быть не должно. Действительно, так и есть. Доказательством тому является рис. 6. Исключением является только пятая гармоника. Но она, как уже выяснили, безобидна для частоты.

osc3_6
Рис. 6. Спектр линейного напряжения uAB (есть частота 45, 225 Гц)

Исходя из приведённого выше исследования, можно сделать следующие выводы:

  1. Даже в «стерильных» лабораториях, не говоря уже о реальных объектах эксплуатации, устройства, измеряющие частоту сети, могут делать это не так, как мы того хотим. Виной тому откуда-то появляющиеся некие негармонические составляющие напряжения.
  2. Негармонические составляющие любят почему-то только фазное напряжение, а в междуфазном напряжении (том, которое использовано в проведённых экспериментах) почему-то не заводятся.

Вроде все, в целом, становится понятно. Но остался ещё ряд нераскрытых вопросов:

  1. Откуда негармонические составляющие в фазном напряжении и куда они деваются в междуфазном?
  2. Почему по фазному напряжению частота 50 Гц измеряется практически идеально?

Исследуемые напряжения приведены в осциллограммах.

Содержание:

Электрические цепи синусоидального тока:

В общем случае цепь переменного тока характеризуется тремя параметрами: активным сопротивлением R, индуктивностью L и емкостью С. В технике часто применяются цепи переменного тока, в которых преобладает один или два из этих параметров.

При анализе работы и расчетах цепей исходят из того, что для мгновенных значений переменного тока можно использовать все правила и законы постоянного тока.

Цепь с активным сопротивлением

Активным сопротивлением R обладают элементы, которые нагреваются при прохождении через них тока (проводники, лампы накаливания, нагревательные приборы и т.д.).

Если к активному сопротивлению R (рис. 11.1) приложено синусоидальное напряжение Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока

Ток в цепи с активным сопротивлением совпадает по фазе с напряжением, так как начальные фазы их равны (Электрические цепи синусоидального тока = 0). Векторная диаграмма для цепи с активным сопротивлением изображена на рис. 11.16, временная диаграмма изображена на рис. 11.1в.

Математическое выражение закона Ома для цепи переменного тока с активным сопротивлением имеет вид:

Электрические цепи синусоидального тока

Это вытекает из выражения (11.1), если левую и правую части уравнения разделить на Электрические цепи синусоидального тока =1,41.

Электрические цепи синусоидального тока

Таким образом, действующее значение синусоидального тока I пропорционально действующему значению синусоидального напряжения U и обратно пропорционально сопротивлению R участка цепи, к которому приложено напряжение U. Такая интерпретация закона Ома справедлива как для мгновенных, так и для действующих и амплитудных значений синусоидального тока.

Активная мощность

Мгновенная мощность в цепи с активным сопротивлением определяется произведением мгновенных значений напряжения ка, т. е. р = ui. Это действие производится над кривыми тока и ряжения в определенном масштабе (рис. 11.1в). В результате учена временная диаграмма мгновенной мощности р. Как видно из временной диаграммы, мощность в цепи с активным сопротивлением изменяется по величине, но не изменяется по направлению (рис. 11.1в). Эта мощность (энергия) необратима. От источника она поступает на потребитель и полностью преобразуется в другие виды мощности (энергии), т.е. потребляется. Такая потребляемая мощность называется активной.

Поэтому и сопротивление R, на котором происходит подобное образование, называется активным сопротивлением, цепи с активным сопротивлением мгновенная мощность характеризует скорость преобразования электрической энергии в другие виды энергии.

Количественно мощность в цепи с активным сопротивлением определяется следующим образом:

Электрические цепи синусоидального тока

Мгновенная мощность в цепи синусоидального тока с активным сопротивлением представляет собой сумму двух величин -постоянной мощности UI и переменной Электрические цепи синусоидального тока, изменяющейся с двойной частотой.

Средняя за период мощность, равная постоянной составляющей мгновенной мощности UI, является активной мощностью Р. Среднее за период значение переменной составляющей, как и всякой синусоидальной величины, равно нулю, то есть

Электрические цепи синусоидального тока

Таким образом, величина активной мощности в цепи синусоидального тока с активным сопротивлением с учетом закона Ома определяется выражением:

Электрические цепи синусоидального тока

где U- действующее значение напряжения; I— действующее значение тока.

Единицей активной мощности является ватт:

Электрические цепи синусоидального тока

Поверхностный эффект и эффект близости

Сопротивление проводника постоянному току Электрические цепи синусоидального тока называют омическим сопротивлением и определяют выражением (2.8) Электрические цепи синусоидального тока Сопротивление проводника переменному току R называют активным.

Оказывается, что сопротивление проводника переменному току больше его омического сопротивления за счет так называемого поверхностного эффекта и эффекта близости, т. е. Электрические цепи синусоидального тока

Увеличение активного сопротивления вызвано неодинаковой плотностью тока в различных сечениях проводника (рис. 11.2а).

На рис. 11.2а изображено магнитное поле проводника цилиндрического сечения. Если по проводнику проходит переменный ток, то он создает переменный магнитный поток внутри и вне проводника. Этот поток в различных сечениях проводника индуктирует ЭДС самоиндукции, которая, согласно правилу Ленца. противодействует изменению тока как причине создания ЭДС Очевидно, центр проводника охвачен большим количеством магнитных линий (большее потокосцепление), чем слои, близкие к поверхности. Следовательно, в центре проводника ЭДС (сопротивление) больше, чем на поверхности проводника. Плотность на поверхности больше, чем в центре. Поэтому это явление и называется поверхностным эффектом.

Электрические цепи синусоидального тока

Таким образом, поверхностный эффект уменьшает сечение проводника для переменного тока, а следовательно, увеличивает активное сопротивление R.

Отношение активного сопротивления проводника к его сопротивлению определяет коэффициент поверхностного эффекта Электрические цепи синусоидального тока(кси)

Электрические цепи синусоидального тока

График зависимости коэффициента поверхностного эффекта от параметра проводника d, его удельной проводимости Электрические цепи синусоидального тока, магнитной проницаемости материала проводника Электрические цепи синусоидального тока и частоты переменного тока Электрические цепи синусоидального тока, проходящего по проводнику, показан на рис. 11.26.

При токах большой частоты Электрические цепи синусоидального тока (радиочастотах) ток в центре проводника отсутствует. Поэтому такие проводники делают трубчатыми, т.е. полыми.

На величину активного сопротивления проводника R оказывает влияние и эффект близости.

Если токи в двух параллельных проводах, расположенных близко друг к другу, направлены в одну сторону, то элементы сечения водников, удаленных на большее расстояние друг от друга, цепляются с меньшим магнитным потоком и имеют большую плотность тока (заштриховано на рис. 11.3а), чем элементы сечения проводников, расположенные близко друг к другу.

Если же токи в близко расположенных параллельных проводах направлены в различные стороны, то большая плотность тока на-дается в элементах сечения проводников, расположенных ближе друг к другу (заштриховано на рис. 11.36).

Таким образом, эффект близости в проводниках также влияет активное сопротивление проводников за счет наведения в различных элементах сечений проводников различных ЭДС взаимоиндукции, направление которых определяется правилом Ленца.

Электрические цепи синусоидального тока

Цепь с идеальной индуктивностью

Идеальной называют индуктивность L такой катушки, активным сопротивлением R и емкостью С которой можно пренебречь, т.е. R= О и С=0.

Если в цепи идеальной катушки индуктивностью L (рис. 11.4а) проходит синусоидальный ток Электрические цепи синусоидального тока, то этот ток создает в катушке синусоидальный магнитный поток Электрические цепи синусоидального тока, который индуктирует в катушке ЭДС самоиндукции, равную согласно (9.11)

Электрические цепи синусоидального тока

так как Электрические цепи синусоидального тока

Очевидно, эта ЭДС достигает своего амплитудного значения Электрические цепи синусоидального тока тогда, когда Электрические цепи синусоидального тока:

Электрические цепи синусоидального тока

Тогда Электрические цепи синусоидального тока

Таким образом, ЭДС самоиндукции в цепи с идеальной индуктивностью L, как и ток, вызвавший эту ЭДС, изменяется по синусоидальному закону, но отстает от тока по фазе на угол 90° = Электрические цепи синусоидального тока (рис. 11.46, в).   

По второму закону Кирхгофа для мгновенных значений можно записать

Электрические цепи синусоидального тока

Откуда Электрические цепи синусоидального тока

Тогда напряжение, приложенное к цепи с идеальной индуктивностью (см. (11.5)):

Электрические цепи синусоидального тока

Очевидно, напряжение достигает своего амплитудного значения Um тогда, когда Электрические цепи синусоидального тока:

Электрические цепи синусоидального тока

Следовательно, Электрические цепи синусоидального тока

Таким образом, напряжение, приложенное к цепи с идеальной ин-ивностью, как и ток в этой цепи, изменяется по синусоидально-жону, но опережает ток по фазе на угол 90°= Электрические цепи синусоидального тока (рис. 11.46, в).

Резюмируя все вышесказанное, можно сделать вывод: для существования тока в цепи с идеальной индуктивностью необходимо ожить к цепи напряжение, которое в любой момент времени но по величине, но находится в противофазе с ЭДС, вызванной таким током (рис. 11.46, в).

Временная диаграмма (рис. 11.4в) еще раз иллюстрирует правило Ленца: ЭДС Электрические цепи синусоидального тока противодействует изменению тока.

Если уравнение (11.10) разделить на Электрические цепи синусоидального тока=1,41, то получается Электрические цепи синусоидального тока=Электрические цепи синусоидального тока, откуда

Электрические цепи синусоидального тока

Это уравнение (11.12а) и есть математическое выражение закона Ома для цепи синусоидального тока с идеальной индуктивностью. Очевидно, знаменатель этого уравнения есть не что иное, как сопротивление, которое называют индуктивным сопротивлением XL.

Таким образом,

Электрические цепи синусоидального тока

Закон Ома для этой цепи можно записать иначе:

Электрические цепи синусоидального тока

Индуктивное сопротивление XL — это противодействие, которое ЭДС самоиндукции eL оказывает изменению тока.

Реактивная мощность в цепи с индуктивностью

Мгновенная мощность для цепи синусоидального тока с идеальной катушкой равна произведению мгновенных значений напряжения и тока

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока

Следовательно, Электрические цепи синусоидального тока

Полученное уравнение умножают и делят на 2:

Электрические цепи синусоидального тока

Таким образом, мощность в цепи синусоидального тока с идеальной катушкой индуктивности изменяется по синусоидальному закону с двойной частотой.

Следовательно, среднее значение этой мощности за период Яс, как и любой синусоидальной величины, т. е. активная потребляемая мощность, в этой цепи равна нулю, Р= 0.

Временная диаграмма (рис. 11,4в) подтверждает этот вывод. На диаграмме видно, что мгновенная мощность (Электрические цепи синусоидального тока) в рассматриваемой цепи изменяется по синусоидальному закону с двойной частотой.

То есть в 1-ю и 3-ю четверти периода мощность (энергия) источника накапливается в магнитном поле индуктивности. Максимальное значение накапливаемой в магнитном поле идеальной катушки энергии по (9.12) равно

Электрические цепи синусоидального тока

Во 2-ю и 4-ю четверти периода эта мощность (энергия) из магнитного поля идеальной катушки возвращается к источнику.

Таким образом, в цепи переменного тока с идеальной катушки мощность не потребляется (Р= 0), а колеблется между источником и магнитным полем индуктивности, загружая источник и провода.

Такая колеблющаяся мощность (энергия), в отличие от активной, потребляемой, называется реактивной.

Обозначается реактивная мощность буквой Q и измеряется в варах, т.е. [Q]=вар (вольт-ампер реактивный).

Величина реактивной мощности в рассматриваемой цепи определяется выражением

Электрические цепи синусоидального тока

Так как реактивная мощность QL имеет место в цепи с индуктивным сопротивлением, то индуктивное сопротивление считается реактивным сопротивлением X индуктивного характера, т. е. XL.

Цепь с емкостью

Если конденсатор емкостью С подключить к источнику с постоянным напряжением U (рис. 11.5а), то ток зарядки конденсатора ходит в цепи очень короткое время, пока напряжение на конденсаторе Uc не станет равным напряжению источника U.

Ток в рассматриваемой цепи (рис. 11.5а) практически отсутствует (амперметр А покажет I=0).

Если же конденсатор подключить к источнику с синусоидальным напряжением (рис. 11.56), то ток в цепи конденсатора существует все время, пока цепь замкнута, и амперметр А покажет этот ток. Ток в цепи конденсатора, подключенного к источнику с синусоидальным напряжением, имеет место потому, что напряжена конденсаторе Uc отстает по фазе от напряжения источника и зарядке, и при разрядке конденсатора. Например, пока напряжение на конденсаторе достигает значения 1, напряжение источника достигнет значения 2 (рис. 11.5в), т. е. конденсатор заряжается; пока конденсатор зарядится до напряжения 2, напряжение источника уменьшится до напряжения 3 — конденсатор разряжается на источник и т.д. Однако ток проходит только в цепи конденсатора. Через диэлектрик конденсатора ток не проходит.

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Таким образом, если к конденсатору емкостью С приложено синусоидальное напряжение Электрические цепи синусоидального тока, то в цепи конденсатора проходит ток i (рис. 11.6а):

Электрические цепи синусоидального тока

где q= Си согласно (6.3).

Очевидно, ток в цепи конденсатора достигает амплитудного значения тогда, когда Электрические цепи синусоидального тока:

Электрические цепи синусоидального тока

Тогда Электрические цепи синусоидального тока

Как видно, ток в цепи конденсатора, как и напряжение, приложенное к его обкладкам, изменяется по синусоидальному закону, однако опережает это напряжение по фазе на угол 90°=Электрические цепи синусоидального тока

Следовательно, напряжение отстает по фазе от тока на 90° = Электрические цепи синусоидального тока(рис. 11.66). 

Если уравнение (11.17) разделить на Электрические цепи синусоидального тока = 1,41, то получится равенство Электрические цепи синусоидального тока или

Электрические цепи синусоидального тока

Это равенство (11.19а) и является математическим выражением закона Ома для цепи переменного тока с емкостью.

Очевидно, знаменатель этого равенства является сопротивлением конденсатора Хс, которое называется емкостным сопротивлением:

Электрические цепи синусоидального тока

Когда закон Ома для цепи с конденсатором можно записать:

Электрические цепи синусоидального тока

Емкостное сопротивление — это противодействие, которое оказывает напряжение заряженного конденсатора напряжению, приложенному к нему (рис. 11,5а).

Реактивная мощность в цепи с конденсатором

Если в цепи конденсатора емкостью Электрические цепи синусоидального тока = 0 (рис. 11.6а) проходит ток i, изменяющийся по синусоидальному закону:

Электрические цепи синусоидального тока

Напряжение и, приложенное к этому конденсатору (рис. 11.6), будет равно

Электрические цепи синусоидального тока

Мгновенная мощность в цепи с конденсатором

Электрические цепи синусоидального тока

Мощность в цепи с конденсатором, подключенным к источнику с синусоидальным напряжением, изменяется по синусоидальному закону с двойной частотой (рис. 11.6в).

Следовательно, активная мощность Р в рассматриваемой цепи 1С. 11.6а), равная среднему значению мгновенной мощности за период, имеет нулевое значение, Р= 0.

Это следует и из временной диаграммы (рис. 11.6в). На временной диаграмме видно, что изменение мгновенной мощности р по синусоидальному закону происходит с двойной частотой: 2-ю и 4-ю четверти периода мощность (энергия) источника накапливается в электрическом поле конденсатора.

Максимальное значение энергии, накапливаемой в электрическом поле конденсатора, равно

Электрические цепи синусоидального тока

В 1-ю и 3-ю четверти периода эта мощность (энергия) из электрического поля конденсатора возвращается к источнику.

Таким образом, в цепи переменного тока с конденсатором происходит колебание мощности (энергии) между источником и электрическим полем конденсатора. Такая колеблющаяся, но не потребляемая мощность называется реактивной мощностью.

Величина реактивной мощности в цепи конденсатора определяется выражением

Электрические цепи синусоидального тока

Из временных диаграмм (рис. 11.4в, 11.6в) видно, что реактивная мощность в цепи конденсатора изменяется в противофазе с реактивной мощностью в цепи с идеальной катушкой. Отсюда и знак «минус» в уравнении (11.21) — аналитическом выражении мгновенной мощности в цепи с конденсатором.

Так как реактивная мощность Qc имеет место в цепи с емкостным сопротивлением, то это емкостное сопротивление считается реактивным сопротивлением Х емкостного характера (Хс).

Расчет линейных электрических цепей синусоидального тока

Расчет электрических цепей синусоидального тока производится преимущественно с помощью векторных диаграмм. В нашей главе рассматривается расчет неразветвленных цепей синусоидального тока, содержащих активное сопротивление R, активность L и емкость С в различных сочетаниях.

Цепь с активным сопротивлением и индуктивностью

Если по цепи с реальной катушкой, обладающей активным сопротивлением R и индуктивностью L, проходит синусоидальный ток Электрические цепи синусоидального тока (рис. 12.1а), то этот ток создает падение напряжения на активном сопротивлении проводников катушки и индуктивном сопротивлении катушки Электрические цепи синусоидального тока

Следовательно, по второму закону Кирхгофа, для мгновенных значений, приложенное к реальной катушке напряжение можно записать

Электрические цепи синусоидального тока

Это равенство справедливо для неразветвленной цепи синусоидального тока с последовательно включенными активным сопротивлением R и индуктивным сопротивлением XL (рис. 12.16).

Активное напряжение (рис. 11.16) совпадет по фазе с током и может быть записано Электрические цепи синусоидального тока. Индуктивное напряжение Электрические цепи синусоидального тока опережает ток на угол 90° = Электрические цепи синусоидального тока.

Электрические цепи синусоидального тока

Мгновенное значение напряжения, приложенного к цепи, определяется алгебраической суммой мгновенных значений напряжений Электрические цепи синусоидального тока согласно (12.1). А действующее значение этого напряжения U определяется геометрической суммой их действующих значений

Электрические цепи синусоидального тока

Это равенство лежит в основе построения векторной диаграммы (рис. 12.1 в).

Из векторной диаграммы (рис. 12.1 в) видно, что напряжение U, приложенное к реальной катушке, опережает по фазе ток Электрические цепи синусоидального тока на угол ф. Мгновенное значение этого напряжения может быть записано:

Электрические цепи синусоидального тока

где ф — это международное обозначение угла сдвига фаз между током и напряжением для любой цепи переменного тока.

Воспользовавшись теоремой Пифагора для определения гипотенузы прямоугольного треугольника, по векторной диаграмме (рис. 12.1 в) определяется напряжение

Электрические цепи синусоидального тока

Откуда

Электрические цепи синусоидального тока

Равенство (12.4) является математическим выражением закона Ома для цепи синусоидального тока с активным R и индуктивным XL сопротивлениями в неразветвленной цепи.

Знаменатель этого равенства является сопротивлением этой цепи, которое называется полным, или кажущимся, сопротивлением цепи синусоидального тока. Обозначается кажущееся (полное) сопротивление любой цепи переменного тока буквой Z:

Электрические цепи синусоидального тока

где Zk — полное, или кажущееся, сопротивление реальной катушки.

Тогда закон Ома для любой цепи переменного тока в общем виде можно записать

Электрические цепи синусоидального тока

где Z — кажущееся сопротивление этой цепи.

Треугольники напряжений, сопротивлений, мощностей

Треугольник, все стороны которого изображены векторами напряжений, называется треугольником напряжений. Пользуясь векторной диаграммой для неразветвленной цепи с активным и индуктивным сопротивлениями (рис. 12.1в), выделяем треугольник напряжений (рис. 12.2а).

Связь между напряжениями в данной цепи можно рассматривать как соотношение между сторонами и углами прямоугольного треугольника:

Электрические цепи синусоидального тока

Если все стороны треугольника напряжений разделить на ве-1ину тока в цепи, то получится подобный прямоугольный треугольник, все стороны которого в определенном масштабе изображают сопротивления цепи, т. е. получится треугольник составлений (рис. 12.16). Сопротивления не являются векторными величинами. Из треугольника сопротивлений можно определить:

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Обычно тригометрические функции угла ф определяются из треугольника сопротивлений отношением (12.9).

Если все стороны треугольника напряжений умножить на величину тока цепи, то получится подобный прямоугольный треугольник, все стороны которого в определенном масштабе изображают мощности цепи, т.е. получится треугольник мощностей (рис. 12.2в).

Произведение напряжения и тока цепи характеризует полную мощность цепи

Электрические цепи синусоидального тока

которая измеряется в вольт-амперах, т.е. Электрические цепи синусоидального тока

Однако потребляется в цепи только часть полной мощности — активная мощность

Электрические цепи синусоидального тока

где cos ф показывает, какая часть полной мощности Электрические цепи синусоидального тока потребляется в цепи, поэтому cos ф называют коэффициентом мощности:

Электрические цепи синусоидального тока

Полная мощность цепи S называется кажущейся. Из того же треугольника мощностей (рис. 12.2в) записать:

Электрические цепи синусоидального тока

Построив треугольники напряжений, сопротивлений и мощностей для любой цепи синусоидального тока, по выражениям (12.7)—(12.14) можно рассчитать параметры этой цепи.

Цепь с активным сопротивлением и емкостью

Если в цепи с последовательно включенными активным сопротивлением R и емкостью С протекает синусоидальный ток Электрические цепи синусоидального тока, то он создает падение напряжения на активном сопротивлении Электрические цепи синусоидального тока и на емкостном сопротивлении Электрические цепи синусоидального тока. Векторная диаграмма для этой цепи изображена на рис. 12.36.

Электрические цепи синусоидального тока

Напряжение цепи изменяется, как и ток, по синусоидальному закону и отстает по фазе от тока на угол ф < 90°, т. е.

Электрические цепи синусоидального тока

Действующее значение напряжения U, приложенного к этой цепи, определяется по векторной диаграмме (рис. 12.3):

Электрические цепи синусоидального тока

Откуда математическое выражение закона Ома для этой цепи:

Электрические цепи синусоидального тока

Пример 12.1

К цепи с последовательно включенными сопротивлениями R= 8 Ом и Хс= 6 Ом (рис. 12.3а) приложено напряжение U= 220 В. Определить ток цепи I, напряжение на активном Электрические цепи синусоидального тока и реактивном Up участках, полную S, активную Р и реактивную Q мощности.

Решение

Для определения тока вычислим полное сопротивление цепи

Электрические цепи синусоидального тока

Тогда ток будет равен

Электрические цепи синусоидального тока

Напряжения на участках:

Электрические цепи синусоидального тока

Полная мощность Электрические цепи синусоидального тока

Активная мощность Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Реактивная мощность Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Неразветвленная цепь с активным сопротивлением, индуктивностью и емкостью

Если в неразветвленной цепи с R, L и С (рис. 12.4а) протекает синусоидальный ток Электрические цепи синусоидального тока, то он создает падение напряжения на всех участках цепи: Электрические цепи синусоидального тока и Электрические цепи синусоидального тока.

Мгновенное значение напряжения цепи определяется по формуле

Электрические цепи синусоидального тока

Так как в рассматриваемой цепи включены два реактивных сопротивления XL и Хс, то возможны три режима работы цепи: Электрические цепи синусоидального тока

Векторная диаграмма цепи для режима Электрические цепи синусоидального тока изображена на рис. 12.46.

Электрические цепи синусоидального тока

Знак перед углом сдвига фаз ф зависит от режима работы цепи Если в рассматриваемой цепи преобладает индуктивное напряжение (сопротивление), т. е. Электрические цепи синусоидального тока, то цепь имеет индуктивный характер и напряжение U опережает по фазе ток Электрические цепи синусоидального тока.

Если в цепи преобладает емкостное напряжение (сопротивление), т.е. Электрические цепи синусоидального тока, то цепь имеет емкостной характер и напряжение U отстает по фазе от тока I (—ф).

Из векторной диаграммы (рис. 12.46) следует:

Электрические цепи синусоидального тока

Сопротивление R может включать в себя сопротивление самостоятельного резистора или активное сопротивление реальной катушки и конденсатора.

Математическое выражение закона Ома для неразветвленной цепи с активным сопротивлением, индуктивностью и емкость:

Электрические цепи синусоидального тока

где Z — полное (или кажущееся) сопротивление неразветвленной цепи с R, L и С, т. е.

Электрические цепи синусоидального тока

На рис. 12.5 изображены треугольники напряжений, сопротивлений и мощностей для рассматриваемой цепи.

Знак и значение угла ф можно определить из треугольника сопротивлений (рис. 12.56):

Электрические цепи синусоидального тока

или

Электрические цепи синусоидального тока

Из выражений (12.20) и (12.21) видно, что если Электрические цепи синусоидального тока, то угол ф положителен (+ф), если Электрические цепи синусоидального тока, то угол ф отрицательный (—ф).

Из треугольника мощностей (рис. 12.5в) видно, что в цепи с R, L и С кроме активной мощности Электрические цепи синусоидального тока имеется реактивная мощность Электрические цепи синусоидального тока. Кроме того, в цепи происходит колебание мощности (меньшей из двух реактивных, в нашем случае Uc) между электрическим полем конденсатора С и магнитным полем катушки индуктивности L, так как мощности QL и Qc изменяются в противофазе. Но эта мощность (1—2 на рис. 12.5в) не считается реактивной, так как она не загружает источник и провода.

Из треугольника мощностей (рис. 12.5в) видно, что реактивная мощность, которая загружает источник и провода, Q= QL— Qc. Эта реактивная мощность (энергия) колеблется между источником и магнитным полем катушки индуктивности, так как Электрические цепи синусоидального тока

Полная мощность цепи определяется по формуле

Электрические цепи синусоидального тока

Колебательный контур

Электрические цепи, в которых происходят периодические изменения токов, напряжений, энергии называются колебательными.

Для того чтобы исследовать резонансные явления, необходимо иметь представления о процессах в колебательном контуре, состоящем из идеальной катушки и конденсатора без потерь.

Если конденсатор емкостью С зарядить до напряжения Um, то в электрическом поле этого конденсатора накопится энергия, максимальное значение которой согласно выражению (6.21):

Электрические цепи синусоидального тока

Если к заряженному конденсатору подключить индуктивность L замыканием ключа К (рис. 12.6), то конденсатор будет

разряжаться через индуктивность переменным током i. При этом в индуктивности L создается ЭДС самоиндукции eL, и в магнитном поле ее накапливается энергия, максимальное значение которой (9.12):

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока    

Источником энергии в этом контуре является конденсатор. Ток в контуре, состоящем из индуктивности L и конденсатора С, не прекращается даже когда конденсатор полностью разрядится. За счет ЭДС самоиндукции и энергии, накопившейся в магнитном поле индуктивности, конденсатор будет заряжаться, и энергия магнитного поля индуктивности переходит в электрическое поле конденсатора. При этом источником энергии в этом контуре является индуктивность. Дальше процесс повторяется.

Таким образом, в замкнутом контуре, состоящем из индуктивности и емкости, происходит колебание энергии между электрическим полем конденсатора С и магнитным полем индуктивности L. Поэтому такой замкнутый контур называется колебательным контуром.

Колебание энергии в колебательном контуре происходит с определенной частотой Электрические цепи синусоидального тока, которую называют частотой собственных колебаний контура. Частоту собственных колебаний со0 определяют из условия равенства энергии электрического и магнитного полей:

Электрические цепи синусоидального тока

так как из (11.19) в цепи переменного тока с емкостью Электрические цепи синусоидального тока

Откуда

Электрические цепи синусоидального тока

Таким образом, частота собственных колебаний колебательного контура определяется параметрами этого контура L и С.

Если в колебательном контуре отсутствуют потери (идеальный контур), то колебания в нем будут незатухающими с неизменной амплитудой. Если в колебательном контуре имеется активное сопротивление, т.е. возникают потери, то колебания энергии в нем будут затухающие, с уменьшающейся амплитудой, если эти потери не компенсируются.

Резонанс напряжений

Если в цепи синусоидального тока с последовательно соединенными конденсатором емкостью С и катушкой с сопротивлением R И индуктивностью L (рис. 12.7а) равны реактивные сопротивления, то в цепи наступает резонанс напряжений. Равенство реактивных сопротивлений является условием резонанса напряжений.

Электрические цепи синусоидального тока

Из (12.25) следует Электрические цепи синусоидального тока, тогда частота резонанса опреляется выражением
Электрические цепи синусоидального тока

Из (12.26) следует, что резонанс напряжений имеет место в неразветвленной цепи с L и С тогда, когда частота вынужденных колебаний (частота источника) Электрические цепи синусоидального тока будет равна частоте собственных колебаний резонансного контура Электрические цепи синусоидального тока. Следовательно, добиться резонанса напряжений можно изменением частоты источника Электрические цепи синусоидального тока или изменением параметров колебательного контура L или С. т. е. изменением частоты собственных колебаний Электрические цепи синусоидального тока.

Полное (кажущееся) сопротивление цепи (рис. 12.7а) при резонансе напряжений определяется по формуле

Электрические цепи синусоидального тока

так как XL-Xc=0.

То есть полное сопротивление неразветвленной цепи при резонансе напряжений Электрические цепи синусоидального тока становится минимальным и равным активному сопротивлению цепи R.

Следовательно, ток в неразветвленной цепи при резонансе напряжений максимальный:

Электрические цепи синусоидального тока

Реактивные сопротивления при резонансе напряжений равны между собой, т. е.
(12.29)

Электрические цепи синусоидального тока

Таким образом, реактивные сопротивления при резонансе напряжений равны (каждое) волновому сопротивлению Электрические цепи синусоидального тока, которое называют характеристическим сопротивлением:

Электрические цепи синусоидального тока

Напряжения на индуктивности UL и на емкости Uc при резонансе напряжений равны между собой, так как равны сопротивления, см. (12.25).

Электрические цепи синусоидального тока

Равенство (12.31) определяет название «резонанс напряжений».

Так как UL и Uc изменяются в противофазе, то напряжение в резонансном режиме равно напряжению на активном сопротивлении Электрические цепи синусоидального тока, т. е. Электрические цепи синусоидального тока, что видно на векторной диаграмме (рис. 12.76).

При резонансе напряжений каждое из реактивных напряжений UL и Uc может оказаться большим, чем напряжение цепи U.

Электрические цепи синусоидального тока

где Q — добротность резонансного контура.

Добротность контура Q показывает, во сколько раз напряжение на индуктивности UL и емкости Uc (каждое) больше напряжения цепи U.

Высокая добротность резонансного контура (при малом активном сопротивлении контура) нашла широкое применение в радиотехнике, в частности в антенном контуре.

Из векторной диаграммы (рис. 12.76) видно, что при резонансе напряжение цепи U совпадает по фазе с током Электрические цепи синусоидального тока, угол между Электрические цепи синусоидального тока и U ф = 0 и cos ф = 1. Следовательно, кажущаяся мощность цепи S при резонансе вся потребляется, т. е. является активной:

Электрические цепи синусоидального тока

Колеблющаяся между магнитным полем индуктивности и электрическим полем емкости мощность (Электрические цепи синусоидального тока) не является реактивной, так как не загружает источник и провода.

Из выражения (12.33) следует, что при отсутствии активной Мощности Р (активного сопротивления R) резонансный контур становится при резонансе идеальным колебательным контуром. Следовательно, при наличии активного сопротивления R источник расходует свою мощность на компенсацию потерь в контуре, за счет чего колебания в цепи будут незатухающими.

Электрические цепи синусоидального тока

Кроме активного сопротивления R резонансной цепи и напряжения, приложенного к ней, все параметры резонансной цепи (Электрические цепи синусоидального тока) изменяются с изменением частоты сети Электрические цепи синусоидального тока.

Эти изменения параметров резонансной цепи наглядно иллюстрируются резонансными кривыми, изображенными на рис. 12.8.

На резонансных кривых четко просматриваются значения этих параметров при частоте резонанса Электрические цепи синусоидального тока.

Общий случай неразветвленной цепи

Для неразветвленной цепи, содержащей несколько активных и реактивных сопротивлений различного характера (рис. 12.9а), справедливо геометрическое равенство напряжений (баланс напряжений)

Электрические цепи синусоидального тока

которое лежит в основе построения векторной диаграммы (рис. 12.96).

Таким образом, напряжение цепи равно геометрической сумме напряжений на всех участках этой цепи.

Из векторной диаграммы следует (рис. 12.96)

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока — активное напряжение цепи равно арифметической сумме напряжений на активных участках цепи; Электрические цепи синусоидального тока — реактивное напряжение цепи равно алгебраической сумме напряжений на реактивных участках цепи.

Те же рассуждения можно отнести и к сопротивлениям:

— полное сопротивление цепи Электрические цепи синусоидального тока;

— активное сопротивление цепи Электрические цепи синусоидального тока;

— реактивное сопротивление цепи Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Напряжение на каком-либо участке неразветвленной цепи (рис. 12.9а), например на участке АВ, определяется так:_

Электрические цепи синусоидального токаЭлектрические цепи синусоидального тока

Вектор напряжения UAB показан на векторной диаграмме (рис. 12.96).

Пример 12.2

Напряжение, приложенное к неразветвленной цепи (рис. 12.10) U=220 В, частота тока сети f = 50 Гц. Начальная фаза тока Электрические цепи синусоидального тока = 0.

Сопротивление участков цепи: Электрические цепи синусоидального тока Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Требуется:

1. Вычислить ток цепи I и записать его мгновенное значение.

2. Записать мгновенное значение напряжения цепи иАЕ, определив предварительно угол ср и характер цепи.

3. Определить напряжение между точками АВ и CD.

4. Построить в масштабе векторную диаграмму цепи, определив едварительно напряжение на каждом сопротивлении.

5. Определить мощности S, Р и Q цепи.

6. Определить частоту, при которой в цепи наступит резонанс напряжений, и ток при резонансе.

7. Определить максимальную энергию, запасенную в магнитном поле катушек WmL и электрическом поле конденсаторов WmC. Как нужно изменить емкость конденсаторов, чтобы в цепи пил резонанс напряжений при частоте f = 50 Гц?

Решение

1. Для определения тока цепи I необходимо вычислить полное сопротивление цепи:

Электрические цепи синусоидального тока

Действующее значение тока Электрические цепи синусоидального тока = 8,8 А, а амплитудное значение тока Электрические цепи синусоидального тока

Угловая частота Электрические цепи синусоидального тока рад/с.

Мгновенное значение тока цепи:

Электрические цепи синусоидального тока

2. Угол сдвига фаз ф и характер цепи определяется через tg ф:

Электрические цепи синусоидального тока

Таким образом, угол ф = 37° (из таблицы), характер цепи индуктивный (+ф).

Тогда мгновенное значение напряжения цепи

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока

3. Напряжение на участках:

Электрические цепи синусоидального тока

4. Для построения векторной диаграммы определяются напряжения:

Электрические цепи синусоидального тока

Векторная диаграмма цепи (отображает только характер участков, но не величины напряжений на них) изображена на рис. 12.11.

5. Полная мощность цепи Электрические цепи синусоидального тока активная мощность Р=Электрические цепи синусоидального тока (так как Электрические цепи синусоидального тока), реактивная мощность Электрические цепи синусоидального тока вар, (так как Электрические цепи синусоидального тока).

6. Для определения частоты резонанса вычисляется индуктивность L и емкость С цепи:

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Тогда

Электрические цепи синусоидального тока

Ток цепи при резонансе Электрические цепи синусоидального тока А.

7. Максимальная энергия, запасенная в магнитном поле катушек:

Электрические цепи синусоидального тока

Максимальная энергия, запасенная в электрическом поле конденсаторов:

Электрические цепи синусоидального тока

8. Условие резонанса XL = XC.

По условию задачи Электрические цепи синусоидального тока, а Электрические цепи синусоидального токаЭлектрические цепи синусоидального тока Ом. Этому Хс соответствует емкость С = Электрические цепи синусоидального тока Ф при f = 50 Гц. Для того чтобы выполнить условие резонанса при сохранении частоты 50 Гц, необходимо Хс увеличить до 38 Ом. Чтобы емкостное сопротивление равнялось 38 Ом, величина емкости С должна быть равна

Электрические цепи синусоидального тока

т. е. емкость конденсаторов нужно уменьшить на

Электрические цепи синусоидального тока

Разветвленная цепь синусоидального тока

Активный и реактивный токи:

Для расчета разветвленных цепей синусоидального тока вводятся расчетные величины активного и реактивного токов цепи.

Если к цепи, содержащей активное сопротивление R и индуктивное XL (рис. 13.1а), приложено синусоидальное напряжение Электрические цепи синусоидального тока, то синусоидальный ток в цепи, вызванный этим напряжением, отстает от него по фазе на угол ф (рис. 12.1 в), Электрические цепи синусоидального тока.

Векторная диаграмма в этом случае изображена на рис. 13.16.

Электрические цепи синусоидального тока

Ток цепи I (рис. 13.16) раскладывается на две составляющие, одна из которых Электрические цепи синусоидального тока совпадает по фазе с напряжением, другая Электрические цепи синусоидального тока — сдвинута на 90°. Составляющая тока Электрические цепи синусоидального тока, совпадающая по фазе с напряжением, называется активной составляющей, или активным током. Составляющая тока Электрические цепи синусоидального тока, имеющая относительно напряжения сдвиг по фазе на угол 90°, называется реактивной составляющей, или реактивным током.

Активный и реактивный токи физического смысла не имеют. Они являются расчетными величинами, так как в неразветвленной цепи (рис. 13.1а) ток на всех участках имеет одинаковое значение. Однако понятия активный Электрические цепи синусоидального тока и реактивный Электрические цепи синусоидального тока токи значительно облегчают расчет разветвленных цепей синусоидального тока. Соотношения между токами определяются из треугольника токов (рис. 13.16)

13.2. Проводимости

Из треугольника токов для рассматриваемой цепи (рис. 13.16) следует: Электрические цепи синусоидального тока.

С другой стороны, известно, что Электрические цепи синусоидального тока (см. (12.6)), a Электрические цепи синусоидального тока и Электрические цепи синусоидального тока (см. (12.9)).

Тогда

Электрические цепи синусоидального тока

где g — активная проводимость цепи, равная

Электрические цепи синусоидального тока

Величина, на которую умножают напряжение, чтобы получить ток, называют проводимостью.

А так как g определяет активный ток Электрические цепи синусоидального тока, то ее и называют активной проводимостью.

Таким образом, активная проводимость g определяется величиной активного сопротивления, деленного на квадрат полного (кажущегося) сопротивления цепи.

Величина реактивного тока определяется выражением

Электрические цепи синусоидального тока

где b — реактивная проводимость цепи, равная

Электрические цепи синусоидального тока

Величина полного тока цепи равна

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока так как для цепи синусоидального тока с Электрические цепи синусоидального тока (рис. 13.1а) Электрические цепи синусоидального тока

Таким образом, у — полная, или кажущаяся, проводимость цепи:

Электрические цепи синусоидального тока

Полная (кажущаяся) проводимость цепи «у» является обратной величиной полного (кажущегося) сопротивления цепи.

Активная Электрические цепи синусоидального тока и реактивная Электрические цепи синусоидального тока проводимости являются соответственно обратными величинами активного R и реактивного X сопротивлений только в том случае, если эти сопротивления (R и X) являются единственными в цепи или ветви, т. е. Электрические цепи синусоидального тока и Электрические цепи синусоидального тока

Если же в неразветвленной цепи (или ветви) включены сопротивления Электрические цепи синусоидального тока то для определения проводимостей можно воспользоваться выражениями (13.2), (13.4), (13.6). Треугольник проводимостей для рассматриваемой цепи (рис. 13.1а) изображен на рис. 13.1 в. Соотношения между проводимостями определяются из этого треугольника.
 

Параллельное соединение катушки и конденсатора

Если к источнику синусоидального напряжения Электрические цепи синусоидального тока подключить параллельно реальную катушку с активным сопротивлением Электрические цепи синусоидального тока и индуктивным Электрические цепи синусоидального тока и конденсатор с активным сопротивлением Электрические цепи синусоидального тока и емкостным Электрические цепи синусоидального тока (рис. 13.2а), то токи в параллельных ветвях этой цепи изменяются по синусоидальному закону:

Электрические цепи синусоидального тока

Действующие значения этих токов будут соответственно равны
Электрические цепи синусоидального тока
Электрические цепи синусоидального тока

Ток в неразветвленной цепи Электрические цепи синусоидального тока равен геометрической сумме токов в ветвях, так как токи не совпадают по фазе:

Электрические цепи синусоидального тока

Для определения этого тока строится векторная диаграмма цепи (рис. 13.26), из которой следует:

Электрические цепи синусоидального тока
где Электрические цепи синусоидального тока
Таким образом, ток в неразветвленной части цепи Электрические цепи синусоидального тока определяется произведением напряжения U и полной проводимости цепи Электрические цепи синусоидального тока

Реактивные проводимости в ветвях имеют различные знаки, так как сопротивления в ветвях различного характера (индуктивное и емкостное).

Треугольник проводимостей рассматриваемой цепи изображен на рис. 13.2в.

Характер разветвленной цепи определяется так же, как и неразветвленной. Если ток цепи Электрические цепи синусоидального тока отстает от напряжения Электрические цепи синусоидального тока (как в рассматриваемом случае), то цепь индуктивного характера, если же ток Электрические цепи синусоидального тока опережает напряжение Электрические цепи синусоидального тока то цепь емкостного характера.
 

Резонанс токов

Резонанс токов в цепи (рис. 13.2а) с параллельным включением катушки и конденсатора (в различных ветвях) возникает при равенстве реактивных проводимостей в ветвях:
Электрические цепи синусоидального тока
Выражение (13.9) является условием резонанса токов в разветвленных цепях синусоидального тока. Полная (кажущаяся) проводимость при этом условии

Электрические цепи синусоидального тока

так как Электрические цепи синусоидального тока
 

Таким образом, полная проводимость цепи при резонансе токов Электрические цепи синусоидального тока минимальна по величине и равна активной проводимости Электрические цепи синусоидального тока Следовательно, и ток в неразветвленной части цепи при резонансе токов имеет минимальную величину

Электрические цепи синусоидального тока

Реактивные токи в ветвях при резонансе токов равны между собой

Электрические цепи синусоидального тока

Это равенство и определяет название «резонанс токов».

На основании равенства (13.12) строится векторная диаграмма при резонансе токов (рис. 13.3). Реактивные токи находятся в противофазе, поэтому ток в неразветвленной части цепи Электрические цепи синусоидального тока при резонансе токов равен активному току Электрические цепи синусоидального тока и совпадает по фазе с напряжением, т.е. Электрические цепи синусоидального тока Следовательно, вся мощность цепи 5 при резонансе токов является активной Р:

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Эта активная мощность компенсирует потери на активном сопротивлении в параллельном резонансном контуре. Мощность (энергия), которая колеблется между электрическим полем конденсатора и магнитным полем индуктивности при резонансе, не является реактивной, так как не загружает источник и провода.

Частота резонанса токов в параллельном резонансном контуре может быть определена из условия резонанса токов, т. е. равенства реактивных проводимостей в ветвях Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

После ряда преобразований равенства (13.13) определяется частота резонанса токов
Электрические цепи синусоидального тока
Резонансная частота зависит не только от параметров колебательного контура Электрические цепи синусоидального тока но и от активных сопротивлений в ветвях реального резонансного контура.

Если в резонансном контуре отсутствуют активные сопротивления в ветвях, то частота резонанса токов Электрические цепи синусоидального тока становится равной частоте собственных колебаний идеального резонансного контура

Электрические цепи синусоидального тока

Если в резонансном контуре Электрические цепи синусоидального тока или Электрические цепи синусоидального тока то резонанса токов добиться невозможно.

Резонанс токов нашел широкое применение в радиотехнике и выпрямительной технике (в резонансных фильтрах) и др.

Пример 13.1

Напряжение, приложенное к параллельно включенным катушке и конденсатору (рис. 13.4а), Электрические цепи синусоидального тока частота сети Электрические цепи синусоидального тока Гц. Параметры цепи: Электрические цепи синусоидального тока Определить:

1) токи всех участков цепи: Электрические цепи синусоидального тока

2) углы сдвига фаз этих токов относительно напряжения: Электрические цепи синусоидального токаЭлектрические цепи синусоидального тока

3) полную S, активную Р и реактивную Q мощности цепи;

4) частоту, при которой наступит резонанс токов в этой цепи. Построить векторную диаграмму.

РешениеЭлектрические цепи синусоидального тока

1. Сопротивление участков цепи:

Электрические цепи синусоидального тока
где Электрические цепи синусоидального тока

Сопротивление 1-й ветви:

Электрические цепи синусоидального тока

Токи в ветвях соответственно равны

Электрические цепи синусоидального тока

Для определения тока Электрические цепи синусоидального тока в неразветвленной части цепи определяются проводимости:

Электрические цепи синусоидального тока

Тогда полная проводимость цепи будет равна

Электрические цепи синусоидального тока

Ток в неразветвленной части цепи

Электрические цепи синусоидального тока

2. Углы сдвига фаз:

.Электрические цепи синусоидального тока

Знак «минус» перед значением угла Электрические цепи синусоидального тока параллельного контура означает, что цепь имеет емкостной характер, так как Электрические цепи синусоидального тока

3. Полная мощность цепи Электрические цепи синусоидального тока

Активная мощность цепи Электрические цепи синусоидального тока так как Электрические цепи синусоидального тока

Реактивная мощность цепи Электрические цепи синусоидального тока вар, так как Электрические цепи синусоидального тока

4. Угловая частота резонанса токов в цепи равна

Электрические цепи синусоидального тока

Откуда Электрические цепи синусоидального тока

Для построения векторной диаграммы определяют активные и реактивные токи в ветвях:

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока так как в ветви с емкостью отсутствует активное сопротивление, т.е. Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Векторная диаграмма для рассматриваемой цепи изображена на рис. 13.46.

На векторной диаграмме видно, что ток I опережает напряжение U на угол 53°30′ (цепь емкостного характера).
 

Коэффициент мощности

Номинальные параметры, т.е. мощность источника Электрические цепи синусоидального тока мощность потребителя Электрические цепи синусоидального тока и коэффициент мощности Электрические цепи синусоидального тока связаны следующим соотношением

Электрические цепи синусоидального тока

Из (13.15) следует, что чем меньше Электрические цепи синусоидального тока тем большую мощность Электрические цепи синусоидального тока должен иметь источник для питания этого потребителя, т. е. тем больше его габариты, вес, расход материалов, стоимость и др.

Ток в цепи потребителя с определенным Электрические цепи синусоидального тока согласно выражению (12.11) равенЭлектрические цепи синусоидального тока

Из (13.16) видно, что чем меньше Электрические цепи синусоидального тока, тем больше ток потребителя Электрические цепи синусоидального тока тем больший ток проходит по проводам линий электропередачи, тем больше потери энергии в этой линии и меньше КПД ее и всей системы (3.11). Кроме того, увеличение тока требует для его передачи проводов большего сечения, т. е. большего расхода цветных металлов.

Таким образом, низкий коэффициент мощности потребителя Электрические цепи синусоидального тока приводит к увеличению мощности источника, питающего этот потребитель, уменьшению КПД линии электропередачи и к увеличению сечения проводов линий электропередачи. 4В России установлен минимально допустимый коэффициент мощности не менее 0,93, т.е. Электрические цепи синусоидального тока должен быть равен или больше 0,93 Электрические цепи синусоидального тока

Однако Электрические цепи синусоидального тока большинства электрических потребителей переменного тока меньше этой нормы. Так, например, Электрические цепи синусоидального тока асинхронных двигателей, в зависимости от нагрузки, составляет Электрические цепи синусоидального тока трансформаторов — Электрические цепи синусоидального тока выпрямителей — Электрические цепи синусоидального тока и т.д. Следовательно, коэффициент мощности этих потребителей необходимо повышать.

Так как большинство потребителей представляет собой нагрузку индуктивного характера, то для улучшения Электрические цепи синусоидального тока параллельно с ним подключаются конденсаторы (рис. 13.5а).

Электрические цепи синусоидального тока

Из векторной диаграммы (рис. 13.56) видно, что с подключением конденсатора С (ключ К замкнут) появляется Электрические цепи синусоидального тока за счет которого уменьшается угол Электрические цепи синусоидального тока и увеличивается Электрические цепи синусоидального тока установки. При этом уменьшается ток цепи Электрические цепи синусоидального тока который до подключения конденсатора был равен току нагрузки Электрические цепи синусоидального тока

Для повышения коэффициента мощности Электрические цепи синусоидального тока конденсатор можно включить последовательно с потребителем индуктивного характера. Однако при этом нарушается режим работы (напряжение) потребителя. Поэтому для улучшения Электрические цепи синусоидального тока конденсатор подключают параллельно с нагрузкой (рис. 13.5а).

Коэффициент мощности можно повысить, увеличив активную нагрузку. При этом увеличивается потребляемая энергия, что экономически нерационально (уменьшается КПД установки).

Пример 13.2

Асинхронный двигатель, включенный в сеть с напряжением Электрические цепи синусоидального тока и частотой Электрические цепи синусоидального тока развивает на валу мощность Электрические цепи синусоидального тока КПД двигателя Электрические цепи синусоидального тока при Электрические цепи синусоидального тока Определить емкость конденсатора С, который необходимо включить параллельно с двигателем (рис. 13.5а), чтобы повысить Электрические цепи синусоидального тока установки до 0,95.

Решение

Мощность, потребляемая двигателем из сети:

Электрические цепи синусоидального тока

Ток нагрузки Электрические цепи синусоидального тока т.е. ток двигателя (рис. 13.5а), равен

Электрические цепи синусоидального тока

Реактивная составляющая тока двигателя Электрические цепи синусоидального тока (рис. 13.56)

Электрические цепи синусоидального тока

(по таблице Электрические цепи синусоидального тока).

Ток установки Электрические цепи синусоидального тока при подключении конденсатора, т. е. при Электрические цепи синусоидального тока будет равен

Электрические цепи синусоидального тока

При Электрические цепи синусоидального тока Реактивная составляющая тока установки (рис. 13.56)

Электрические цепи синусоидального тока

Ток конденсатора Электрические цепи синусоидального тока (рис. 13.56)

Электрические цепи синусоидального тока

Емкостное сопротивление конденсаторов

Электрические цепи синусоидального тока

Емкость конденсаторов, которые нужно подключить параллельно двигателю для улучшения Электрические цепи синусоидального тока до 0,95:

Электрические цепи синусоидального тока

  • Электрические цепи несинусоидального тока
  • Несинусоидальный ток
  • Электрические цепи с распределенными параметрами
  • Резистивные электрические цепи и их расчёт
  • Резонанс токов
  • Трехфазные симметричные цепи
  • Трехфазные несимметричные цепи
  • Вращающееся магнитное поле
ПРОСТЫЕ RLC-ЦЕПИ — ПРОСТАЯ RL-ЦЕПЬ

ЭЛЕКТРОННЫЕ САМОДЕЛКИ СВОИМИ РУКАМИ

Автор: Administrator

  
Индекс материала
ПРОСТЫЕ RLC-ЦЕПИ
СИНУСОИДАЛЬНОЕ НАПРЯЖЕНИЕ НА РЕЗИСТОРЕ, КОНДЕНСАТОРЕ И ИНДУКТИВНОСТИ
ПРОСТАЯ RC-ЦЕПЬ
ПРОСТАЯ RL-ЦЕПЬ
Все страницы

Страница 4 из 4

Простая RL-схема представлена на рис. 2.20, а. В последовательно соединенную RL-цепь подключен источник переменного напряжения с выходным напряжением v.

В последовательной цепи ток на всех компонентах одинаковый. Векторная диаграмма для такой цепи на рис. 2.20, 5, соответствует закону Кирхгоффа:

закон Кирхгоффа

Сумма напряжений равна сумме векторов. Так как напряжение на резисторе всегда совпадает по фазе с током, а на катушке индуктивности запаздывает от тока

Простая RL-цепь:  а — схема; б — векторная диаграмма; в — частотная характеристика.

Рис. 2.20. Простая RL-цепь: а — схема; б — векторная диаграмма; в — частотная характеристика.

на 90°, то возникает сдвиг по фазе между током и напряжением источника питания ?. Поэтому величина напряжений:

величина напряжений

Если предположить, что амплитуда генерируемого источником напряжения одинакова для всех частот, то траектория треугольника напряжений — это дуга с радиусом v.

На низких частотах (f = 0) XL = ?L = 0 (катушка индуктивности представляет из себя короткое замыкание), следовательно, vL = iXL = 0 и v = vR = iR или і = v/R.

На очень высоких частотах (f = ?) XL = ?L = 2 ?fC = ? (катушка индуктивности представляет из себя разрыв цепи), и тогда i = 0, vL = iR = 0 и v = vL. Графики зависимости токов и напряжений от частоты представлены на рис. 2.20, в.

Если выходное напряжение снимать с резистора (рис. 2.21, а), то оно на низких частотах будет такое же, как входное напряжение. Таким образом, можно сделать вывод, что такую RL-схему можно использовать как фильтр низких частот.

Если напряжение снимать с катушки индуктивности (рис. 2.21, б), то на высоких частотах оно будет такое же, как входное напряжение. В таком виде RL-схему можно использовать как фильтр высоких частот.

Используя комплексную алгебру, из уравнения (2.40) получаем:

RL-схема

Отсюда получаем:

RL-схема

Определим отношение выходного и входного напряжений, коэффициент схемы:

Схемы RL-фильтры:  а — низкочастотный; б — высокочастотный

Рис. 2.21. Схемы RL-фильтры: а — низкочастотный; б — высокочастотный.

и

Схемы RL-фильтры

А отношение выходного и входного напряжений, коэффициент схемы:

отношение выходного и входного напряжений

Мы рассмотрели функционирование RL-схемы на частотах ? = 0 и ? = °°.

Теперь посмотрим, как схема работает при R/?L = 1 или ?= ?0 = R/L. При частоте f Q величина сопротивления резистора равна величине реактивного сопротивления катушки индуктивности. Поэтому:

отношение выходного и входного напряжений

Из векторной диаграммы 2.20, б, и уравнений (2.44) и (2.46) получаем следующие результаты.

Табл. 2.5. Коэффициент RL-фильтров на основных частотах

Табл. 2.5. Коэффициент RL-фильтров на основных частотах

Задание 2.5

Катушка индуктивности 10 мОм и резистор 10 кОм соединены последовательно.

Рассчитайте частоту приложенного напряжения 10 В к этой цепи, если известно, что фазовый сдвиг между током и напряжением составляет 30°. Определите амплитуду напряжения на катушке индуктивности на этой частоте.

Понравилась статья? Поделить с друзьями:
  • Как найти своего двойника на google
  • Как нашли маску тутанхамона
  • Как через телефон найти скрытую камеру
  • Как исправить файл не найден c windows
  • Как найти хорошую онлайн игру