Как найти частоту вращения ведомого колеса

Как рассчитать передаточное отношение шестерен механической передачи.

В этой статье я приведу пример расчета передаточного отншения шестерен разного диаметра, с разным количеством зубьев. Данный расчет применяется в том случае, когда важно определить к примеру скорость вращения вала редуктора при известной скорости привода и характеристиках зубьев.

Естественно, можно произвести замеры частоты вращения выходного вала, однако в некоторых случаях требуется именно расчет. Помимо этого, в теоретической механике, при конструировании различных узлов и механизмов требуется рассчитать шестерни, чтобы получить заданную скорость вращения.

                Термин передаточное число является весьма неоднозначным. Он перекликается с термином передаточное отношение, что не совсем верно. Говоря о передаточном числе, мы подразумеваем сколько оборотов совершит ведомое колесо (шестерня) относительно ведущего.

Для правильного понимания процессов и строения шестерни – следует предварительно ознакомится с ГОСТ 16530-83.

Итак, рассмотрим пример расчета с использованием двух шестерен.

Чтобы рассчитать передаточное отношение мы должны иметь как минимум две шестерни. Это называется зубчатая передача. Обычно первая шестерня является ведущей и находится на валу привода, вторая шестерня называется ведомой и вращается входя в зацепление с ведущей.  Пи этом между ними может находится множество других шестерен, которые называются промежуточными. Для упрощения расчета рассмотрим зубчатую передачу с двумя шестернями.

В примере мы имеем две шестерни: ведущую (1) и ведомую (2). Самый простой способ заключается в подсчете количества зубьев на шестернях. Посчитаем количество зубьев на ведущей шестерне. Так же можно посмотреть маркировку на корпусе шестерни.

Представим, что ведущая шестерня (красная)  имеет 40 зубьев, а ведомая(синяя) имеет 60 зубьев.

Разделим количество зубьев ведомой шестерни на количество зубьев ведущей шестерни, чтобы вычислить передаточное отношение. В нашем примере: 60/40 = 1,5. Вы также можете записать ответ в виде 3/2 или 1,5:1.

Такое передаточное отношение означает, что красная, ведущая шестерня должна совершить полтора оборота, чтобы синяя, ведомая шестерня совершила один оборот.

Теперь усложним задачу, используя большее количество шестерен. Добавим в нашу зубчатую передачу еще одну шестерню с 14 зубьями. Сделаем ее ведущей.

Начнем с желтой, ведущей шестерни и будем двигаться в направлении ведомой шестерни. Для каждой пары шестерен рассчитываем свое передаточное отношение. У нас две пары: желтая-красная; красная-синяя. В каждой паре рассматриваем первую шестерню как ведущую, а вторую как ведомую.

В нашем примере передаточные числа для промежуточной шестерни: 40/14 = 2,9 и 60/40 = 1,5.

Умножаем значения передаточных отношений каждой пары и получаем общее передаточное отношение зубчатой передачи: (20/7) × (30/20) = 4,3. То есть для вычисления передаточного отношения всей зубчатой передачи необходимо перемножить значения передаточных отношений для промежуточных шестерен.

Определим теперь частоту вращения.

Используя передаточное отношение и зная частоту вращения желтой шестерни, можно запросто вычислить частоту вращения ведомой шестерни. Как правило, частота вращения измеряется в оборотах в минуту (об/мин) Рассмотрим пример зубчатой передачи с тремя шестернями. Предположим, что частота вращения желтой шестерни 340 оборотов в минуту. Вычислим частоту вращения красной шестерни.

Будем использовать формулу: S1 × T1 = S2 × T2,

 Где:

 S1 – частота вращения желтой (ведущей) шестерни,

Т1 – количество зубьев желтой (ведущей) шестерни;

S2- частота вращения красной шестерни,

Т2 – количество зубьев красной шестерни.

В нашем случае нужно найти S2, но по этой формуле вы можете найти любую переменную.

340 rpm × 7 = S2 × 40

2 380 =S2 × 40

2 380 40 = S2

59,5 об/мин = S2

Получается, если ведущая, желтая шестерня вращается с частотой 340 об/мин, тогда ведомая, красная шестерня будет вращаться со скоростью примерно 60 об/мин.  Таким же образом рассчитываем частоту вращения пары красная-синяя. Полученный результат – частота вращения синей шестерни – будет являться искомой частотой вращения всей зубчатой передачи.

6.1 Расчет частот
вращения

В схемах с ременной передачей на входе
редуктора частота вращения ведущего
шкива равна частоте вращения вала
электродвигателя:

.

Частота вращения ведомого шкива равна
частоте вращения входного (быстроходного)
вала редуктора и всех элементов (шестерен,
червяков, муфт), жестко связанных с этим
валом:

,

где
– частота ведущего элемента быстроходной
ступени, например шестерни или червяка.

При отсутствии ременной передачи между
валом электродвигателя и входным валом
редуктора (соединение названных валов
при помощи муфты или использование в
схеме электродвигателя фланцевого
исполнения с жестким соединением тех
же валов)

.

Частота вращения промежуточного вала
многоступенчатой закрытой передачи и
всех элементов, установленных на этом
валу, (зубчатых и червячных колес, муфт)
зависит от передаточного числа
быстроходной ступени:

,

где
– частота вращения ведомого элемента
быстроходной ступени, например зубчатого
(червячного) колеса;

– частота вращения ведущего элемента
тихоходной ступени.

Частота вращения выходного (тихоходного)
вала двухступенчатого редуктора и
связанного с ним элементов (ведомого
колеса тихоходной ступени, муфты, ведущей
звездочки цепной передачи) равна:

,

где
– частота вращения ведомого элемента
тихоходной ступени;

– частота вращения ведущей звездочки
цепной передачи, установленной на
выходном валу редуктора.

6.2 Расчет мощностей

Мощности, передаваемые элементами
привода, рассчитываются с учетом потерь,
величина которых определяется
соответствующими КПД (см. табл. 6):

,

,

,

,

,

,

.

В приведенных расчетных зависимостях
приняты следующие обозначения:

– потребная мощность электродвигателя;

и– соответственно мощности на ведущем
и ведомом валу шкиве ременной передачи;

и– мощности на входном и выходном валу
редуктора;

– мощности на ведущих и ведомых элементах
быстроходной и тихоходной ступени
редуктора;

– КПД ременной передачи;

– КПД пары подшипников качения;

–КПД
зацепления (зубчатой, червячной передачи).

6.3 Расчет вращающих
моментов

После определения частот и соответствующих
мощностей величены вращающих моментов
для каждого элемента привода можно
рассчитать по формуле

.

Для удобства представления расчета
результаты расчетов могут быть заключены
в следующую таблицу .

Таблица — Результаты расчетов частот,
мощностей и вращающий моментов на
отдельных элементах привода

Параметры

Электродвигатель

Ременная передача

Редуктор

Цепная передача

вщ

вд

7 Примеры расчетов

Пример 1. Выполнить кинематический
расчет привода по приведенной схеме и
исходным данным (рис.).

Общие замечания к
расчету.

а) Вращающий момент от электродвигателя
передается входному валу редуктора
через ременную передачу, ведущий шкив
которой закреплен на валу электродвигателя,
а ведомый – на входном валу редуктора.
Чем меньше будет назначено передаточное
число ременной передачи, тем меньшим
будет диаметр ведомого шкива и компактнее
передача (рис. ). С другой стороны, чем
выше частота вращения вала электродвигателя
при заданной (потребляемой) мощности,
тем меньше его вес и стоимость. В
зависимости от числа пар полюсов простые
асинхронные электродвигатели имеют
теоретические (синхронные, без учета
скольжения) частоты вращения:
.

Рекомендуется назначить стандартное
передаточное число ременной передачи:
= 1,12; 1,25; 1,4; 1,6; 1,8.

б) Двухступенчатый цилиндрический
редуктор имеет минимальную массу и
оптимальную конструкцию, если диаметры
колес (ведомых элементов ступеней) будут
приблизительно равны друг другу. Это
достигается подбором передаточных
чисел ступеней: большее у первой ступени
(d/d)
и меньшее – у второй (d/d)
(рис.).

Рисунок – Пример задания на курсовой
проект

Рисунок – Ременная передача

Рисунок – Схема двухступенчатого
редуктора

в) Кинематическая цепь привода: ременная
передача – первая ступень редуктора –
вторая ступень редуктора.

,

где
– общее передаточное число привода,

– передаточное число ременной передачи,

— передаточное число первой ступени
редуктора,

— передаточное число второй ступени
редуктора.

г) Привод содержит 4 вала, частоты вращения
которых понижаются от электродвигателя
к выходу:

– частота вращения вала электродвигателя
(указана в каталоге для каждого типа);

— частота вращения входного вала редуктора
(ведомого шкива и шестерниIступени);

– частота вращения промежуточного вала
редуктора (шестерниIIступени и колесаIступени);

– частота вращения выходного вала
редуктора (колесаIIступени
и ведущей звездочки цепной передачи).

д) Потери мощности, оцениваемые КПД,
происходят в следующих узлах кинематической
цепи: ременной передаче, подшипниках
ведущего вала, зацеплении колес Iступени редуктора, подшипниках
промежуточного вала, зацеплении колесIIступени редуктора,
подшипниках выходного вала, т.е.

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #


Download Article


Download Article

In mechanical engineering, a gear ratio is a direct measure of the ratio of the rotational speeds of two or more interlocking gears. As a general rule, when dealing with two gears, if the drive gear (the one directly receiving rotational force from the engine, motor, etc.) is bigger than the driven gear, the latter will turn more quickly, and vice versa. We can express this basic concept with the formula Gear ratio = T2/T1, where T1 is the number of teeth on the first gear and T2 is the number of teeth on the second.

Two Gears

  1. Image titled Determine Gear Ratio Step 1

    1

    Start with a two-gear train. To be able to determine a gear ratio, you must have at least two gears engaged with each other — this is called a «gear train.» Usually, the first gear is a «drive gear» attached to the motor shaft and the second is a «driven gear» attached to the load shaft. There may also be any number of gears between these two to transmit power from the drive gear to the driven gear: these are called «idler gears.»[1]

    • For now, let’s look at a gear train with only two gears in it. To be able to find a gear ratio, these gears have to be interacting with each other — in other words, their teeth need to be meshed and one should be turning the other. For example purposes, let’s say that you have one small drive gear (gear 1) turning a larger driven gear (gear 2).
  2. Image titled Determine Gear Ratio Step 2

    2

    Count the number of teeth on the drive gear. One simple way to find the gear ratio between two interlocking gears is to compare the number of teeth (the little peg-like protrusions at the edge of the wheel) that they both have. Start by determining how many teeth are on the drive gear. You can do this by counting manually or, sometimes, by checking for this information labeled on the gear itself.[2]

    • For example purposes, let’s say that the smaller drive gear in our system has 20 teeth.

    Advertisement

  3. Image titled Determine Gear Ratio Step 3

    3

    Count the number of teeth on the driven gear. Next, determine how many teeth are on the driven gear exactly as you did before for the drive gear.

    • Let’s say that, in our example, the driven gear has 30 teeth.
  4. Image titled Determine Gear Ratio Step 4

    4

    Divide one teeth count by the other. Now that you know how many teeth are on each gear, you can find the gear ratio relatively simply. Divide the driven gear teeth by the drive gear teeth. Depending on your assignment, you may write your answer as a decimal, a fraction, or in ratio form (i.e., x : y).[3]

    • In our example, dividing the 30 teeth of the driven gear by the 20 teeth of the drive gear gets us 30/20 = 1.5. We can also write this as 3/2 or 1.5 : 1, etc.
    • What this gear ratio means is that the smaller driver gear must turn one and a half times to get the larger driven gear to make one complete turn. This makes sense — since the driven gear is bigger, it will turn more slowly.
  5. Advertisement

More than Two Gears

  1. Image titled Determine Gear Ratio Step 5

    1

    Start with a gear train of more than two gears. As its name suggests, a «gear train» can also be made from a long sequence of gears — not just a single driver gear and a single driven gear. In these cases, the first gear remains the driver gear, the last gear remains the driven gear, and the ones in the middle become «idler gears.» These are often used to change the direction of rotation or to connect two gears when direct gearing would make them unwieldy or not readily available.[4]

    • Let’s say for example purposes that the two-gear train described above is now driven by a small seven-toothed gear. In this case, the 30-toothed gear remains the driven gear and the 20-toothed gear (which was the driver before) is now an idler gear.
  2. Image titled Determine Gear Ratio Step 6

    2

    Divide the teeth numbers of the drive and driven gears. The important thing to remember when dealing with gear trains with more than two gears is that only the driver and driven gears (usually the first and last ones) matter. In other words, the idler gears don’t affect the gear ratio of the overall train at all. When you’ve identified your driver gear and your driven gear, you can find the gear ratio exactly as before.[5]

    • In our example, we would find the gear ratio by dividing the thirty teeth of the driven gear by the seven teeth of our new driver. 30/7 = about 4.3 (or 4.3 : 1, etc.) This means that the driver gear has to turn about 4.3 times to get the much larger driven gear to turn once.
  3. Image titled Determine Gear Ratio Step 7

    3

    If desired, find the gear ratios for the intermediate gears. You can find the gear ratios involving the idler gears as well, and you may want to in certain situations. In these cases, start from the drive gear and work toward the load gear. Treat the preceding gear as if it were the drive gear as far as the next gear is concerned. Divide the number of teeth on each «driven» gear by the number of teeth on the «drive» gear for each interlocking set of gears to calculate the intermediate gear ratios.[6]

    • In our example, the intermediate gear ratios are 20/7 = 2.9 and 30/20 = 1.5. Note that neither of these are equal to the gear ratio for the entire train, 4.3.
    • However, note also that (20/7) × (30/20) = 4.3. In general, the intermediate gear ratios of a gear train will multiply together to equal the overall gear ratio.
  4. Advertisement

  1. Image titled Determine Gear Ratio Step 8

    1

    Find the rotational speed of your drive gear. Using the idea of gear ratios, it’s easy to figure out how quickly a driven gear is rotating based on the «input» speed of the drive gear. To start, find the rotational speed of your drive gear. In most gear calculations, this is given in rotations per minute (RPM), though other units of velocity will also work.[7]

    • For example, let’s say that in the example gear train above with a seven-toothed driver gear and a 30-toothed driven gear, the drive gear is rotating at 130 RPMs. With this information, we’ll find the speed of the driven gear in the next few steps.
  2. Image titled Determine Gear Ratio Step 9

    2

    Plug your information into the formula S1 × T1 = S2 × T2. In this formula, S1 refers to the rotational speed of the drive gear, T1 refers to the teeth in the drive gear, and S2 and T2 to the speed and teeth of the driven gear. Fill in the variables until you have only one left undefined.

    • Often, in these sorts of problems, you’ll be solving for S2, though it’s perfectly possible to solve for any of the variables. In our example, plugging in the information we have, we get this:
    • 130 RPMs × 7 = S2 × 30
  3. Image titled Determine Gear Ratio Step 10

    3

    Solve. Finding your remaining variable is a matter of basic algebra. Just simplify the rest of the equation and isolate the variable on one side of the equals sign and you will have your answer. Don’t forget to label it with the correct units — you can lose points for this in schoolwork.

    • In our example, we can solve like this:
    • 130 RPMs × 7 = S2 × 30
    • 910 = S2 × 30
    • 910/30 = S2
    • 30.33 RPMs = S2
    • In other words, if the drive gear spins at 130 RPMs, the driven gear will spin at 30.33 RPMs. This makes sense — since the driven gear is much bigger, it will spin much slower.
  4. Advertisement

Add New Question

  • Question

    If a 38 tooth gear running at 360rpm is driving another gear at 144rpm, what is the number of teeth on the driven gear?

    Community Answer

    T1*S1=S2*T2 where, T1=number of teeth on the driver gear, S1= angular speed on the driver gear, T2=number of teeth on the driven gear and S2=angular speed on the driven gear. 38 teeth*360rpm=T2*144rpm. T2=95 teeth on the driven gear.

  • Question

    How do I determine my gear ratio in my gear box?

    Community Answer

    If you can not see the gears you can mark the shaft and the start point on the gear box and count the number of times it revolves when you spin the other shaft one full rotation.

  • Question

    What is gear up and gear down?

    Community Answer

    Gear up is when you drive a smaller gear with a larger gear thus creating a faster RPM at the output but less torque. Gear down is to drive a larger gear with a smaller gear creating a slower RPM at the output but more torque.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • The power needed to drive the load is geared up or down from the motor by the gear ratio. The motor must be sized to provide the power needed by the load after the gear ratio is taken in to consideration. A geared up system (where load RPM is greater than motor RPM) will require a motor that delivers optimal power at lower rotational speeds.

  • To see the principles of gear ratio in action, take a ride on your bike! Notice that it is easiest to go up hills when you have a small gear in front and a big one in the back. While it’s easier to turn the smaller gear with the leverage from your pedals, it takes many rotations to get your rear wheel to rotate compared to the gear settings you’d use for flat sections, making you go slower.

  • A geared down system (where load RPM is less than motor RPM) will require a motor that delivers optimal power at higher rotational speeds.

Advertisement

References

About This Article

Article SummaryX

To determine gear ratio of a gear train with 2 gears, start by identifying your gears. The gear attached to the motor shaft is considered the first gear, or the “drive gear”, and the other gear, whose teeth are meshed with the drive gear, is considered the second gear, or “driven gear.” Count the number of teeth on the drive gear and on the driven gear. Then, divide the number of teeth on the driven gear by the number of teeth on the drive gear to get the gear ratio. For example, if the drive gear has 20 teeth and the driven gear has 30 teeth, the gear ratio is 1.5. If you want to learn how to use the gear ratio to calculate the gears’ speeds, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,666,843 times.

Reader Success Stories

  • Marlo Deguzman

    Marlo Deguzman

    Aug 5, 2017

    «I am currently in school for my airframe and power plant licenses, and this helped me gain the confidence work…» more

Did this article help you?


Загрузить PDF


Загрузить PDF

В машиностроении передаточное отношение является показателем отношения частоты вращения двух или более сцепленных шестерен. Как правило, когда мы имеем дело с двумя шестернями, и ведущая шестерня (получающая поворачивающую силу непосредственно от двигателя) больше ведомой шестерни, то последняя вращается быстрее (и наоборот). Формула для вычисления: передаточное отношение = T2/ T1, где T1 — количество зубьев первой шестерни, Т2 — количество зубьев второй шестерни.[1]

Две шестерни

  1. Изображение с названием Determine Gear Ratio Step 1

    1

    Для того чтобы определить передаточное отношение, у вас должно быть по крайней мере две шестерни, сцепленных друг с другом; такое сцепление называется зубчатой передачей. Как правило, первая шестерня является ведущей шестерней (крепится к валу двигателя), а вторая — ведомой шестерней (крепится к валу нагрузки). Между ведущей и ведомой шестернями может быть сколь угодно много шестерен. Они называются промежуточными.

    • Сейчас рассмотрим зубчатую передачу с двумя шестернями. Для определения передаточного отношения эти шестерни должны быть сцеплены друг с другом (то есть их зубья сцеплены и одна шестерня поворачивает другую). Например, дана небольшая ведущая шестерня (шестерня 1) и большая ведомая шестерня (шестерня 2).
  2. Изображение с названием Determine Gear Ratio Step 2

    2

    Посчитайте количество зубьев на ведущей шестерне. Простейший способ найти передаточное отношение между двумя шестернями — сравнить количество зубьев на каждой из них. Начните с определения количества зубьев на ведущей шестерне. Вы можете сделать это вручную или посмотреть на маркировку шестерни.

    • В нашем примере допустим, что меньшая (ведущая) шестерня имеет 20 зубьев.
  3. Изображение с названием Determine Gear Ratio Step 3

    3

    Посчитайте количество зубьев на ведомой шестерне.

    • В нашем примере допустим, что большая (ведомая) шестерня имеет 30 зубьев.
  4. Изображение с названием Determine Gear Ratio Step 4

    4

    Разделите количество зубьев ведомой шестерни на количество зубьев ведущей шестерни, чтобы вычислить передаточное отношение. В зависимости от условий задачи вы можете записать ответ в виде десятичной дроби, обыкновенной дроби или в виде отношения (х:у).

    • В нашем примере: 30/20 = 1,5. Вы также можете записать ответ в виде 3/2 или 1,5:1.
    • Такое передаточное отношение означает, что меньшая ведущая шестерня должна совершить полтора оборота, чтобы большая ведомая шестерня совершила один оборот. Это имеет смысл, так как ведомая шестерня больше, а значит вращается медленнее.[2]

    Реклама

Более двух шестерен

  1. Изображение с названием Determine Gear Ratio Step 5

    1

    Зубчатая передача может включать сколь угодно большое количество шестерен. В этом случае первая шестерня является ведущей шестерней (крепится к валу двигателя), а последняя — ведомой шестерней (крепится к валу нагрузки). Между ведущей и ведомой шестернями может быть несколько промежуточных шестерен; они используются для изменения направления вращения или для сцепления двух шестерен (когда сцепление напрямую невозможно).[3]

    • Рассмотрим пример, приведенный выше, но теперь ведущей шестерней станет шестерня с 7 зубьями, а шестерня с 20 зубьями превратится в промежуточную шестерню (ведомая шестерня с 30 зубьями остается той же).
  2. Изображение с названием Determine Gear Ratio Step 6

    2

    Разделите количество зубьев ведомой шестерни на количество зубьев ведущей шестерни. Помните, что при определении передаточного отношения зубчатой передачи с несколькими шестернями важно знать только количество зубьев ведомой шестерни и количество зубьев ведущей шестерни, то есть промежуточные шестерни на значение передаточного отношения не влияют.

    • В нашем примере: 30/7 = 4,3. Это означает, что ведущая шестерня должна совершить 4,3 оборота, чтобы ведомая (большая) шестерня совершила один оборот.
  3. Изображение с названием Determine Gear Ratio Step 7

    3

    Если необходимо, найдите передаточные отношения для промежуточных шестерен. Для этого начните с ведущей шестерни и двигайтесь в направлении ведомой шестерни. При каждом новом вычислении передаточного отношения для промежуточных шестерен рассматривайте предыдущую шестерню в качестве ведущей (и делите количество зубьев ведомой шестерни на количество зубьев ведущей шестерни).

    • В нашем примере передаточные отношения для промежуточной шестерни: 20/7 = 2,9 и 30/20 = 1,5. Заметьте, что передаточные отношения для промежуточной шестерни отличаются от передаточного отношения всей зубчатой передачи (4,3).
    • Также заметьте, что (20/7) × (30/20) = 4,3. То есть для вычисления передаточного отношения всей зубчатой передачи необходимо перемножить значения передаточных отношений для промежуточных шестерен.

    Реклама

  1. Изображение с названием Determine Gear Ratio Step 8

    1

    Определите частоту вращения ведущей шестерни. Используя передаточное отношение и частоту вращения ведущей шестерни, можно запросто вычислить частоту вращения ведомой шестерни. Как правило, частота вращения измеряется в оборотах в минуту (rpm).

    • Рассмотрим пример зубчатой передачи, описанной выше (с тремя шестернями). Здесь частота вращения ведущей шестерни равна 130 оборотам в минуту. Вычислим частоту вращения ведомой шестерни.
  2. Изображение с названием Determine Gear Ratio Step 9

    2

    Подставьте соответствующие значения в формулу: S1 × T1 = S2 × T2, где S1, Т1 — частота вращения и количество зубьев ведущей шестерни; S2, Т2 — частота вращения и количество зубьев ведомой шестерни.

    • В нашем примере нужно найти S2, но по этой формуле вы можете найти любую переменную.
    • 130 rpm × 7 = S2 × 30
  3. Изображение с названием Determine Gear Ratio Step 10

    3

    Теперь просто обособьте неизвестную переменную на одной стороне уравнения, чтобы получить ответ. Не забудьте приписать к нему соответствующую единицу измерения.

    • В нашем примере:
    • 130 rpm × 7 = S2 × 30
    • 910 = S2 × 30
    • 910/30 = S2
    • 30,33 rpm = S2
    • Другими словами, если ведущая шестерня вращается со скоростью 130 оборотов в минуту, ведомая шестерня будет вращаться со скоростью 30,33 оборотов в минуту. Это имеет смысл, так как ведомая шестерня значительно больше, а значит вращается намного медленнее.

    Реклама

Советы

  • Для того, чтобы понять принцип передаточного отношения в действии, покатайтесь на велосипеде! Обратите внимание, что проще всего ехать в гору, когда у вас небольшая шестерня спереди, а большая сзади. Хотя педалями легче крутить меньшую шестерню, понадобится множество вращений, чтобы заставить заднее колесо вращаться, то есть скорость велосипеда будет ниже.
  • Мощность, необходимая для движения нагрузки, может увеличиваться или уменьшаться (относительно мощности двигателя) посредством зубчатой передачи. При проектировании двигателя необходимо учитывать передаточное отношение, чтобы мощность двигателя соответствовала характеру будущей нагрузки. Повышающая система (в которой обороты вала нагрузки выше, чем обороты двигателя) требует мотора, вырабатывающего оптимальную мощность при меньших скоростях вращения ведущего вала.
  • С другой стороны, понижающая система (в которой обороты вала нагрузки ниже, чем обороты двигателя) требует мотора, вырабатывающего оптимальную мощность при больших скоростях вращения ведущего вала.

Реклама

Об этой статье

Эту страницу просматривали 257 873 раза.

Была ли эта статья полезной?

Откройте крышку пружинных часов: сколько там различных колесиков, рычагов и других деталей, образующих сложную систему! Все детали совершают определенные, взаимосвязанные движения, в результате которых энергия, накопленная пружиной, преобразуется в движение стрелок. Такая система деталей называется часовым механизмом.

  • Передачи, преобразующие вращательное движение в поступательное.

Существует множество разновидностей механизмов, но все они имеют одно назначение — преобразовывать движение одних твердых тел в движение других твердых тел. Если в этом преобразовании участвует жидкость, механизм называется гидравлическим, если воздух — пневматическим.

Простейший механизм — передаточный — передает движение электрического двигателя водяному насосу. Рабочее колесо насоса должно вращаться с той же частотой и в том же направлении, что и вал двигателя. В этом случае достаточно поставить насос рядом с двигателем и соединить их валы между собой. Это делают при помощи муфт.

Если в процессе работы необходимо разъединить машины на ходу, применяются более сложные соединения — гидравлические, фрикционные или магнитные муфты. В первом случае передача вращения происходит за счет сил жидкостного сцепления, во втором — за счет силы трения, а в третьем — за счет силы магнитного притяжения, возникающего при протекании электрического тока по обмоткам муфты. Иногда соединяемые части машин находятся на некотором расстоянии друг от друга и оси валов не совпадают. В этом случае используют вал с карданными шарнирами (карданный вал) или гибкий вал — трос.

Следующая группа устройств для передачи вращательного движения — ременные и цепные передачи. В отличие от предыдущих они позволяют получать различные частоты вращения. Частоты вращения ведущего и ведомого валов в таких передачах связаны простой зависимостью:

частота вращения ведомого вала = (частота вращения ведущего вала × диаметр ведущего шкива)/диаметр ведомого шкива

Иными словами, если нужно, чтобы ведомый вал вращался медленнее ведущего, следует поставить на нем шкив большего диаметра, чем на ведущем, и наоборот. Отношение диаметра ведущего шкива к диаметру ведомого называется передаточным отношением. (Для цепной передачи диаметры шкивов в формуле надо заменить числом зубьев ведущей и ведомой звездочек.) В некоторых машинах цепные передачи служат еще и частью рабочего органа. Например, ковши землечерпательного снаряда и зубья врубовой машины крепятся непосредственно на цепи и перемещаются вместе с нею.
Хотя ременные передачи наиболее просты, в машиностроении более широко распространены зубчатые передачи. Еле различимые глазом зубчатые колесики отсчитывают время в наручных часах, а гигантские зубчатые колеса диаметром в несколько метров поднимают огромные щиты в шлюзах, поворачивают стрелы экскаваторов и подъемных кранов. Но для всех таких передач действительна одна и та же формула передачи частоты вращения. Она сходна с формулой ременных передач:

частота вращения ведомого колеса = (частота вращения ведущего колеса × число зубьев ведущего колеса)/число зубьев ведомого колеса

У обычных зубчатых передач есть одна особенность — зубчатое колесо не может иметь меньше 6 зубьев, иначе не будет соблюдено условие плавного и надежного зацепления. Отсюда и произошло слово «шестерни», которым часто в обиходе называют зубчатые колеса. Минимальное число зубьев — 6, а максимальное — сколько угодно. Ведь длинная зубчатая рейка — это тоже своего рода зубчатое колесо с бесконечно большим диаметром.

<addc>l</addc>

В тех случаях, когда для изменения частоты вращения оказывается недостаточным передаточное отношение одной пары колес, применяют несколько пар зубчатых колес. Такой механизм, заключенный в отдельный корпус, называют редуктором.

Для многих машин нужны передачи, позволяющие легко и быстро изменять частоту вращения ведомого вала. Для этого в редукторе устанавливают несколько параллельно расположенных валов, на которых находятся зубчатые колеса с различным числом зубьев. При помощи специальных устройств в зацепление вводят те или иные пары колес. Редукторы с изменяемым передаточным отношением называют коробками скоростей или коробками передач. Они передают движение, например, от двигателя автомобиля к его колесам, изменяя при этом частоту их вращения.

Как бы хорошо ни были изготовлены зубья цилиндрических зубчатых колес, при их зацеплении неизбежно происходят удары, отчего они быстро изнашиваются. Поэтому в передачах, испытывающих большие нагрузки, применяют косозубые и шевронные зубчатые колеса. Зацепление зубьев у таких колес происходит плавно, без ударов. Конические зубчатые передачи передают вращение между валами, расположенными под углом 90°.

Еще один вид передач вращательного движения — червячная передача. Червячные редукторы могут иметь весьма большие передаточные отношения. Червячная передача передает вращение между скрещивающимися валами.

Рабочие органы и вспомогательные устройства многих машин совершают возвратно- поступательное движение, а вал двигателя — вращательное. Поэтому существуют передачи, преобразующие вращательное движение в возвратно-поступательное движение, и наоборот.
Таковы основные виды механических передач, применяемые в современных машинах. Но не всегда механические передачи отвечают требованиям современной техники.

Так, коробка скоростей, состоящая из зубчатых передач, позволяет изменять частоту вращения только ступенями. А вот гидравлическая коробка скоростей обеспечивает плавное изменение частоты вращения в широких пределах. Она состоит из насоса и турбины. Насос закреплен на ведущем валу, а турбина — на ведомом. При работе насос подает масло на лопатки турбины и заставляет её вращаться. Если все масло из насоса идет на турбину, она вращается с максимальной частотой. Но вот мы приоткрыли кран. Часть масла пошла в обход турбины, и частота её вращения уменьшилась. Чем больше открыт кран, тем медленнее вращается турбина. А если все масло будет проходить мимо турбины, она совсем остановится. Следовательно, регулируя подачу масла, можно плавно изменять частоту вращения турбины. Такие гидравлические передачи применяются на металлорежущих станках, в автомобилях.

Понравилась статья? Поделить с друзьями:
  • Как найти мою страницу в контактах
  • Как найти подвал в москве
  • Как исправить кислый шашлык
  • Как найти среднеквартальные остатки оборотных средств
  • Как найти стоимость салата