Как найти число если известен его логарифм

Разное

как найти число, если известен его десятичный логарифм..например lg a=6,557 или lg b=-0,003.например
lg a=6,557
или
lg b=-0,003

Попроси больше объяснений

Следить

Отметить нарушение

Автор: Гость

Как использовать логарифмические таблицы

3 методика:Как читать логарифмическую таблицуКак найти антилогарифмПеремножение чисел с помощью логарифмической таблицы

До появления компьютеров и калькуляторов люди считали логарифмы с помощью логарифмических таблиц. Эти таблицы по-прежнему могут использовать для быстрого вычисления логарифмов или умножения больших чисел.

Шаги

Метод 1 из 3: Как читать логарифмическую таблицу


  1. 1
    Что такое логарифм. 102 = 100. 103 = 1000. Степени 2 и 3 являются логарифмами с основанием 10 (или десятичными логарифмами) чисел 100 и 1000.[1] Иначе говоря, ab = c может быть записано, как logac = b. То есть, сказать «10 в степени 2 равно» — это все равно, что сказать «логорифм 100 с основанием 10 равен 2». Логарифмические таблицы используют логарифм с основанием 10, поэтому а = 10.

    • Перемножьте два числа, сложив показатели их степеней. Например: 102 * 103 = 105, или 100 * 1000 = 100,000.
    • Натуральный логарифм (ln) имеет основание е. е — это константа, равная 2.718. Число е используется в разных областях математики и физики. В таблице можно использовать как десятичные, так и натуральные логарифмы.

  2. 2
    Определите характеристики числа, натуральный логарифм которого вы хотите определить. 15 находится между 10 (101) и 100 (102), поэтому его логарифм будет находиться между 1 и 2. 150 находится между 100 (102) и 1000 (103), поэтому его логарифм будет находиться между 2 и 3. Смысл использования логарифмической таблицы как раз состоит в поиске точного значения, то есть дробной части числа (значения после запятой). То, что находится до запятой (1 в первом случае, 2 во втором), является характеристикой.

  3. 3
    Найдите нужную строку, используя колонку слева. Эта колонка показывает первые 2 или, если это большая таблица, 3 цифры числа, логарифм которого вы ищете. Если вы ищете логарифм числа 15,27, вам нужна строка 15. Если вы ищете логарифм числа 2,57, отправляйтесь на строку 25.

    • Иногда числа на этой строки будут с запятыми, поэтому вы будете искать 2,5, а не 25. Вы можете игнорировать запятую, так как это не повлияет на ответ.[2]
    • Также игнорируйте запятую в числе, логарифм которого вы ищете, так как дробная часть логарифма от 1,527 не отличается от дробной части логарифма 152,7.

  4. 4
    После того, как вы нашли строку, найдите правильную колонку. Вам нужна колонка с номером, равным следующей цифре в вашем числе. Например, если вы ищете логарифм числа 15,27, номер строки равен 15, а номер колонки равен 2. Таким образом, на пересечении колонки и строки окажется число 1818. Запишите его.

  5. 5
    Если в вашей логарифмической таблице есть таблица среднего расхождения, найдите в ней колонку с номером, равным следующей цифре в вашем числе. Для числа 15,27 это будет номер 7. В данный момент, вы находитесь на пересечении 15 строки и 2 колонки. Теперь переместитесь на пересечение строки 15 и колонки таблицы среднего расхождения 7. Таким образом, на пересечении колонки и строки окажется число 20. Запишите его.

  6. 6
    Сложите два числа, полученные на предыдущих этапах. Для числа 15,27 это будет 1838. Это дробная часть логарифма числа 15,27.

  7. 7
    Добавьте характеристику. Поскольку 15 находится между 10 и 100 (101 и 02), логарифм 15 находится между 1 и 2. Следовательно, характеристика этого числа равна 1. Соедините характеристику и дробную часть, чтобы получить результат. Итак, логарифм 15,27 равен 1,1838.

Метод 2 из 3: Как найти антилогарифм


  1. 1
    Что такое таблица антилогарифмов. Используйте эту таблицу, если вам известно значение логарифма числа, но не само число. В формуле 10n = x n — это обычный десятичный логарифм х. Если вам известно значение х, вы можете найти n с помощью таблицы логарифмов. Если вам известно n, вы можете найти х с помощью таблицы антилогарифмов.

    • Антилогарифм также известен как обратный логарифм.

  2. 2
    Запишите характеристику. Это число перед запятой. Если вы ищете антилогарифм числа 2,8699, характеристикой будет 2. Мысленно уберите ее из своего числа, она понадобится позже.

  3. 3
    Найдите строку, соответствующую дробной части. У числа 2,8699 дробная часть — это ,8699. В большинстве антилогарифмических таблиц, так же как и в большинстве логарифмических, в левой колонке только два числа, поэтому вам следует искать ,86.

  4. 4
    Найдите колонку с номером, равным следующей цифре в вашей дробной части. Для числа 2,8699 вам нажно найти пересечение строки ,86 и колонки 9. Это даст вам число 7396. Запишите его.

  5. 5
    Если в вашей антилогарифмической таблице есть таблица среднего расхождения, найдите в ней строку с номером, соответствующим первым цифрам дробной части, то есть ,86. Затем, в таблице среднего расхождения найдите колонку с номером, равным следующей цифре в дробной части вашего числа, то есть 9. На пересечении строки с номером ,86 и колонки таблицы среднего расхождения 9 будет число 15. Запишите его.

  6. 6
    Сложите два числа из предыдущих шагов. В нашем примере, 7396 и 15. Их сумма равна 7411.

  7. 7
    Используйте характеристику. В нашем случае 2. Это значит, что ответ расположен между 102 и 103, или между 100 и 1000. Чтобы наше число 7411 попало в промежуток между 100 и 1000, запятая должна находиться после первых 3 цифр. Итак, наш результат 741,1.

Метод 3 из 3: Перемножение чисел с помощью логарифмической таблицы


  1. 1
    Как перемножать числа, используя их логарифмы. Мы знаем, что 10 * 100 = 1000. Запишем это выражение, используя степени: 101 * 102 = 103. Мы также знаем, что 1 + 2 = 3. Таким образом, 10x * 10y = 10x + y. То есть, сумма логарифмов двух разных чисел равна логарифму произведения этих чисел. Мы можем перемножить два числа с одинаковым основанием, складывая их степени.

  2. 2
    Найдите логарифмы чисел, которые вы хотите перемножить. Для поиска логарифма используйте метод, описанный ранее. Например, если вы хотите умножить 15,27 но 48,54, найдите их логарифмы, равные соответственно 1,1838 и 1,6861.

  3. 3
    Сложите эти числа, чтобы найти логарифм решения. В этом примере сложите 1,1838 и 1,686, чтобы получить 2,8699. Это число является логарифмом вашего ответа.

  4. 4
    Воспользуйтесь антилогарифмической таблицей, чтобы найти решение исходной задачи. Следуйте ранее описанному методу. Для этого примера ответ равен 741,1.

Советы

  • Выполняйте вычисления на листке бумаги, а не в уме, так как числа могут быть довольно громоздкими.
  • Внимательной прочитайте Оглавление страницы. В логарифмической книге около 30 страниц, и использование неправильной страницы приведет вас к неправильному ответу.

Предупреждения

  • Убедитесь, что данные из одной строки. Иногда можно случайно перепутать строки и колонки из-за их маленького размера.
  • Данные методы подходят для поиска логарифмов с основанием 10.
  • Большинство таблиц имеет точность до 3-4 знаков. Если вы посчитаете антилогарифм числа 2,8699 на калькуляторе, то получите ответ, округленный до 741,2, хотя таблицы дадут вам 741,1. Это зависит от округлений в таблицах. Если вам нужен более точный ответ, используйте калькулятор вместо таблиц.

Что вам понадобится

  • Логарифмическая таблица или книга
  • Листок бумаги

Все знакомы, что такое степень числа (если нет, то вам сюда). В таблице приведены различные степени числа 2. Глядя на таблицу, ясно, что, например, число 32 – это 2 в пятой степени, то есть двойка, умноженная на саму себя пять раз.

Теперь при помощи этой таблицы введем понятие логарифма.

Логарифм от числа 32 по основанию 2 ((log_{2}(32))) – это в какую степень нужно возвести двойку, чтобы получить 32. Из таблицы видно, что 2 нужно возвести в пятую степень. Значит наш логарифм равен 5:

$$ log_{2}(32)=5;$$

Аналогично, глядя в таблицу получим, что:

$$log_{2}(4)=2;$$
$$log_{2}(8)=3;$$
$$log_{2}(16)=4;$$
$$log_{2}(64)=6;$$
$$log_{2}(128)=7.$$

Естественно, логарифм бывает не только по основанию 2, а по любым основаниям больших 0 и неравных 1. Можете так же создавать таблицы для разных чисел. Но, конечно, со временем вы это будете делать в уме.

Теперь дадим определение логарифма в общем виде:

Логарифмом положительного числа (b) по основанию положительно числа (a) называется степень (c), в которую нужно возвести число (a), чтобы получить (b)

$$log_{a}(b)=c;$$
$$a^{c}=b.$$

Будьте внимательны! В первое время обычно путают, что такое основание и то, что стоит под логарифмом (аргумент). Логарифм — это всегда функция, зависящая от двух переменных. Чтобы их не путать, помните определение логарифма – это степень, в которую нужно возвести основание, чтобы получить аргумент.

Но, конечно, вы часто будете сталкиваться не с такими простыми логарифмами, как в примерах с двойкой, а очень часто будет, что логарифм нельзя в уме посчитать. Действительно, что скажете про логарифм пяти по основанию два:

$$log_{2}(5)=???$$

Как его посчитать? При помощи калькулятора. Он нам покажет, что такой логарифм равен иррациональному числу:

$$log_{2}(5)=2,32192809…$$

Или логарифм шести по основанию 4:

$$log_{4}(6)= 1.2924812…$$

На уроках математики пользоваться калькулятором нельзя, поэтому на экзаменах и контрольных принято оставлять такие логарифмы в виде логарифма – не считая его, это не будет ошибкой!

Но иногда можно столкнуться с заданием, где нужно примерно оценить значение логарифма – это очень просто! Давайте для примера оценим логарифм (log_{4}(6)). Необходимо подобрать слева и справа от 6 такие ближайшие числа, логарифм от которых мы сможем посчитать, другими словами, надо найти степени 4-ки ближайшие к 6-ке:

$$ log_{4}(4) lt log_{4}(6) lt log_{4}(16);$$
$$ 1 lt log_{4}(6) lt 2. $$

Значит (log_{4}(6)) принадлежите промежутку от 1 до 2:

$$ log_{4}(6) in (1;2). $$

Как посчитать логарифм

Перед тем, как научиться считать логарифмы, нужно ввести несколько ограничений. Дело в том, что функция логарифма (log_{a}(b)) существует только при положительных значениях основания (a) и аргумента (b). И кроме этого на основание накладывается условие, что оно не должно быть равно (1).

$$ log_{a}(b) quad существует,;при quad a gt 0; ;b gt 0 ;a neq 1.$$

Почему так? Это следует из определения показательной функций. Показательная функция не может быть (0). А основание не равно (1), потому что тогда логарифм теряет смысл – ведь (1) в любой степени это будет (1).

При этих ограничениях логарифм существует.

В дальнейшем при решении различных логарифмических уравнений и неравенств вам это пригодится для ОДЗ.

Обратите внимание, что само значение логарифма может быть любым. Это же степень, а степень может быть любой – отрицательной, рациональной, иррациональной и т.д.

$$log_{3}(frac{1}{3})=-1;$$

Так как (вспоминайте определение отрицательной степени)

$$3^{-1}=frac{1}{3};$$

Теперь давайте разберем общий алгоритм вычисления логарифмов:

  • Во-первых, постарайтесь представить основание и аргумент (то, что стоит под логарифмом) в виде степеней с одинаковым основанием. Параллельно с этим избавляемся от всех десятичных дробей – переводим их в обыкновенные.
  • Разобраться в какую степень (x) нужно возвести основание, чтобы получить аргумент. Когда у вас там и там степени с одинаковым основанием, это сделать довольно просто.
  • (x) и будет искомым значением логарифма.

Давайте разберем на примерах.

Пример 1. Посчитать логарифм (9) по основанию (3): (log_{3}(9))

  • Сначала представим аргумент и основание в виде степени тройки:
    $$ 3=3^1, qquad 9=3^2;$$
  • Теперь надо разобраться в какую степень (x) нужно возвести (3^1), чтобы получить (3^2)
    $$ (3^1)^x=3^2, $$
    $$ 3^{1*x}=3^2, $$
    $$ 1*x=2,$$
    $$ x=2.$$
  • Вот мы и решили:
    $$log_{3}(9)=2.$$

Пример 2. Вычислить логарифм (frac{1}{125}) по основанию (5): (log_{5}(frac{1}{125}))

  • Представим аргумент и основание в виде степени пятерки:
    $$ 5=5^1, qquad frac{1}{125}=frac{1}{5^3}=5^{-3};$$
  • В какую степень (x) надо возвести (5^1), чтобы получить (5^{-3}):
    $$ (5^1)^x=5^{-3}, $$
    $$ 5^{1*x}=5^{-3},$$
    $$1*x=-3,$$
    $$x=-3.$$
  • Получили ответ:
    $$ log_{5}(frac{1}{125})=-3.$$

Пример 3. Вычислить логарифм (4) по основанию (64): (log_{64}(4))

  • Представим аргумент и основание в виде степени двойки:
    $$ 64=2^6, qquad 4=2^2;$$
  • В какую степень (x) надо возвести (2^6), чтобы получить (2^{2}):
    $$ (2^6)^x=2^{2}, $$
    $$ 2^{6*x}=2^{2},$$
    $$6*x=2,$$
    $$x=frac{2}{6}=frac{1}{3}.$$
  • Получили ответ:
    $$ log_{64}(4)=frac{1}{3}.$$

Пример 4. Вычислить логарифм (1) по основанию (8): (log_{8}(1))

  • Представим аргумент и основание в виде степени двойки:
    $$ 8=2^3 qquad 1=2^0;$$
  • В какую степень (x) надо возвести (2^3), чтобы получить (2^{0}):
    $$ (2^3)^x=2^{0}, $$
    $$ 2^{3*x}=2^{0},$$
    $$3*x=0,$$
    $$x=frac{0}{3}=0.$$
  • Получили ответ:
    $$ log_{8}(1)=0.$$

Пример 5. Вычислить логарифм (15) по основанию (5): (log_{5}(15))

  • Представим аргумент и основание в виде степени пятерки:
    $$ 5=5^1 qquad 15= ???;$$
    (15) в виде степени пятерки не представляется, поэтому этот логарифм мы не можем посчитать. У него значение будет иррациональное. Оставляем так, как есть:
    $$ log_{5}(15).$$

Внимание!

Как понять, что некоторое число (a) не будет являться степенью другого числа (b). Это довольно просто – нужно разложить (a) на простые множители.

$$16=2*2*2*2=2^4,$$

(16) разложили, как произведение четырех двоек, значит (16) будет степенью двойки.

$$ 48=6*8=3*2*2*2*2,$$

Разложив (48) на простые множители, видно, что у нас есть два множителя (2) и (3), значит (48) не будет степенью.

Теперь поговорим о наиболее часто встречающихся логарифмах. Для них даже придумали специально названия – десятичный логарифм и натуральный логарифм. Давайте разбираться.

Десятичный логарифм

На самом деле, все просто. Десятичный логарифм – это любой обыкновенный логарифм, но с основанием 10. Обозначается — (lg(a)).

Пример 6

$$ log_{10}(100)= lg(100)=2;$$
$$log_{10}(1000)=lg(1000)=3;$$
$$log_{10}(10)=lg(10)=1.$$

Натуральный логарифм

Натуральным логарифмом называется логарифм по основанию (e). Обозначение — (ln(x)). Что такое (e)? Так обозначают экспоненту, число-константу, равную, примерно, (2,718281828459…). Это число известно тем, что используется в многих математических законах. Просто запомните, что логарифмы с основанием (e) часто встречаются, и поэтому им придумали специальное название – натуральный логарифм.

Пример 7

$$ log_{e}(e^2)=ln(e^2)=2;$$
$$ log_{e}(e)=ln(e)=1;$$
$$ log_{e}(e^5)=ln(e^5)=5.$$

Натуральные и десятичные логарифмы подчиняются тем же самым свойствам и правилам, что и обыкновенные логарифмы.

У логарифмов есть несколько свойств, по которым можно проводить преобразования и вычисления. Кроме этих свойств, никаких операций с логарифмами делать нельзя.

Свойства логарифмов

$$1. ; log_{a}(1)=0;$$
$$2. ; log_{a}(a)=1;$$
$$3. ; log_{a}(b*c)=log_{a}(b)+ log_{a}(c);$$
$$4. ; log_{a}(frac{b}{c})= log_{a}(b)- log_{a}(c);$$
$$5. ; log_{a}(b^m)= m*log_{a}(b);$$
$$6. ; log_{a^m}(b)=frac{1}{m}* log_{a}(b);$$
$$ 7. ; log_{a}(b)=frac{ log_{c}(b)}{ log_{c}(a)}, ; b gt 0; ; c gt 0; ; c neq 1; $$
$$ 8. ; log_{a}(b)=frac{1}{log_{b}(a)};$$
$$ 9. ; a^{ log_{a}(b)}=b.$$

Давайте разберем несколько примеров на свойства логарифмов.

Пример 8. Воспользоваться формулой (3). Логарифм от произведения – это сумма логарифмов.

$$log_{a}(b*c)=log_{a}(b)+ log_{a}(c);$$
$$ log_{3}(12)=log_{3}(3*4)=log_{3}(3)+log_{3}(4)=1+log_{3}(4);$$
$$ log_{3}(2.7)+log_{3}(10)=log_{3}(2.7*10)=log_{3}(27)=3;$$

Пример 9. Воспользоваться формулой (4). Логарифм от частного – это разность логарифмов.

$$ log_{a}(frac{b}{c})= log_{a}(b)- log_{a}(c);$$
$$ log_{7}(98)-log_{7}(2)=log_{7}(frac{98}{2})=log_{7}(49)=2;$$

Пример 10. Формула (5,6). Свойства степени.

$$log_{a}(b^m)= m*log_{a}(b);$$
$$log_{a^m}(b)=frac{1}{m}* log_{a}(b);$$

Логично, что будет выполняться и такое соотношение:

$$log_{a^m}(b^n)=frac{n}{m}* log_{a}(b);$$

И если (m=n), то:

$$log_{a^m}(b^m)=frac{m}{m}* log_{a}(b);=log_{a}(b)$$
$$log_{4}(9)=log_{2^2}(3^2)=log_{2}(3);$$

Пример 11. Формулы (7,8). Переход к другому основанию.

$$ log_{a}(b)=frac{ log_{c}(b)}{ log_{c}(a)}, ; b gt 0;c gt 0;c neq 1; $$
$$ log_{a}(b)=frac{1}{log_{b}(a)};$$
$$log_{4}(5)=frac{1}{log_{5}(4)};$$
$$log_{4}(5)=frac{log_{7}(5)}{log_{7}(4)};$$

#статьи

  • 6 окт 2022

  • 0

Стыдные вопросы о логарифмах: всё, что нужно знать программисту

Объясняем, почему не стоит бояться логарифмов и как их считать в Python.

Иллюстрация: Оля Ежак для Skillbox Media

Иван Стуков

Журналист, изучает Python. Любит разбираться в мелочах, общаться с людьми и понимать их.

Прежде чем начать обсуждение, давайте немного освежим знания и решим несколько стандартных задачек:

  • Чему равен log3 81?
  • А lg 2 × lb 10?
  • А сумма log216 2 + log216 3?

Если вы легко прорешали все три примера в уме, не пользуясь калькулятором, — можете сразу переходить к заключительной главе. Для тех же, кто слегка подзабыл школьные годы чудесные, — буквально пять минут ликбеза.

По большому счёту, логарифм — это просто перевёрнутая степень. Рассмотрим выражение 23 = 8. В нём:

  • 2 — основание степени;
  • 3 — показатель степени;
  • 8 — результат возведения в степень.

У возведения в степень существует два обратных выражения. В одном мы ищем основание (это извлечение корня), в другом — показатель (это логарифмирование).

Таким образом, выражение 23 = 8 можно превратить в log2 8 = 3.

Закрепляем знания: логарифм — это число, в которое нужно возвести 2 (основание степени), чтобы получить 8 (результат возведения в степень).

Форма записи неинтуитивна, и поначалу можно легко спутать основание со степенью. Чтобы избежать этого, можно использовать следующее правило:

Основание у логарифма, как и у возведения в степень, находится внизу.

Чтобы лучше запомнить структуру записи, посмотрите на эти выражения и постарайтесь понять их смысл:

  • log3 9 = 2
  • log4 64 = 3
  • log5 625 = 4
  • log7 343 = 3
  • log10 100 = 2
  • log2 128 = 7
  • log2 0,25 = −2
  • log625 125 = 0,75

В общем виде запись logAB читается так: логарифм B по основанию A.

Главная часть любого логарифма — его основание. Именно наличие общего основания у нескольких логарифмических функций позволяет проводить с ними различные операции.

Основанием натурального логарифма является число Эйлера (e) — иррациональное число, приблизительно равное 2,71828.

На всякий случай напомним, что такое иррациональные числа. Так называют числа, которые нельзя записать в виде обыкновенной дроби с целыми числителем и знаменателем. При этом знаменатель не должен быть равен нулю.

Например, 0,333… — рациональное число, потому что его можно записать как 1/3. А вот число Пи или корень из 2 — иррациональны.

Так как натуральные логарифмы часто используются, для них ввели особый способ записи: ln x — это то же самое, что loge x.

Представим кристалл, который весит 1 кг и растёт со скоростью 100% в год. Можно ожидать, что через год он будет весить 2 кг, но это не так.

Каждая новая выращенная часть начнёт растить свою собственную. Когда в кристалле будет 1,1 кг, он будет расти со скоростью 1,1 кг в год, а когда в нём будет 1,5 кг — со скоростью 1,5 кг в год. Математики подсчитали, что через год масса кристалла составит e, или ≈ 2,71828 кг.

Каждый новый отросток сразу начинает выращивать свой собственный, и скорость роста кристалла увеличивается вместе с его массой

Такой рост называется экспоненциальным. По экспоненте размножаются бактерии, увеличиваются популяции, приумножаются доходы, растут снежные комья, распадается радиоактивное вещество и остывают напитки.

Чтобы узнать, какой массы достигнет кристалл через три, пять, десять лет, нужно возвести e в соответствующую степень.

e3 ≈ 20,0855 кг

e5 ≈ 148,4132 кг

e10 ≈ 22 026,4658 кг

Но как рассчитать, когда кристалл будет весить тонну? Составим уравнение:

e= 1000

Нам известны основание степени и результат возведения в степень — осталось найти её показатель. Ничего не напоминает? Это ведь и есть логарифм x = loge 1000! Или, если использовать сокращённую запись, x = ln 1000.

Подставим в калькулятор и выясним, что x ≈ 6,9. Именно столько лет потребуется кристаллу, чтобы его масса достигла тонны.

Десятичный логарифм — логарифм, основание которого равно 10. Он обозначается lg x и очень удобен, потому что с ним легко вычислять круглые числа.

Двоичный логарифм — логарифм, основание которого равно 2. Он обозначается lb x и часто используется программистами, потому что компьютеры думают и считают в двоичной системе.

Список операций, которые можно совершать с логарифмами, ограничен. Если вы запомните все и научитесь их выполнять, то сможете щёлкать логарифмические задачки, как семечки.

У всех логарифмов есть ограничения. Их основание и аргумент должны быть больше нуля, при этом основание не может быть равно единице. На математическом языке это звучит так:

Перейдём к свойствам логарифмов. Они работают в обе стороны, и их применяют как слева направо, так и справа налево.

1. Логарифм единицы по любому основанию всегда равен нулю:

Например: log17 1 = 0

2. Логарифм, где число и основание совпадают, равен единице:

Например: log17 17 = 1

3. Основное логарифмическое тождество:

Например: log17 175 = 5

4. Логарифм произведения чисел равен сумме их логарифмов:

Например: log5 12,5 + log5 10 = log5 (12,5 × 10) = log5 125 = 3

5. Логарифм дроби равен разности логарифмов числителя и знаменателя:

Например: log3 63 − log3 7 = log3 63/7 = log3 9 = 2

6. Если основание или аргумент возведены в степень, то их можно удобно выносить перед логарифмом:

Из этих двух формул следует:

Например: log23 49 = 9/3 × log2 4 = 3 × 2 = 6

7. Если нам неудобно основание логарифма, то его можно изменить:

Например: log25 125 = log5 125/log5 25 = 3/2 = 1,5

Из этой формулы следует, что мы можем поменять местами основание и аргумент вот так:

Например: log16 4 = 1/log4 16 = 1/2 = 0,5

А теперь возвращаемся к задачам, которые мы дали в начале статьи.

Пример 1


log3 81

Вспомните, что 81 — это 92. А 9 — это 32. Таким образом:

log3 81 = log3 92 = log3 32+2 = log3 34

Теперь логарифм не представляет для нас никаких сложностей. Воспользуемся свойством степени и вынесём четвёрку.

log3 34 = 4 × log3 3 = 4 × 1 =4

Ответ: 4.

Пример 2


lg 2 × lb 10

Переведём сокращённые записи в полный вид:

lg 2 × lb 10 = log10 2 × log2 10

Приведём оба логарифма к одному основанию.

log10 2 × log2 10 = 1/log2 10 × log2 10 = log2 10/log2 10 = 1

Ответ: 1.

Пример 3


log216 2 + log216 3

Воспользуемся свойством суммы.

log216 2 + log216 3 = log216 2 × 3 = log216 6

Представим 216 в виде степени числа 6 и вынесем с помощью свойства степени.

log216 6 = log63 6 = 1/3 × log6 6 = 1/3 × 1 = 1/3

Ответ: 1/3.

Чтобы работать с логарифмическими выражениями в Python, необходимо импортировать модуль math:

import math

И теперь посчитаем log2 8, используя метод math.log (b, a):

print (math.log (8, 2))
>>> 3.0

Обратите внимание на два момента. Во-первых, мы сначала передаём функции аргумент и только потом — основание. Во-вторых, функция всегда возвращает тип данных float, даже если результат целочисленный.

Если мы не передаём функции основание, то логарифм по умолчанию считается натуральным:

#math.e — метод для вызова числа Эйлера.
print (math.log (math.e))
>>> 1.0

Для подсчёта десятичного и двоичного логарифма есть отдельные методы:

#Для десятичного.
print (math.log10 (100))
>>> 2.0

#Для двоичного.
print (math.log2 (512))
>>> 9.0

Ещё в Python есть специфичный метод, который прибавляет к аргументу единицу и считает натуральный логарифм от получившегося числа:

x = math.e
print (math.log1p (x-1))
>>> 1.0

Когда х близок к нулю, этот метод даёт более точные результаты, чем math.log (1+x). Сравните:

x = 0.00001

print (math.log(x+1))
>>> 9.999950000398841e-06
print (math.log1p(x))
>>> 9.99995000033333e-06

Это все основные инструменты для работы с логарифмами в Python.

Научитесь: Профессия Python-разработчик
Узнать больше

Логарифмом положительного числа (c) по основанию (a) ((a>0, aneq1)) называется показатель степени (b), в которую надо возвести основание (a), чтобы получить число (c) ((c>0)), т.е.

(a^{b}=c)       (Leftrightarrow)       (log_{a}{c}=b)

Объясним проще. Например, (log_{2}{8}) равен степени, в которую надо возвести (2), чтоб получить (8). Отсюда понятно, что (log_{2}{8}=3).

Примеры:

                 

(log_{5}{25}=2)

         

т.к. (5^{2}=25)

(log_{3}{81}=4)

 

т.к. (3^{4}=81)

 

(log_{2})(frac{1}{32})(=-5)

 

т.к. (2^{-5}=)(frac{1}{32})

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент и основание логарифма.png

Аргумент логарифма обычно пишется на его уровне, а основание — подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм — нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например, вычислите логарифм:  а) (log_{4}{16})     б) (log_{3})(frac{1}{3})     в) (log_{sqrt{5}}{1})     г) (log_{sqrt{7}}{sqrt{7}})      д) (log_{3}{sqrt{3}})

а) В какую степень надо возвести (4), чтобы получить (16)? Очевидно во вторую. Поэтому: 

(log_{4}{16}=2)

б) В какую степень надо возвести (3), чтобы получить (frac{1}{3})? В минус первую, так как именно отрицательная степень «переворачивает дробь» (здесь и далее пользуемся свойствами степени).

(log_{3})(frac{1}{3})(=-1)

в) В какую степень надо возвести (sqrt{5}), чтобы получить (1)? А какая степень делает любое число единицей? Ноль, конечно!

(log_{sqrt{5}}{1}=0)

г) В какую степень надо возвести (sqrt{7}), чтобы получить (sqrt{7})? В первую – любое число в первой степени равно самому себе.

(log_{sqrt{7}}{sqrt{7}}=1)

д) В какую степень надо возвести (3), чтобы получить (sqrt{3})? Из свойств степени мы знаем, что корень – это дробная степень, и значит квадратный корень — это степень (frac{1}{2}).

(log_{3}{sqrt{3}}=)(frac{1}{2})

Пример: Вычислить логарифм (log_{4sqrt{2}}{8})

Решение:

(log_{4sqrt{2}}{8}=x)

                              

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
(log_{a}{c}=b)       (Leftrightarrow)       (a^{b}=c)

((4sqrt{2})^{x}=8)

 

Что связывает (4sqrt{2}) и (8)? Двойка, потому что и то, и другое число можно представить степенью двойки:
(4=2^{2})         (sqrt{2}=2^{frac{1}{2}})         (8=2^{3})

({(2^{2}cdot2^{frac{1}{2}})}^{x}=2^{3})

 

Слева воспользуемся свойствами степени: (a^{m}cdot a^{n}=a^{m+n}) и ((a^{m})^{n}=a^{mcdot n})

(2^{frac{5}{2}x}=2^{3})

 

Основания равны, переходим к равенству показателей

(frac{5x}{2})(=3)

Умножим обе части уравнения на (frac{2}{5})

(x=1,2)

Получившийся корень и есть значение логарифма

Ответ: (log_{4sqrt{2}}{8}=1,2)

Foxford

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: (3^{x}=9). Просто подберите (x), чтобы равенство сработало. Конечно, (x=2).

А теперь решите уравнение: (3^{x}=8).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как (x=log_{3}{8}).

Хочу подчеркнуть, что (log_{3}{8}), как и любой логарифм — это просто число. Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: (1,892789260714…..)

Пример: Решите уравнение (4^{5x-4}=10)

Решение:

(4^{5x-4}=10)

                              

(4^{5x-4}) и (10) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
(a^{b}=c)       (Leftrightarrow)       (log_{a}{c}=b)

(log_{4}{10}=5x-4)

 

Зеркально перевернем уравнение, чтобы икс был слева

(5x-4=log_{4}{10})

 

Перед нами линейное уравнение. Перенесем (4) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу. 

(5x=log_{4}{10}+4)

 

Поделим уравнение на 5

(x=)(frac{log_{4}{10}+4}{5})

Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ: (frac{log_{4}{10}+4}{5})

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы ((a>0, aneq1)). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание — число Эйлера (e) (равное примерно (2,7182818…)), и записывается такой логарифм как (ln{a}).

То есть, (ln{a}) это то же самое, что и (log_{e}{a}), где (a) — некоторое число.

Десятичный логарифм: логарифм, у которого основание равно 10, записывается (lg{a}).

То есть, (lg{a}) это то же самое, что и (log_{10}{a}), где (a) — некоторое число.

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если     (a^{b}=c),    то   (log_{a}{c}=b)

То есть, (b) – это тоже самое, что (log_{a}{c}). Тогда мы можем в формуле (a^{b}=c) написать (log_{a}{c}) вместо (b). Получилось (a^{log_{a}{c}}=c) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти здесь. С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример: Найдите значение выражения (36^{log_{6}{5}})

Решение:

(36^{log_{6}{5}}=)

                              

Сразу пользоваться свойством (a^{log_{a}{c}}=c) мы не можем, так как в основании степени и в основании логарифма – разные числа. Однако мы знаем, что (36=6^{2})

(=(6^{2})^{log_{6}{5}}=)

 

Зная формулу ((a^{m})^{n}=a^{mcdot n}), а так же то, что множители можно менять местами, преобразовываем выражение

(=6^{2cdotlog_{6}{5}}=6^{log_{6}{5}cdot2}=(6^{log_{6}{5}})^{2}=)

 

Вот теперь спокойно пользуемся основным логарифмическим тождеством.

(=5^{2}=25)

     

Ответ готов.

Ответ: (25)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что (log_{2}{4}) равен двум. Тогда можно вместо двойки писать (log_{2}{4}). 

Но (log_{3}{9}) тоже равен (2), значит, также можно записать (2=log_{3}{9})  . Аналогично и с (log_{5}{25}), и с (log_{9}{81}), и т.д. То есть, получается  

(2=log_{2}{4}=log_{3}{9}=log_{4}{16}=log_{5}{25}=log_{6}{36}=log_{7}{49}…)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как (log_{2}{8}), или как (log_{3}{27}), или как (log_{4}{64})… Здесь мы как аргумент пишем основание в кубе:

(3=log_{2}{8}=log_{3}{27}=log_{4}{64}=log_{5}{125}=log_{6}{216}=log_{7}{343}…)

И с четверкой:

(4=log_{2}{16}=log_{3}{81}=log_{4}{256}=log_{5}{625}=log_{6}{1296}=log_{7}{2401}…)

И с минус единицей:

(-1=) (log_{2})(frac{1}{2})(=) (log_{3})(frac{1}{3})(=) (log_{4})(frac{1}{4})(=) (log_{5})(frac{1}{5})(=) (log_{6})(frac{1}{6})(=) (log_{7})(frac{1}{7})(…)

И с одной третьей:

(frac{1}{3})(=log_{2}{sqrt[3]{2}}=log_{3}{sqrt[3]{3}}=log_{4}{sqrt[3]{4}}=log_{5}{sqrt[3]{5}}=log_{6}{sqrt[3]{6}}=log_{7}{sqrt[3]{7}}…)

И так далее.

Любое число (a) может быть представлено как логарифм с основанием (b):       (a=log_{b}{b^{a}})

Пример: Найдите значение выражения (frac{log_{2}{14}}{1+log_{2}{7}})

Решение:

(frac{log_{2}{14}}{1+log_{2}{7}})(=)

          

Превращаем единицу в логарифм с основанием (2): (1=log_{2}{2})

(=)(frac{log_{2}{14}}{log_{2}{2}+log_{2}{7}})(=)

 

Теперь пользуемся свойством логарифмов:
(log_{a}{b}+log_{a}{c}=log_{a}{(bc)})

(=)(frac{log_{2}{14}}{log_{2}{(2cdot7)}})(=)(frac{log_{2}{14}}{log_{2}{14}})(=)

 

В числителе и знаменателе одинаковые числа – их можно сократить.

(=1)

 

Ответ готов.

Ответ: (1)

Смотрите также:
Логарифмические уравнения
Логарифмические неравенства

Понравилась статья? Поделить с друзьями:
  • Как найти что то в документе ворд
  • Как найти электронную почту пенсионного фонда
  • Как найти ком ету
  • Кое как тебя нашел
  • Как найти водоканал в сбербанке