Онлайн калькулятор для вы нахождения числа по его процентам, может решать примеры, сохранять историю вычисления и копировать ссылку на расчет.
Правило: Чтобы найти число по его проценту, нужно заданное число разделить на заданную величину процента, а результат умножить на 100.
Примеры вычисления исходного числа по известному проценту от числа:
Например: число 4 это 5% от неизвестного нам числа, чтобы найти это число нужно 4/5×100=80
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»
Принцип нахождения числа по данным его процентам такой же, как и обычное нахождение числа по его дроби. То есть это задача на нахождение числа по дроби. А как решать подобные задания мы уже знаем.
Принцип нахождения числа по данным его процентам такой же, как и обычное нахождение числа по его дроби. То есть это задача на нахождение числа по дроби. А как решать подобные задания мы уже знаем.
Но так как проценты можно представить и в виде обыкновенной, и виде десятичной дроби, то найти число по его процентам можно разными способами, и по-разному записать решение.
Но так как проценты можно представить и в виде обыкновенной, и виде десятичной дроби, то найти число по его процентам можно разными способами, и по-разному записать решение.
Чтобы найти число по его проценту, надо его известную часть разделить на то, сколько процентов она составляет от числа. Не забудьте, проценты перевести или в десятичную дробь, или в обыкновенную!
Чтобы найти число по его проценту, надо его известную часть разделить на то, сколько процентов она составляет от числа. Не забудьте, проценты перевести или в десятичную дробь, или в обыкновенную!
Давайте решим задачу.
Ученик прочитал 138 страниц, что составляет 23% числа всех страниц в книге. Сколько страниц в книге?
Решение:
Итак, нам неизвестно сколько всего страниц в книге. Но мы знаем, что часть, которую прочитал ученик (138 страниц) составляет 23% от общего количества страниц в книге.
Так как 138 стр. — это всего лишь часть, само количество страниц, естественно, будет больше 138. Это поможет нам при проверке.
1) переведём проценты в десятичную дробь — 23% = 23 : 100 = 0,23
2) 138 : 0,23 = 600 (стр)
Проверка: 600 > 138 (это означает, что 138 является частью 600).
Ответ: 600 стр. — общее количество страниц в книге.
Можно, по-другому:
1) переведём проценты в обыкновенную дробь — 23% = 23/100
2) 138 : 23 = 6 (стр) — это 1%
3) 6 * 100 = 600(стр)
Проверка: 600 > 138 (это означает, что 138 является частью 600).
Ответ: 600 стр. — общее количество страниц в книге.
Чтобы найти число по данным его процентам, надо:
Чтобы найти число по данным его процентам, надо:
1) выразить проценты обыкновенной дробью;
2) разделить данную часть числа на числитель полученной обыкновенной дроби (тем самым, найдя 1% от искомого числа);
2) умножить полученный результат на знаменатель обыкновенной дроби. Это и будет ответ.
1) перевести проценты в десятичную дробь, разделив количество процентов на 100;
2) разделить данную часть числа на полученную десятичную дробь.
Так как задачи «процент по числу» и «число по его проценту» очень похожи и часто не сразу понятно какой тип задачи перед нами, старайтесь внимательно читать текст. Если вам встречаются слова «который», «что составляет», «который составляет» и «это», скорее всего перед вами задача «число по его проценту».
Так как задачи «процент по числу» и «число по его проценту» очень похожи и часто не сразу понятно какой тип задачи перед нами, старайтесь внимательно читать текст. Если вам встречаются слова «который», «что составляет», «который составляет» и «это», скорее всего перед вами задача «число по его проценту».
Если, всё равно, сложно понять сразу, то попробуйте перефразировать задачу, заменив слова «который», «что составляет», «который составляет», местоимением «это». Если у вас получилась замена, то перед вами задача «число по его проценту».
Если, всё равно, сложно понять сразу, то попробуйте перефразировать задачу, заменив слова «который», «что составляет», «который составляет», местоимением «это». Если у вас получилась замена, то перед вами задача «число по его проценту».
Решим ещё задачи:
- Сливочное мороженое содержит 14% сахара. Сколько килограммов мороженого изготовлено, если было использовано 49 кг сахара?
Решение:
Перефразируем задачу: сколько килограммов мороженого изготовлено, если было использовано 49 кг сахара, и это составляет 14% мороженного?
Мы знаем, что 49 кг сахара — это 14% мороженного
1) 14% = 14/100
1) 49 : 14 = 3,5 (кг) составляет 1% мороженого;
2) 3,5 · 100 = 350 (кг) изготовлено мороженого.
(Или можно записать, по-другому: 14% = 0,14 ; 49 : 0,14 = 350 (кг))
Ответ. 350 кг.
- Масса сушёной малины составляет 15% массы свежей. Сколько взяли свежей малины, если получили 3 кг сухой?
Решение:
Перефразируем: 3 кг сухой малины — это 15% свежей. Сколько взяли свежей малины?
1) 15% = 0,15
2) 3 : 0,15 = 20(кг) — свежей малины
Ответ: взяли 20 кг свежей малины.
- Мясо при варке теряет 30% веса. Сколько надо взять сырого мяса, чтобы получилось 560 г варёного?
Решение:
Если мясо при варке теряет 30% веса, то варёное мясо — это 70% от свежего, т.к. 100% — 30% = 70%
Мы знаем, что получилось 560 г варёного мяса. И это 70% свежего.
1) 100% — 30% = 70% — варёное мясо
2) 70% = 0,7
3) 560 : 0,7 = 800 (г) — сырого мяса
Ответ: необходимо взять 800 г сырого мяса.
При решении задач на проценты находите сначала 1%, а затем смотрите по смыслу.
При решении задач на проценты находите сначала 1%, а затем смотрите по смыслу.
Калькулятор процентов онлайн.
Найти число, зная чему равен указанный процент от него.
Этот калькулятор онлайн решает задачу на нахождение числа, зная его процент.
Онлайн калькулятор для нахождения числа по его процентам не просто даёт ответ задачи, он приводит подробное решение с
пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.
Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.
Правила ввода чисел
Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: ( -frac{2}{3} )
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: ( -1frac{5}{7} )
Наши игры, головоломки, эмуляторы:
Немного теории.
Понятие о проценте
Проценты — одно из понятий прикладной математики, которые часто встречаются в повседневной жизни. Так, часто можно
прочитать или услышать, что, например, в выборах приняли участие 56,3% избирателей, рейтинг победителя конкурса равен 74%,
промышленное производство увеличилось на 3,2%, банк начисляет 8% годовых, молоко содержит 1,5% жира, ткань содержит 100% хлопка
и т.д. Ясно, что понимание такой информации необходимо в современном обществе.
Одним процентом от любой величины — денежной суммы, числа учащихся школы и т.д. — называется одна сотая ее часть. Обозначается
процент знаком %, Таким образом,
1% — это 0,01, или ( frac{1}{100} ) часть величины
Приведем примеры:
— 1% от минимальной заработной платы 2300 р. (сентябрь 2007 г.) — это 2300/100 = 23 рубля;
— 1% от населения России, равного примерно 145 млн. человек (2007 г.), — это 1,45 млн. человек;
— 3%-я концентрация раствора соли — это 3 г соли в 100 г раствора (напомним, что концентрация раствора — это часть, которую
составляет масса растворенного вещества от массы всего раствора).
Понятно, что вся рассматриваемая величина составляет 100 сотых, или 100% от самой себя. Поэтому, например, надпись на этикетке
«хлопок 100%» означает, что ткань состоит из чистого хлопка, а стопроцентная успеваемость означает, что в классе нет неуспевающих
учеников.
Слово «процент» происходит от латинского pro centum, означающего «от сотни» или «на 100». Это словосочетание можно встретить и в
современной речи. Например, говорят: «Из каждых 100 участников лотереи 7 участников получили призы». Если понимать это выражение
буквально, то это утверждение, разумеется, неверно: ясно, что можно выбрать 100 человек, участвующих в лотерее и не получивших
призы. В действительности точный смысл этого выражения состоит в том, что призы получили 7% участников лотереи, и именно такое
понимание соответствует происхождению слова «процент»: 7% — это 7 из 100, 7 человек из 100 человек.
Знак «%» получил распространение в конце XVII века. В 1685 году в Париже была издана книга «Руководство по коммерческой
арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращенно от cento). Однако
наборщик принял это «с/о» за дробь и напечатал «%». Так из-за опечатки этот знак вошел в обиход.
Любое число процентов можно записать в виде десятичной дроби, выражающей часть величины.
Чтобы выразить проценты числом, нужно количество процентов разделить на 100. Например:
( 58% = frac{58}{100} = 0,58; ;;; 4,5% = frac{4,5}{100} = 0,045; ;;; 200% = frac{200}{100} = 2 )
Для обратного перехода выполняется обратное действие. Таким образом, чтобы выразить число в процентах, надо его умножить
на 100:
( 0,58 = (0,58 cdot 100)% = 58% )
( 0,045 = (0,045 cdot 100)% = 4,5% )
В практической жизни полезно понимать связь между простейшими значениями процентов и соответствующими дробями: половина — 50%,
четверть — 25%, три четверти — 75%, пятая часть — 20%, три пятых — 60% и т.д.
Полезно также понимать разные формы выражения одного и того же изменения величины, сформулированные без процентов и с помощью
процентов. Например, в сообщениях «Минимальная заработная плата повышена с февраля на 50%» и «Минимальная заработная плата повышена
с февраля в 1,5 раз» говорится об одном и том же.
Точно так же увеличить в 2 раза — это значит увеличить на 100%, увеличить в 3 раза — это значит увеличить на 200%, уменьшить
в 2 раза — это значит уменьшить на 50%.
Аналогично
— увеличить на 300% — это значит увеличить в 4 раза,
— уменьшить на 80% — это значит уменьшить в 5 раз.
Задачи на проценты
Поскольку проценты можно выразить дробями, то задачи на проценты являются, по существу, теми же задачами на дроби.
В простейших задачах на проценты некоторая величина а принимается за 100% («целое»), а ее часть b выражается числом p%.
В зависимости от того, что неизвестно — а, b или р, выделяются три типа задач на проценты. Эти задачи решаются так же, как и
соответствующие задачи на дроби, но перед их решением число р% выражается дробью.
1. Нахождение процента от числа.
Чтобы найти ( frac{p}{100} ) от a, надо a умножить на ( frac{p}{100} ):
( b = a cdot frac{p}{100} )
Итак, чтобы найти р% от числа, надо это число умножить на дробь ( frac{p}{100} ). Например, 20% от 45 кг равны 45 • 0,2 = 9 кг,
а 118% от х равны 1,18x
2. Нахождение числа по его проценту.
Чтобы найти число по его части b, выраженной дробью ( frac{p}{100} , ; (p neq 0) ), надо b разделить на ( frac{p}{100} ):
( a = b : frac{p}{100} )
Таким образом, чтобы найти число по его части, составляющей р% этого числа, надо эту часть разделить на ( frac{p}{100} ).
Например, если 8% длины отрезка составляют 2,4 см, то длина всего отрезка равна 2,4:0,08 = 240:8 = 30 см.
3. Нахождение процентного отношения двух чисел.
Чтобы найти, сколько процентов число b составляет от а ( (a neq 0) ), надо сначала узнать, какую часть b составляет от а, а
затем эту часть выразить в процентах:
( p = frac{b}{a} cdot 100% )
Значит, чтобы узнать, сколько процентов первое число составляет от второго, надо первое число разделить на второе и результат
умножить на 100.
Например, 9 г соли в растворе массой 180 г составляют ( frac{9 cdot 100}{180} = 5% ) раствора.
Частное двух чисел, выраженное в процентах, называется процентным отношением этих чисел. Поэтому последнее правило
называют правилом нахождения процентного отношения двух чисел.
Нетрудно заметить, что формулы
( b = a cdot frac{p}{100}, ;; a = b : frac{p}{100}, ;; p = frac{b}{a} cdot 100% ;; (a,b,p neq 0 ) )
взаимосвязаны, а именно, две последние формулы получаются из первой, если выразить из нее значения a и p. Поэтому первую формулу
считают основной и называют формулой процентов. Формула процентов объединяет все три типа задач на дроби, и, при желании,
можно ею пользоваться, чтобы найти любую из неизвестных величин a, b и p.
Составные задачи на проценты решаются аналогично задачам на дроби.
Простой процентный рост
Когда человек не вносит своевременную плату за квартиру, на него налагается штраф, который называется «пеня» (от латинского роеnа
— наказание). Так, если пеня составляет 0,1% от суммы квартплаты за каждый день просрочки, то, например, за 19 дней просрочки сумма
составит 1,9% от суммы квартплаты. Поэтому вместе, скажем, с 1000 р. квартплаты человек должен будет внести пеню 1000 • 0,019 = 19 р.,
а всего 1019 р.
Ясно, что в разных городах и у разных людей квартплата, размер пени и время просрочки разные. Поэтому имеет смысл составить общую
формулу квартплаты для неаккуратных плательщиков, применимую при любых обстоятельствах.
Пусть S — ежемесячная квартплата, пеня составляет р% квартплаты за каждый день просрочки, а n — число просроченных дней. Сумму,
которую должен заплатить человек после n дней просрочки, обозначим Sn.
Тогда за n дней просрочки пеня составит рn% от S, или ( frac{pn}{100}S ), а всего придется заплатить
( S + frac{pn}{100}S = left( 1+ frac{pn}{100} right) S )
Таким образом:
( S_n = left( 1+ frac{pn}{100} right) S )
Эта формула описывает многие конкретные ситуации и имеет специальное название: формула простого процентного роста.
Аналогичная формула получится, если некоторая величина уменьшается за данный период времени на определенное число процентов.
Как и выше, нетрудно убедиться, что в этом случае
( S_n = left( 1- frac{pn}{100} right) S )
Эта формула также называется формулой простого процентного роста, хотя заданная величина в действительности убывает.
Рост в этом случае «отрицательный».
Сложный процентный рост
В банках России для некоторых видов вкладов (так называемых срочных вкладов, которые нельзя взять раньше, чем через определенный
договором срок, например, через год) принята следующая система выплаты доходов: за первый год нахождения внесенной суммы на счете
доход составляет, например, 10% от нее. В конце года вкладчик может забрать из банка вложенные деньги и заработанный доход —
«проценты», как его обычно называют.
Если же вкладчик этого не сделал, то проценты присоединяются к начальному вкладу (капитализируются), и поэтому в конце следующего
года 10% начисляются банком уже на новую, увеличенную сумму. Иначе говоря, при такой системе начисляются «проценты на проценты»,
или, как их обычно называют, сложные проценты.
Подсчитаем, сколько денег получит вкладчик через 3 года, если он положил на срочный счет в банк 1000 р. и ни разу в течение трех
лет не будет брать деньги со счета.
10% от 1000 р. составляют 0,1 • 1000 = 100 р., следовательно, через год на его счете будет
1000 + 100 = 1100 (р.)
10% от новой суммы 1100 р. составляют 0,1 • 1100 = 110 р., следовательно, через 2 года на его счете будет
1100 + 110 = 1210 (р.)
10% от новой суммы 1210 р. составляют 0,1 • 1210 = 121 р., следовательно, через 3 года на его счете будет
1210 + 121 = 1331 (р.)
Нетрудно представить себе, сколько при таком непосредственном, «лобовом» подсчете понадобилось бы времени для нахождения суммы
вклада через 20 лет. Между тем подсчет можно вести значительно проще.
А именно, через год начальная сумма увеличится на 10%, то есть составит 110% от начальной, или, другими словами, увеличится в 1,1
раза. В следующем году новая, уже увеличенная сумма тоже увеличится на те же 10%. Следовательно, через 2 года начальная сумма
увеличится в 1,1 • 1,1 = 1,12 раз.
Еще через один год и эта сумма увеличится в 1,1 раза, так что начальная сумма увеличится в 1,1 • 1,12 = 1,13
раз. При таком способе рассуждений получаем решение нашей задачи значительно более простое:
1,13 • 1000 = 1,331 • 1000 — 1331 (р.)
Решим теперь эту задачу в общем виде. Пусть банк начисляет доход в размере р% годовых, внесенная сумма равна S р., а сумма,
которая будет на счете через n лет, равна Sn р.
Величина p% от S составляет ( frac{p}{100}S ) р., и через год на счете окажется сумма
( S_1 = S+ frac{p}{100}S = left( 1+ frac{p}{100} right)S )
то есть начальная сумма увеличится в ( 1+ frac{p}{100} ) раз.
За следующий год сумма S1 увеличится во столько же раз, и поэтому через два года на счете будет сумма
( S_2 = left( 1+ frac{p}{100} right)S_1 = left( 1+ frac{p}{100} right) left( 1+ frac{p}{100} right)S = left( 1+ frac{p}{100} right)^2 S )
Аналогично ( S_3 = left( 1+ frac{p}{100} right)^3 S ) и т.д. Другими словами, справедливо равенство
( S_n = left( 1+ frac{p}{100} right)^n S )
Эту формулу называют формулой сложного процентного роста, или просто формулой сложных процентов.
Как найти число по его проценту?
Апр 10, 2021 | 4 класс |
Как найти число, если известен его процент?
Давайте разбираться.
Задание 1.
Надо найти число, если известно, что 23% — это 138.
Решение:
1). Сначала найдем чему равен 1%.
Нам известно, что 23% это 138, значит, чтобы найти 1%, надо — 138 : 23 = 6.
Т.е. 1% — это 6.
2). Теперь надо найти целое число.
Мы знаем, что в целом – 100%.
А, чтобы найти целое, надо 1% умножить на 100.
Т.е. 6 х 100 = 600.
Значит, 100% — это 600 и это – целое число.
Ответ: 600.
Задание 2.
Найти число, если 12% — это 48.
Решение:
1). Превратим 12 % в десятичную дробь.
Если 1% = 1/100, то 12% =12/100
2). 12/100 – это 48,
Найдем 1/100, для этого 48 разделим на 12 и умножим на 100, 48 : 12 х 100.
Заменим знак «:» дробной чертой, будет 48/12 х 100, или по правилу работы с дробями – 48 х 100/12.
Получается — 48 : 12 х 100 = 48/12 х 100 = 48х100/12 = 48 х 100/12.
Таким образом, видно, что часть мы умножаем на обратную дробь или делим на дробь.
Т.е. 48 х 100/12 = 4800/12 = 400
Ответ: 400.
При решении примеров надо выбирать удобный для вас вариант.
Похожие статьи
Как найти целое, если известна его часть? Например, 3/8 торта весит 300 грамм. Как узнать, сколько весит весь торт? Нахождение целого по его части Если у нас известна какая-либо часть (доля) от целого, то можно всегда «восстановить» целое. При этом нужно помнить, что часть от целого числа может быть выражена либо в виде дроби (обычно обыкновенной), либо в виде процента. Рассмотрим оба случая. 1) Часть числа — это обыкновенная дробь. В этом случае для нахождения целого нужно число, соответствующее данной части, разделить на дробь. Для того, чтобы число разделить на обыкновенную дробь, нужно умножить его на знаменатель дроби и разделить на числитель. _ Пример 1: Специалист отдела кадров получил премию 2000 рублей, что составляет 1/15 часть от его месячной зарплаты. Требуется узнать, сколько составляет зарплата у данного сотрудника. Решение: Зарплата = 2000 / (1/15) = 2000 * 15 = 30000 рублей. Значит, сотрудник получает зарплату 30000 рублей в месяц. _ Пример 2: Было засеяно пшеницей 12 гектаров поля, что составляет 3/5 от его общей площади. Нужно посчитать, чему равна площадь поля. Решение: Площадь поля = 12 / (3/5) = 12 * (5/3) = 20 гектаров. 2) Часть числа представлена в процентах. Если доля от целого является процентом, а не обыкновенной дробью, то подобные задачи можно решать с помощью составления пропорции. _ Пример: Цена апельсинов со скидкой равна 120 рублей, величина скидки равна 20%. Нужно узнать, сколько стоили апельсины изначально. Решение: Так как скидка = 20%, то от исходной цены апельсинов осталось 100% — 20% = 80%. 80% — 120 рублей. 100% — x рублей. 0,8x = 120 рублей. x = 120 / 0,8 = 150 рублей. Таким образом, до скидки апельсины стоили 150 рублей. модератор выбрал этот ответ лучшим Алиса в Стране 3 года назад Часть числа может быть выражена в виде десятичной или простой дроби, в виде процентов, что по сути то же самое, что десятичная дробь, всем понятно, что 0,1 это 10%, например. Если известна часть числа в абсолютном выражении и то, какую часть она составляет от целого, то нет ничего проще, чем определить это целое. Допустим, 20 яблок это 25 % от всех яблок, надо 20 поделить на 0,25, чтобы определить общее количество яблок, 20/0,25 = 80, вот так мы нашли целое по его части. Еще один пример разберем, 12 мест в автобусе это 1/3 от всех мест в автобусе, как найти общее число всех мест в автобусе, делим 12 на 1/3, то есть по правилам деления на дробь умножаем 12 на 3, получается 36. Ну и в итоге решим задачку автора из его вопроса: 300 граммов делим на 3/8 получаем 800 граммов. smile6008 3 года назад В математике и жизни бывают случаи, когда необходимо найти число, зная только его часть. Для этого можно использовать различные способы расчётов, использовать дроби , но удобнее всего рассчитать в процентном соотношении. Итак мы знаем, что 300 грамм составляют 3/8 торта. Нужно узнать сколько же весит торт целиком. Переводим в процентное соотношение, поделим 8 на 3, получим 0,26666 в процентах — это 26,6%. Теперь найдём 100 %, для этого посчитаем пропорцию. 26,6% = 300 ;100 % = x. X = 26,6*300/100.Получаем 799,8 округляем по закону округление в большую сторону, получаем 800 гр весит весь торт. [пользователь заблокирован] 5 лет назад Для лучшего понимания процесса можно делать так (хотя математически это нерационально). Узнайте чему равна ОДНА часть. Для этого заданное число разделите на количество заданных частей в дроби, их 3. 300 делим на 3, получаем 300/3=100 Это одна восьмая часть. Целое — это восемь восьмых, потому предыдущий результат умножаем на 8, получаем 100*8=800 Если же дробь задана, как десятичная, т.е. 0.375, то представляем её, как натуральную (это 375/1000) и поступаем точно так же. Узнаём, чему равна одна тысячная часть 300/375=0.8 Ну, а далее узнаём чему равно само целое 0.8*1000=800 Эл Лепсоид 5 лет назад В общем случае, конечно, следует прибегнуть к составлению пропорции, поставив в соответствие к имеющейся части ее вес, а к целому (т.е. единице) — неизвестную «х». Но, поскольку, у нас во второй части пропорции стоит «1», то решить задачу можно значительно проще: просто разделить на величину известной части. В нашем случае получается: 300/(3/8) = 300*8/3 = 800. Таким образом, весь торт будет весить 800 грамм. СТА 1106 3 года назад 3/8- означает, что на три части из восьми приходится 300 грамм. Требуется узнать вес целого, в данном случае, торта. Для этого нужно узнать, что приходится на одну часть. Можно решить методом пропорции, мой любимый метод. Итак: 3 части — 300 грамм. 8 частей — Х грамм. Решаем пропорцию. 8 × 300 ÷ 3 = 800 грамм. Общий алгоритм решения следующий. Зная, сколько приходится на долю от целого, нужно определить, сколько приходится на единицу измерения ( грамм, килограмм, метр, час и т.д). Затем зная это, просто умножает на все количество долей, на которое поделён данный предмет. В данном случае- это восемь частей. Второй вариант решения задачи. 300 : 3 × 8 = 800 грамм. Ответ. 800 грамм , в обоих вариантах таз решения задачи. Проще не бывает. Надо число означающее часть разделить на количество этих частей и полученный результат умножить на целое. Получим число выражающее целую часть. Пример: Дано 4/15 равняется 40. Делим сорок на четыре и умножаем на 15. Получаем сумму в 150 — это и будет целое. Или 2/10 равняется 40. Делим сорок на два, получаем двадцать. Умножаем двадцать на десять, получаем двести. Целое число двести. Master-Margarita 5 лет назад Чтобы узнать, сколько весит торт в данном случае, надо провести следующие арифметический действия: (300*8)/3=800 грамм. То есть, чтобы найти целое нужно часть умножить на знаменатель дроби и разделить на числитель дроби. В данном случае числитель — 3, а знаменатель — 8. Рина19 5 лет назад Сначала найдём чем у равна 1 часть из всех имеющихся. А затем умножим её на общее число всех частей. На данном примере. Известно, что 3/8 торта весит 300 г, т.е. 3 части из 8 на которые был нарезан торт или, по другому, 3 куска торта из 8 нарезанных кусочков весят 300 г. Тогда 1 кусочек будет весить: 300/3=100 г. Теперь находим чему будет весить все 8 кусков, т.е. весь торт. 100*8=800 г Бекки Шарп 3 года назад Если 3/8 торта весит 300 грамм, то сначала узнаем сколько весит одна часть. 300/3=100 грамм. Теперь умножаем на 8 и получаем, что весь торт весит 800 грамм. Приведем еще пример как найти целое число, если известна часть. В классе присутствует 27 человек и это 3/4 общего количества. Сколько человек в классе? Решить задачу можно так: 27 : 3/4 = 36 человек. Знаете ответ? |