Интерференция света
Явление интерференции свидетельствует о том, что свет — это волна.
Интерференцией световых волн называется сложение двух когерентных волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства.
Условия интерференции
Волны должны быть когерентны. Когерентность – согласованность. В простейшем случае когерентными являются волны одинаковой длины, между которыми существует постоянная разность фаз.
Все источники света, кроме лазера, некогерентны, однако Т. Юнг впервые пронаблюдал (1802) явление интерференции, разделив волну на две с помощью двойной щели.
Свет от точечного монохроматического источника S падал на два небольших отверстия на экране. Эти отверстия действуют как два когерентных источника света S1 и S2.
Волны от них интерферируют в области перекрытия, проходя разные пути: ℓ1 и ℓ2.
На экране наблюдается чередование светлых и темных полос.
Условие максимума.
Пусть разность хода между двумя точками ,
тогда условие максимума:
т. е. на разности хода волн укладывается четное число полуволн (k= 1, 2, 3, …).
или
Условие минимума
Пусть разность хода между двумя точками ,
тогда условие минимума: ,
т. е. на разности хода волн укладывается нечетное число полуволн (k= 1, 2, 3, …).
Интерференция света в тонких пленках
Различные цвета тонких пленок — результат интерференции двух волн, отражающихся от нижней и верхней поверхностей пленки. При отражении от верхней поверхности пленки происходит потеря полуволны. Следовательно, оптическая разность хода .
Тогда условие максимального усиления интерферирующих лучей в отраженном свете следующее: .
Если потерю полуволны не учитывать, то .
Кольца Ньютона
Интерференционная картина в тонкой прослойке воздуха между стеклянными пластинами — кольца Ньютона.
Волна 1 — результат отражения ее от точки А (граница стекло —воздух). Волна 2 — отражение от плоской пластины (точка В, граница воздух — стекло). Волны когерентны: возникает интерференционная картина в прослойке воздуха между точками А и В в виде-концентрических колец. Зная радиусы колец, можно вычислить длину волны, используя формулу , где r — радиус кольца, R — радиус кривизны выпуклой поверхности линзы.
Использование интерференции в технике
Проверка качества обработки поверхности до одной десятой длины волны. Несовершенство обработки определяют но искривлению интерференционных полос, образующихся при отражении света от проверяемой поверхности. Интерферометры служат для точного измерения показателя преломления газов и других веществ, длин световых волн.
Просветление оптики. Объективы фотоаппаратов и кинопроекторов, перископы подводных лодок и другие оптические устройства состоят из большого числа оптических стекол, линз, призм. Каждая отполированная поверхность стекла отражает около 5% падающего на нее света. Чтобы уменьшить долю отражаемой энергии, используется явление интерференции света.
На поверхность оптического стекла наносят тонкую пленку. Для того чтобы волны 1 и 2 ослабляли друг друга, должно выполняться условие минимума. В отраженном свете разность хода волн равна: . Потеря полуволны происходит при отражении как от пленки, так и от стекла (показатель преломления стекла больше, чем пленки), поэтому, эту потерю можно не учитывать. Следовательно,
, где n — показатель преломления пленки; h — толщина пленки. Минимальная толщина пленки будет при k=0. Поэтому
. При равенстве амплитуд гашение света будет полным. Толщину пленки подбирают так, чтобы полное гашение при нормальном падении имело место для длин волн средней части спектра (для зеленого цвета):
.
Чтобы рассчитать толщину пленки в этой формуле необходимо взять длину волны и показатель преломления зеленого света.
Лучи красного и фиолетового цвета ослабляются незначительно.поэтому объективы оптических приборов в отраженном свете имеют сиреневые оттенки
Найдем
условия максимума и минимума интенсивности
при интерференции. Пусть S1
и S2
— два когерентных источника, совершающих
колебания в одинаковой фазе. До точки
наблюдения М
волны проходят разное расстояние (рис.
3.8).
Рис.3.8
Запишем
для них уравнения волн (3.24)
Найдем разность
фаз складываемых волн
Обозначим
через Δx
— разность хода, т. е.
.
По формуле (3.22)
волновое число равно
,
тогда связь между разностью хода и
разностью фаз дается уравнением
Амплитуда
результирующего колебания в точке
наблюдения определяется уравнением
(3.16)
.
Так
как интенсивность пропорциональна
среднему значению квадрата амплитуды
(см. (3.34)):
,
то получим выражение для результирующей
интенсивности
Если
источники некогерентные, то
и
,
т. е. интерференция не наблюдается. Для
когерентных источников разность фаз
и
среднее значение косинуса равно косинусу
разности фаз
.
В
тех точках пространства, где
интенсивность
,
а там, где
интенсивность
.
Следовательно, при наложении двух
когерентных световых волн происходит
пространственное перераспределение
световой энергии, в результате чего в
одних местах возникают максимумы, а в
других — минимумы интенсивности, т. е.
появляется интерференционная картина.
Максимумы
интенсивности появляются там, где
,
т. е. при
,
где m
= 0, 1, 2, …
Следовательно,
.
Отсюда получим условие
максимума
интенсивности при интерференции
где
m
— порядок интерференционного максимума.
Условие максимума
интенсивности при интерференции читается
следующим образом.
Если разность хода равна целому числу длин волн или четному числу полуволн, то будет наблюдаться максимум интенсивности при интерференции.
Аналогично
найдем условие минимума. Если
,
то
,
где m
= 0, 1, 2, …
Тогда
и
Условие
минимума
интенсивности при интерференции читается
следующим образом.
Если разность хода равна нечетному числу полуволн, то в данной точке экрана будет наблюдаться минимум интенсивности при интерференции.
8, Интерференция в тонких пленках
Интерференцию в
тонких пленках часто можно наблюдать
в виде радужной окраски масляных пленок
на воде, на мыльных пузырях и т. д.
Рассмотрим,
как происходит интерференция в тонких
пленках. Пленка называется тонкой, если
ее размеры соизмеримы с длиной волны
λ.
Пусть на тонкую пленку толщиной d
падает параллельный пучок лучей
монохроматического света (рис. 3.10).
Рис.3.10
На верхней границе
раздела двух сред свет частично
отражается, частично преломляется. Тоже
происходит на нижней грани пленки.
Таким
образом, световой луч испытывает
многократное отражение и преломление.
Отраженные лучи 1 и 2, а также преломленные
лучи 1/
и 2/,
когерентны между собой. Остальные лучи
не рассматриваются из-за малой
интенсивности.
Оптическую разность
хода находят из геометрических
представлений и законов геометрической
оптики.
Оптическая
разность хода лучей 1 и 2 в отраженном
свете, так же как и лучей 1/
и 2/
в проходящем свете, равна
,
где
i
— угол падения луча.
Кроме
оптической разности хода надо учесть
изменение фазы волны при отражении.
Теория и опыт показывают, что если свет
отражается от оптически более плотной
среды, фаза волны меняется на
противоположную, а если свет отражается
от оптически менее плотной среды, фаза
волны не меняется. Разность хода и
разность фаз связаны соотношением
(3.35)
.
Поэтому,
если фаза меняется на противоположную,
т. е.
,
то
.
Следовательно, изменение
фазы на противоположную равносильно
изменению разности хода на половину
волны.
В
нашем случае (рис. 3.10) изменение фазы на
противоположную происходит при отражении
в точке А.
Условия
максимума и минимума интенсивности в
отраженном
свете
запишутся следующим образом.
Запишем
условие максимума и минимума интенсивности
в проходящем
свете
Эти формулы
используются при решении задач.
Соседние файлы в предмете Физика
- #
- #
- #
- #
- #
- #
- #
ответы
ваш ответ
Можно ввести 4000 cимволов
отправить
дежурный
Нажимая кнопку «отправить», вы принимаете условия пользовательского соглашения
похожие темы
похожие вопросы 5
Число — полуволна
Cтраница 1
Число полуволн п должно быть найдено из того условия, чтобы Р имело наименьшее возможное значение.
[1]
Число полуволн, на которые подразделяется стержень при потере устойчивости, должно быть найдено из условия минимума сжимающей силы.
[2]
Число окружных полуволн п, отношение К между длинами окружных и продольных волн для первого члена с pqii, а также коэффициенты Wpq, Vpq и Upq являются неизвестными величинами, которые нужно определить.
[3]
Число полуволн синусоиды, зависящее в первую очередь от сопротивления трения в опорах, возможно определить расчетом. Эта задача решена в теории упругости.
[4]
Принимают число полуволн т, равным ближайшему меньшему целому числу.
[5]
Какое число полуволн образует 65 / в бурильная колонна, висящая на крюке талевого механизма и делающая 400 об / мин. Наружный диаметр трубы /) 168 3 мм, внутренний d 150 3 — средний вес 1 пог.
[6]
Индекс п указывает число полуволн, укладывающихся по стороне а волновода, а индекс т — число волн, укладывающихся на другой стороне.
[8]
Здесь m — число полуволн по длине, которое подбирается из условия минимума критической нагрузки.
[9]
Здесь п — число полуволн, на которые стержень подразделяется при выпучивании и, следовательно, /: пЯ, — длина одной полуволны.
[10]
Здесь пит — числа полуволн, укладывающихся вдоль сторон соответственно а и b пластины, а — длина пластины, Ъ — ширина, р — плотность, v — — коэффициент Пуассона.
[11]
ЬЕ k — число полуволн, которые образует ось стержня при колебаниях.
[12]
При ти Р число полуволн синусоиды в направлении действия сжимающих нагрузок равно отношению сторон пластины.
[13]
Число т определяет число стоячих полуволн вдоль оси х, а число п — число стоячих полуволн вдоль оси у.
[14]
Для исследования влияния числа полуволн k рассмотрим собственные частоты линеаризованной системы, зависящие от чисел волн.
[15]
Страницы:
1
2
3
4
Интерференция волн.
-
Сложение колебаний.
-
Когерентные источники.
-
Условие максимума и минимума.
-
Интерференционная картина.
-
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: интерференция света.
В предыдущем листке, посвящённом принципу Гюйгенса, мы говорили о том, что общая картина волнового процесса создаётся наложением вторичных волн. Но что это значит — «наложением»? В чём состоит конкретный физический смысл наложения волн? Что вообще происходит, когда в пространстве одновременно распространяются несколько волн? Этим вопросам и посвящён данный листок.
к оглавлению ▴
Сложение колебаний.
Сейчас мы будем рассматривать взаимодействие двух волн. Природа волновых процессов роли не играет — это могут быть механические волны в упругой среде или электромагнитные волны (в частности, свет) в прозрачной среде или в вакууме.
Опыт показывает, что волны складываются друг с другом в следующем смысле.
Принцип суперпозиции. Если две волны накладываются друг на друга в определённой области пространства, то они порождают новый волновой процесс. При этом значение колеблющейся величины в любой точке данной области равно сумме соответствующих колеблющихся величин в каждой из волн по отдельности.
Например, при наложении двух механических волн перемещение частицы упругой среды равно сумме перемещений, создаваемых в отдельности каждой волной. При наложении двух электромагнитных волн напряжённость электрического поля в данной точке равна сумме напряжённостей в каждой волне (и то же самое для индукции магнитного поля).
Разумеется, принцип суперпозиции справедлив не только для двух, но и вообще для любого количества накладывающихся волн. Результирующее колебание в данной точке всегда равно сумме колебаний, создаваемых каждой волной по отдельности.
Мы ограничимся рассмотрением наложения двух волн одинаковой амплитуды и частоты. Этот случай наиболее часто встречается в физике и, в частности, в оптике.
Оказывается, на амплитуду результирующего колебания сильно влияет разность фаз складывающихся колебаний. В зависимости от разности фаз в данной точке пространства две волны могут как усиливать друг друга, так и полностью гасить!
Предположим, например, что в некоторой точке фазы колебаний в накладывающихся волнах совпадают (рис. 1).
Рис. 1. Волны в фазе: усиление колебаний |
Мы видим, что максимумы красной волны приходятся в точности на максимумы синей волны, минимумы красной волны — на минимумы синей (левая часть рис. 1). Складываясь в фазе, красная и синяя волны усиливают друг друга, порождая колебания удвоенной амплитуды (справа на рис. 1).
Теперь сдвинем синюю синусоиду относительно красной на половину длины волны. Тогда максимумы синей волны будут совпадать с минимумами красной и наоборот — минимумы синей волны совпадут с максимумами красной (рис. 2, слева).
Рис. 2. Волны в противофазе: гашение колебаний |
Колебания, создаваемые этими волнами, будут происходить, как говорят, в противофазе — разность фаз колебаний станет равна . Результирующее колебание окажется равным нулю, т. е. красная и синяя волны попросту уничтожат друг друга (рис. 2, справа).
к оглавлению ▴
Когерентные источники.
Пусть имеются два точечных источника, создающие волны в окружающем пространстве. Мы полагаем, что эти источники согласованы друг с другом в следующем смысле.
Когерентность. Два источника называются когерентными, если они имеют одинаковую частоту и постоянную, не зависящую от времени разность фаз. Волны, возбуждаемые такими источниками, также называются когерентными.
Итак, рассматриваем два когерентных источника и
. Для простоты считаем, что источники излучают волны одинаковой амплитуды, а разность фаз между источниками равна нулю. В общем, эти источники являются «точными копиями» друг друга (в оптике, например, источник
служит изображением источника
в какой-либо оптической системе).
Наложение волн, излучённых данными источниками, наблюдается в некоторой точке . Вообще говоря, амплитуды этих волн в точке
не будут равны друг другу — ведь, как мы помним, амплитуда сферической волны обратно пропорциональна расстоянию до источника, и при разных расстояниях
и
амплитуды пришедших волн окажутся различными. Но во многих случаях точка
расположена достаточно далеко от источников — на расстоянии гораздо большем, чем расстояние между самими источниками. В такой ситуации различие в расстояниях
и
не приводит к существенному отличию в амплитудах приходящих волн. Следовательно, мы можем считать, что амплитуды волн в точке
также совпадают.
к оглавлению ▴
Условие максимума и минимума.
Однако величина , называемая разностью хода, имеет важнейшее значение. От неё самым решительным образом зависит то, какой результат сложения приходящих волн мы увидим в точке
.
Рис. 3. Усиление колебаний в точке P |
В ситуации на рис. 3 разность хода равна длине волны . Действительно, на отрезке
укладываются три полных волны, а на отрезке
— четыре (это, конечно, лишь иллюстрация; в оптике, например, длина таких отрезков составляет порядка миллиона длин волн). Легко видеть, что волны в точке
складываются в фазе и создают колебания удвоенной амплитуды — наблюдается, как говорят, интерференционный максимум.
Ясно, что аналогичная ситуация возникнет при разности хода, равной не только длине волны, но и любому целому числу длин волн.
Условие максимума. При наложении когерентных волн колебания в данной точке будут иметь максимальную амплитуду, если разность хода равна целому числу длин волн:
(1)
Теперь посмотрим на рис. 4. На отрезке укладываются две с половиной волны, а на отрезке
-три волны. Разность хода составляет половину длины волны (d=lambda /2[/math]).
Рис. 4. Гашение колебаний в точке P |
Теперь нетрудно видеть, что волны в точке складываются в противофазе и гасят друг друга — наблюдается интерференционный минимум. То же самое будет, если разность хода окажется равна половине длины волны плюс любое целое число длин волн.
Условие минимума.
Когерентные волны, складываясь, гасят друг друга, если разность хода равна полуцелому числу длин волн:
(2)
Равенство (2) можно переписать следующим образом:
.
Поэтому условие минимума формулируют ещё так: разность хода должна быть равна нечётному числу длин полуволн.
к оглавлению ▴
Интерференционная картина.
А что, если разность хода принимает какое-то иное значение, не равное целому или полуцелому числу длин волн? Тогда волны, приходящие в данную точку, создают в ней колебания с некоторой промежуточной амплитудой, расположенной между нулём и удвоенным значением 2A амплитуды одной волны. Эта промежуточная амплитуда может принимать все значения от 0 до 2A по мере того, как разность хода меняется от полуцелого до целого числа длин волн.
Таким образом, в той области пространства, где происходит наложение волн когерентных источников и
, наблюдается устойчивая интерференционная картина — фиксированное не зависящее от времени распределение амплитуд колебаний. А именно, в каждой точке
данной области амплитуда колебаний принимает своё значение, определяемое разностью хода
приходящих сюда волн, и это значение амплитуды не меняется со временем.
Такая стационарность интерференционной картины обеспечивается когерентностью источников. Если, например, разность фаз источников будет постоянно меняться, то никакой устойчивой интерференционной картины уже не возникнет.
Теперь, наконец, мы можем сказать, что такое интерференция.
Интерференция — это взаимодействие волн, в результате которого возникает устойчивая интерференционная картина, то есть не зависящее от времени распределение амплитуд результирующих колебаний в точках области, где волны накладываются друг на друга.
Если волны, перекрываясь, образуют устойчивую интерференционную картину, то говорят попросту, что волны интерферируют. Как мы выяснили выше, интерферировать могут только когерентные волны. Когда, например, разговаривают два человека, то мы не замечаем вокруг них чередований максимумов и минимумов громкости; интерференции нет, поскольку в данном случае источники некогерентны.
На первый взгляд может показаться, явление интерференции противоречит закону сохранения энергии — например, куда девается энергия, когда волны полностью гасят друг друга? Но никакого нарушения закона сохранения энергии, конечно же, нет: энергия просто перераспределяется между различными участками интерференционной картины. Наибольшее количество энергии концентрируется в интерференционных максимумах, а в точки интерференционных минимумов энергия не поступает совсем.
На рис. 5 показана интерференционная картина, созданная наложением волн двух точечных источников и
. Картина построена в предположении, что область наблюдения интерференции находится достаточно далеко от источников. Пунктиром отмечена ось симметрии интерференционной картины.
Рис. 5. Интерференция волн двух точечных источников |
Цвета точек интерференционной картины на этом рисунке меняются от чёрного до белого через промежуточные оттенки серого. Чёрный цвет — интерференционные минимумы, белый цвет — интерференционные максимумы; серый цвет — промежуточное значение амплитуды, и чем больше амплитуда в данной точке, тем светлее сама точка.
Обратите внимание на прямую белую полосу, которая идёт вдоль оси симметрии картины. Здесь расположены так называемые центральные максимумы. Действительно, любая точка данной оси равноудалена от источников (разность хода равна нулю), так что в этой точке будет наблюдаться является интерференционный максимум.
Остальные белые полосы и все чёрные полосы слегка искривлены; можно показать, что они являются ветвями гипербол. Однако в области, расположенной на большом расстоянии от источников, кривизна белых и чёрных полос мало заметна, и выглядят эти полосы почти прямыми.
к оглавлению ▴
Интерференционный опыт, изображённый на рис. 5, вместе с соответствующим методом расчёта интерференционной картины называется схемой Юнга. Эта схема лежит в основе знаменитного
опыта Юнга (речь о котором пойдёт в теме Дифракция света). Многие эксперименты по интерференции света так или иначе сводятся к схеме Юнга.
В оптике интерференционную картину обычно наблюдают на экране. Давайте ещё раз посмотрим на рис. 5 и представим себе экран, поставленный перпендикулярно пунктирной оси.
На этом экране мы увидим чередование светлых и тёмных интерференционных полос.
На рис. 6 синусоида показывает распределение освещённости вдоль экрана. В точке O, расположенной на оси симметрии, находится центральный максимум. Первый максимум в верхней части экрана, соседний с центральным, находится в точке A. Выше идут второй, третий (и такдалее) максимумы.
Рис. 6. Интерференционная картина на экране |
Расстояние , равное расстоянию между любыми двумя соседними максимумами или минимумами, называется шириной интерференционной полосы. Сейчас мы займёмся нахождением этой величины.
Пусть источники находятся на расстоянии друг от друга, а экран расположен на расстоянии
от источников (рис. 7 ). Экран заменён осью
; начало отсчёта
, как и выше, отвечает центральному максимуму.
Рис. 7. Вычисление координат максимумов |
Точки и
служат проекциями точек
и
на ось
и расположены симметрично относительно точки
. Имеем:
.
Точка наблюдения может находиться на оси
(на экране) где угодно. Координату точки
мы обозначим
. Нас интересует, при каких значениях
в точке
будет наблюдаться интерференционный максимум.
Волна, излучённая источником , проходит расстояние:
. (3)
Теперь вспомним, что расстояние между источниками много меньше расстояния от источников до экрана: . Кроме того, в подобных интерференционных опытах координата
точки наблюдения также гораздо меньше
. Это означает, что второе слагаемое под корнем в выражении (3) много меньше единицы:
.
Раз так, можно использовать приближённую формулу:
(4)
Применяя её к выражению (4), получим:
(5)
Точно так же вычисляем расстояние, которое проходит волна от источника до точки наблюдения:
. (6)
Применяя к выражению (6) приближённую формулу (4), получаем:
. (7)
Вычитая выражения (7) и (5), находим разность хода:
. (8)
Пусть — длина волны, излучаемой источниками. Согласно условию (1), в точке
будет наблюдаться интерференционный максимум, если разность хода равна целому числу длин волн:
Отсюда получаем координаты максимумов в верхней части экрана (в нижней части максимумы идут симметрично):
При получаем, разумеется,
(центральный максимум). Первый максимум рядом с центральным соответствует значению
и имеет координату
.Такой же будет и ширина интерференционной полосы:
.
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Интерференция волн.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
07.05.2023