Как найти число с двумя показателями

В статье мы введём понятие степени числа, на простых и понятных примерах объясним, что такое степень с целым показателем, натуральным, рациональным, действительным и иррациональным. Заодно покажем несколько поучительных примеров и задач, которые помогут читателю лучше понять и полнее уяснить тему.

Степень с натуральным показателем

Определение 1 + формула

Степенью числа a с натуральным показателем n называют число, полученное в результате умножения числа a самого на себя n количество раз. В виде формулы выше сказанное можно записать так:

[a^{n}=a*a* ldots * a]

Читается запись, как «a» в степени «n». Для a2 и для a3 можно сказать «a в степени два» и «a в степени три» или «a во второй степени» и «a в третьей степени». Однако гораздо чаще говорят: «a в квадрате» и «a в кубе». Это устоявшиеся, общеупотребительные названия. Например, «3 в квадрате» или «7 в кубе». Формулировки типа «3 в степени два» и «7 в степени три» ошибочными не считаются, но употребляются гораздо реже, a называется основанием степени.

Запомните, n обозначает количество множителей, то, сколько раз a нужно само на себя перемножить.

Примеры 1 — 6

47 читается, как «четыре в седьмой степени». В виде произведения 47 может быть записано, как 4*4*4*4*4*4*4. При этом 4 является основанием, а 7 её показателем.

193. Может быть прочтено, как «19 в кубе». Оба прочтения будут одинаково верными.

(8,234)5. Читается, как «8,234 в пятой степени». Обратите внимание, в данном случае основанием является десятичная дробь.

(2/5)9 . Здесь основанием будет обычная дробь, она правильная.

(43/7)3 тоже отвечает определению. Из указанного примера видно, что основанием может быть и не правильная дробь.

Записи (8(3/7))8, (-5/9)5. (√3)7, (-√8)2 есть степени с целым n. Однако надо понимать разницу между (-5)3  и –53. Первое является степенью отрицательного числа, а второе можно записать как –(53). Оно соответствует числу, которое противоположно 53.

Отдельно рассмотрим пример, когда n равен 1. Любое число с ним можно записать в виде a1. Некоторые почему-то считают, что этом случае следует выполнить умножение столько раз, сколько указано в показателе. На самом деле ничего умножать не нужно. Степень любого числа с n равным 1 будет самим этим числом.

Т. е. 561 = 56, (1/456)1 равно 1/456, (-86)1 равно -86.

Запись 0n тоже имеет право на существование. По сути она означает, что нуль нужно помножить на себя самого n раз. Умножение на нуль всегда даёт нуль. Получается, любая степень с основанием нуль, независимо от её показателя всегда будет равна нулю.

Значительно реже всех выше перечисленных случаев встречается запись типа a^n. Она соответствует записи an.

Примеры 7 — 9

9^8 читается, как «9 в восьмой степени», n может быть и многозначным числом.

5^(237). Читается, как «5 в двести тридцать седьмой степени».

Выражения 78,4, (3/56)1/2, 8 √3 не являются степенями с натуральным показателем.

Запомните, основанием степени с натуральным n может быть практически любое число (хоть дробь, хоть корень и т. д.), а вот в показателе должно обязательно находиться натуральное число, т. е. не дробное и не отрицательное.

Основные свойства степени с натуральным показателем

Они следующие:

  • Когда происходит умножение степеней с равным основанием, то оно остаётся прежним. Показатели при этом складываются.
    am*an = am+n
  • Когда степени с одинаковыми основаниями делятся, то основание сохраняется прежним, а показатели вычитаются.
    am/an = am-n При этом m > n и a не равно нулю.
  • Когда степень возводят в степень, то основание не меняют, а сами степени перемножаются.
    (am)n = am*n
  • Если в степень возводится дробь, то в неё возводится как числитель дроби, так и её знаменатель.
    (a/b)n = an/bn При этом b не должно быть равно нулю.

Примеры 10 — 12

21*22*23. Складываем 1, 2 и 3. В итоге 21+2+3=26

(-3/7)5: (-3/7)3. Из 5 вычитаем 3. В результате имеем (-3/7)5-3 = (-3/7)2.

Нужно возвести в степень выражение (a2*b3)4. Сначала на 4 умножаем 2, затем 3. Итогом будет выражение a8b12.

О сравнении степеней

Если сравниваемые степени имеют равные основания, большие числа 1, то большим считается та из них, у которой показатель степени выше.

Примеры 13 — 16

Какое из чисел больше: 217 или 227. Основания одинаковые, но  27 больше, чем 17. 27>17. Значит 227 больше, чем 217.

Если n одинаковые, но основание находится в промежутке от 0 до 1, то большим будет степень, у которой показатель меньше.

Сравнить числа (0,3)11 и (0,3)7. Основание больше ноля, но не доходит до единицы. Значит, в отличие от предыдущего примера, здесь всё наоборот. Большим будет считаться число, с меньшим показателем. Т. к. 11>7, то (0,3)11<(0,3)7.

Если n одинаковые, а основания разные, то большим будет то, у которого больше основание.

Сравнить между собой числа 73 и 153. 15 >7, значит 153 больше, чем 73.

Если различаются и показатели, и основания, то числа, посредством тех или иных преобразований, сначала приводят к вида, когда у них либо то, либо другое одинаково, а уже потом сравнивают по приведённым выше правилам.

Выясните, какое из чисел больше 3200 или 2300.

2300 = 23*100 = (23)100 =8100

3200 = 32*100 = (32)100 = 9100

9 больше, чем 8. Значит 9100 больше 8100.

Соответственно 3200 будет больше, чем 2300.

Степень с целым показателем

Определение 2

Степенью с целым показателем называется степень, показателем которой является любое целое число. Это своего рода расширение множества чисел с натуральным показателем.  К последним прибавляются числа с отрицательным значением и ноль.

Рассмотрим степень с целым отрицательным n. Любое число вида a-n можно представить в виде 1/an. При этом a не должно быть равно нулю. n может быть любым натуральным числом.

Примеры 17 — 18

7-5 не является степенью с натуральным показателем, но в то же самое время является степенью с целым показателем. Примечательно, что равное ему число (1/7)5 будет степенью с целым n. Мы рассматриваем 7-5 и (1/7)5, как равные, но, всё-таки, разные числа.

(4/5)-1 можно представить как 1/(4/5)1.

Сложнее дело обстоит с понятием нулевой степени. Чтобы её объяснить, ещё раз приведём правило по делению степеней с равными основаниями.

Правило 1

Равенство am/an = am-n остаётся верным лишь в том случае, когда m и n будут натуральными числами, m < n и a не равно нулю. Последнее условие позволяет нам избежать деления на нуль. Если m и n окажутся равными, то мы придём к результату (an/an) = an-n = a0

Т. е. при делении степеней, которые имеют одно и тоже основание из показателя делимого следует вычесть n делителя. В случае, когда и они одинаковы, например, если a3 разделить на a3, мы получим a0.

Как известно из курса элементарной математики, частное от деления любого числа на самого себя всегда равно единице. Из этого напрямую следует, что нулевая степень любого числа всегда равна 1.

Пример 19

70= 1, -50= 1, (3/5)0 = 1, (√8)0  = 1, (7567776)0 = 1.

Несколько неожиданным для многих является тот факт, что ноль в степени ноль тоже равен единице 00 = 1. Положение осложняет тот факт, что на ноль делить нельзя. Так откуда же тогда взяли, что нулевая степень нуля есть 1.

На самом деле, хотя на ноль никакое число не делится, оно может делится на сколь угодно малое, т. е. близкое к нулю число. В высшей математике доказывается, что предел (a/a), когда a является бесконечно малой величиной, действительно стремится к 1.

Свойства степени с целым показателем практически ничем не отличаются от её свойств с натуральным. Нужно только помнить, что в показателе появляются отрицательные числа и их следует складывать и вычитать по строго определённым для этого правилам.

Примеры 20 — 21

57* 5-3= 57-3 = 54.

84/8-2 = 84-(-2)= 86.

Нет времени решать самому?

Наши эксперты помогут!

Степень с рациональным показателем

Определение 3

Степенью с рациональным показателем называется степень, показатель которой, есть рациональное число, т. е. помимо целых и отрицательных значений, может иметь ещё и дробные. Записывается это в виде am/n. Из определения дробной степени известно, что am/n можно записать в виде n√am. n не должно быть равно нулю, ведь на ноль делить нельзя.

Если m и n делятся нацело, то получаем степень с целым показателем. Если при этом ещё и частное от деления больше нуля, то получим степень с натуральным.

Правило 2

Любое число am * k/n *k можно заменить на am/n.

Теперь о том, почему в дроби требуется замена сократимого показателя на несократимый. Если этого не делать, то может возникнуть, например, следующая ситуация:

(-1)6/10 = (-1)2/5, однако, если посчитать получится

(-1)6/10 = 10√(-1)6 = 10√1 = 1.

(-1)3/5 = 5√(-1)3 = 5√(-1) = -1

Примеры степеней с рациональным n: (31/2), 75/4, 74/2. Основание может быть и многозначным числом, в частности, 128-2/7 тоже степень с рациональным.

Примеры 22 — 24

-161/4 является степенью с рациональным показателем.

(-16)1/4 смысла не имеет. Оно равносильно выражению 4√(-16). Какое число нужно возвести в четвёртую степень, чтобы получить -16 ? Ответ – никакое. Такого числа не существует.

Казалось бы, √(-8) имеет право на существование. Оно равно -2 И действительно, можно записать (-8)1/3= -2. Однако, если мы запишем 1/3.

по-другому, то результат окажется совершенно иным. Смотрите:

(-8)1/3 = (-8)2/6 = 6√(-8)2 = 6√(64) = 2.

Получается парадокс, поэтому запись √(-8) лишено смысла.

Из примеров выше становится ясно, что извлечение чётных корней из отрицательных чисел категорически запрещено.

Не будет ошибкой замена любого из дробных показателей смешанным (например, 52,1 на 52(1/10), однако, чтобы не запутаться, при проведении вычислений, всегда, когда это возможно, лучше заменяйте подобные числа и корень числа дробной степенью. Это делает запись более наглядной и позволяет избежать многих ошибок.

Свойства степени с рациональным показателем аналогичны с натуральным или целым n, только дело приходится иметь с дробями. В первую очередь это касается деления и перемножения степеней с одинаковыми основаниями, а также их сравнения. Вспомните, как оно проводится для обыкновенных дробей.

пример 25

72/3 * 78/4 = 732/12 = 716/6

Степень числа с иррациональным показателем

Чтобы разобраться в этом вопросе, нужно разобраться в том, что является иррациональным числом. Любое рациональное число допускает его представление в виде бесконечной периодической десятичной дроби либо как обыкновенную дробь типа (m/n). Об иррациональных числах этого не скажешь. Десятичные дроби, с помощью которых выражаются иррациональные числа, бесконечны и апериодичны. Примерами иррациональных чисел являются √7, число [pi], √2 + √3.

Строится степень с рациональным n с помощью так называемого предельного перехода по последовательностям степеней с рациональными показателями. Они с недостатком либо с избытком приближаются к степени иррациональным n.

Покажем как это происходит. Пусть нам дано иррациональное число a.

a0 = 1,6 , a1 = 1,67, a2 = 1,671…

a0 = 1,67, a1 = 1,6717, a2 = 1,671753…

И т. д. Заметьте – сами приближения, это рациональные числа.

Последовательности приближений нам нужно поставить в соответствие последовательность степеней αa0, αa1, αa2. Значения этих степеней можно подсчитать.

a = 1,67175331. Пусть для примера у нас будет α = 3

Тогда получается αa0 = 3,167; αa1 = 3,16717; αa2= 3,1671753 и т. д.

Указанная последовательность сводится к числу, которое окажется значением степени с основанием α и иррациональным показателем a. После некоторой работы в итоге получаем 31,67175331 = 6,27.

Свойства у степени с иррациональным n в целом такие же, как рациональным. В частности, сложение показателей при перемножении, сравнение иррациональных степеней происходят аналогичным образом. Нужно только иметь в виду, что при бесконечности и апериодичности иррациональной дроби вы имеете дело с приближёнными с той или иной точностью значениями. Впрочем, в зависимости от поставленной задачи, нужной точности достичь можно в любом случае. Очень осторожны будьте с приближениями. У новичков здесь очень часто случаются ошибки. После некоторого опыта и практики действия совершаются автоматически. Старайтесь на первых порах порешать как можно больше примеров. Пусть они кажутся вам однотипным, но навык отточить и закрепить позволяют.

Показатель — это число, показывающее, в какую именно степень возводится основание. 

Показатель — в большинстве случаев, обобщённая характеристика какого-либо объекта, процесса или его результата, понятия или их свойств, обычно, выраженная в числовой форме.

Целые показатели

Свойства целых положительных показателей: Показатели степени до сего времени предполагались нами целыми и положительными, причём мы им придавали смысл, выражаемый в следующем определении:

Возвысить число а в степень с целым и положительным показателем n — значит найти произведение n одинаковых сомножителей aaa…a.

Перечислим свойства этих показателей, известные нам из предыдущих глав алгебры:

  • 1) при умножении степеней одного и того же числа показатели их складываются;
  • 2) при делении степеней одного и того же числа показатель делителя вычитается из показателя делимого, если показатель делителя не больше показателя делимого;
  • 3) при возвышении отрицательного числа в степень с чётным показателем получается положительное число, а с нечётным показателем — отрицательное;
  • 4) чтобы возвысить в степень произведение, достаточно возвысить в эту степень каждый сомножитель отдельно;
  • 5) чтобы возвысить степень в степень, достаточно перемножить показатели этих степеней;
  • 6) чтобы возвысить в степень дробь, достаточно возвысить в эту степень отдельно числитель и знаменатель;
  • 7) чтобы возвысить радикал в степень, достаточно возвысить в эту степень подкоренное выражение;
  • 8) чтобы извлечь корень из степени, достаточно разделить показатель степени на показатель корня, если такое деление выполняется нацело.

Теперь мы расширим понятие о показателях, введя показатели отрицательные и дробные, которых до сего времени мы не употребляли. Мы увидим при этом, что все свойства целых положительных показателей сохраняются и для показателей отрицательных и дробных.

Нулевой показатель

При делении степеней одного и того же числа показатель делимого может оказаться равным показателю делителя.

Пусть нужно разделить аⁿ на аⁿ.

Применяя правило (2), получаем:
aⁿ : aⁿ =aⁿ⁻ⁿ = α.

Но нуль, как показатель степени, не имеет того значения, которое придаётся показателям целым и положительным, так как нельзя повторить число сомножителем нуль раз. Чтобы придать смысл выражению α⁰, подойдём к вопросу о делении аⁿ на аⁿ с другой стороны. Мы знаем, что при делении любого (отличного от нуля) числа на равное ему число частное равно единице.

Поэтому условились считать α⁰=l.

Таким образом, по определению:
Всякое число (за исключением нуля) в нулевой степени равно единице.

Легко убедиться в том, что перечисленные выше свойства целых положительных показателей применимы и к нулевому показателю. Так:
Показатели

Отрицательные целые показатели

Условимся при делении степеней одного и того же числа вычитать показатель делителя из показателя делимого и в том случае, если показатель делителя больше показателя делимого. Тогда мы получим в частном букву с отрицательным показателем, например: α² : α⁵= α⁻³. Таким образом, число с отрицательным показателем мы условимся употреблять для обозначения частного от деления степеней этого числа в том случае, когда показатель делителя превосходит показатель делимого на столько единиц, сколько их находится в абсолютной величине отрицательного показателя. Так, α⁻² означает частное α : α³, или α² : α⁵, или α³ : α⁵, вообще частное α ͫ : α ͫ ⁺².

Применяемое в этом смысле число с отрицательным показателем равно дроби, у которой числитель 1, а знаменатель — то же число, но с положительным показателем, равным абсолютной величине отрицательного показателя.

Действительно, согласно нашему условию, мы должны иметь:
Показатели

Сократив две первые дроби на ат и третью дробь на хт (т. е. в обоих случаях сократив дроби на числитель), получим:
Показатели

Вообще:
Показатели

Заметим, что отрицательные показатели дают возможность представить всякое дробное алгебраическое выражение под видом целого; для этого стоит только все множители знаменателя перенести множителями в числитель, взяв их с отрицательными показателями. Например:
Показатели

Действия над степенями с отрицательными показателями

Убедимся теперь, что все действия над степенями с отрицательными показателями можно производить по тем же правилам, какие были прежде выведены для показателей положительных. Достаточно обнаружить это только для умножения и возвышения в степень, так как правила обратных действий — деления и извлечения корня — являются следствиями правил прямых действий.

Умножение

Предстоит показать, что при умножении степеней показатели одинаковых букв складываются и в том случае, когда эти показатели отрицательные. Убедимся, что ПоказателиПоказатели, где m и n — целые положительные числа.

Действительно, заменив степени с отрицательными показателями дробями и произведя действие умножения по правилам, относящимся к дробям, получим:
Показатели

Подобно этому:
Показатели так как Показатели

Возвышение в степень

Надо показать, что при возвышении в степень показатели этих степеней перемножаются и в том случае, когда они отрицательные. Убедимся, что ПоказателиПоказатели.

Действительно:
Показатели

Подобно этому:
Показатели, потому что Показатели

Примеры:
1) (3α⁻ ²b²c⁻ ³) (0,8ab⁻ ³ c)=2,4α⁻ ¹b⁻ ¹ c.
2) (x⁻ ¹ z²) : (5x²y⁻ ² ) = Показателиx⁻ ³yz⁻ ¹ .
3) (2αx⁻ ³ )⁻ ² =2⁻ ² α⁻ ² x⁶.
4) (х⁻ ² — у⁻ ¹ )² =(x⁻ ² ) ² — 2x⁻ ² y⁻ ¹ +(y⁻ ¹ ) ² =x⁻ — 2x⁻ ² y⁻ ¹ +y⁻ ² .
5) (a⁻ ² + b⁻ ³ ) (а⁻ ² b⁻ ³ )=a⁻ — b⁻ .
6) Показатели=3p⁻ ³ q⁻ ¹.

Дробные показатели

В каком смысле употребляются дробные показатели: Мы знаем, что при извлечении корня из степени делят показатель степени на показатель корня, если такое деление выполняется нацело; например: Показатели и т. д. Условимся теперь распространять это правило и на те случаи, когда показатель степени не делится нацело на показатель корня. Например, мы условимся принимать, что:
Показатели

Вообще мы условимся, что:
Выражение Показатели означает корень, показатель которого равен знаменателю, а показатель степени подкоренного числа равен числителю показателя Показатели

Условимся употреблять отрицательные дробные показатели в том же смысле, в каком мы употребляли отрицательные целые показатели; например, условимся, что
Показатели

Основное свойство дробного показателя

Величина степени с дробным показателем не изменится, если мы умножим или разделим на одно и то же число (отличное от нуля) числитель и знаменатель дробного показателя.
Так:
Показатели

Вообще:
Показатели

Действительно, знаменатель дробного показателя означает показатель корня, а числитель его означает показатель степени подкоренного выражения, а такие показатели, как мы видели, можно умножать и делить на одно и то же число.

Основываясь на этом свойстве, мы можем преобразовывать дробный показатель совершенно так же, как и обыкновенную дробь; например, мы можем сокращать дробный показатель или приводить несколько дробных показателей к одному знаменателю.

Действия над степенями с дробными показателями

Предстоит доказать, что к дробным показателям применимы правила, выведенные раньше для целых показателей. Это достаточно обнаружить только для умножения и возвышения в степень, так как правила деления и извлечения корня являются следствиями правил умножения и возвышения в степень.

Умножение

Докажем, что при умножении показатели степеней одинаковых букв складываются и тогда, когда эти показатели дробные. Например, убедимся, что
Показатели

Для этого изобразим степени с дробными показателями в виде радикалов и произведём умножение по правилу умножения радикалов:
Показатели

Результат получился тот же самый, какой мы получили после сложения показателей; значит, правило о сложении показателей (при умножении) можно применять и для дробных показателей.
Таким образом:
Показатели

Возвышение в степень

Докажем, что при возвышении степени в степень показатели степеней можно перемножать и тогда, когда эти показатели дробные. Например, убедимся, что
Показатели

Действительно, заменив радикалами степени с дробными показателями и произведя действия над радикалами, получим:
Показатели

Если показатели не только дробные числа, но и отрицательные, то и тогда к ним можно применять правила, доказанные раньше для положительных показателей. Например:
Показатели
Показатели

Примеры на действия с дробными и отрицательными показателями

Показатели
Показатели
Показатели
Показатели
Показатели

Понятие об иррациональном показателе

Смысл степени с иррациональным показателем:

Рассмотрим степени Показатели, в которых α — какое-нибудь иррациональное число, когда основание степени α есть какое-нибудь положительное число, не равное 1. При этом могут представиться следующие три случая:

a) α > 1 и α — положительное иррациональное число; например, Показатели.

Обозначим через α₁ любое рациональное приближённое значение числа α, взятое с недостатком, и через α₂ — любое приближённое рациональное значение числа а, взятое с избытком. Тогда степень Показатели, означает таксе число, которое больше всякой степени Показатели, но меньше всякой степени Показатели. Можно доказать, что такое число существует, и единственно. Например, Показатели означает такое число, которое больше каждого из чисел ряда:
Показатели
в котором показатели — десятичные приближённые значения Показатели, взятые с недостатком, но меньше каждого из чисел ряда:
Показатели
в котором показатели — десятичные приближения V 2, взятые с избытком.

б) a < 1 и α — по-прежнему положительное иррациональное число, например, Показатели.

Тогда под степенью Показатели разумеют такое число, которое меньше всякой степени Показатели, но больше всякой степени Показатели. Так, Показатели есть число, меньшее каждого из чисел ряда:
Показатели
но большее каждого из чисел ряда:
Показатели

Таким образом, если иррациональное число а заключено между двумя рациональными числами α₁ и α₂, то степень Показатели заключена между степенями Показатели и Показатели и тогда, когда α > 1, и тогда, когда α < l.

в) Показатели и α — отрицательное иррациональное число; например:
Показатели

Тогда выражению Показатели придают тот же смысл, какой имеют степени с отрицательными рациональными показателями. Так:
Показатели

При подробном рассмотрении теории иррациональных показателей обнаруживается, что все свойства показателей рациональных применимы и к показателям иррациональным; так:
Показатели

Показательная функция

Определение:

Показательной функцией называется функцияПоказатели, представляющая собой степень, у которой основание а есть какое-нибудь постоянное положительное число, не равное 1, а показатель х — независимое переменное, могущее принимать всевозможные значения, положительные и отрицательные, целые и дробные, рациональные и иррациональные. При этом предполагается, что в том случае, когда показатель х равен дроби и, следовательно, когда Показатели означает радикал некоторой степени, то из всех значений радикала берётся только одно арифметическое, т. е. положительное.

Из того, что мы знаем о показателях степени, следует, что функция Показатели при всяком значении х имеет единственное значение (благодаря условию брать для радикалов только арифметическое значение).

Свойства показательной функции

Рассмотрим некоторые свойства показательной функции, помня, что а мы считаем положительным числом.

1. При всяком положительном основании функция Показатели положительна, т. е. Показатели> 0.
При х целом положительном Показатели>0, каково бы ни было положительное число а; следовательно, высказанное нами положение в этом случае справедливо.

Пусть теперь х равно некоторой положительной дроби, например
Показатели Тогда:
Показатели

Но Показатели > 0, следовательно, и Показатели > 0, так как мы условились брать лишь арифметическое значение корня.

Пусть х — положительное иррациональное число. Обозначим через α₁ и a₂ приближённые рациональные значения х по недостатку и избытку. Эти приближённые значения можно выбрать положительными. Тогда значение Показатели, будучи заключённым между двумя положительными числами Показатели и Показатели, является положительным числом.

Пусть, наконец, х равно некоторому отрицательному числу, например x=—р. Тогда:
Показатели

Каково бы ни было положительное число р, согласно предыдущему Показатели > 0, но тогда и Показатели.

Таким образом, высказанное нами положение справедливо для всякого х.

2. При a > 1 функция Показатели>l, если х>0, и Показатели< l, если x < 0 (при a < l знаки неравенства для Показатели противоположны).

Пусть х — целое положительнее число. Тогда:
Показатели

Пусть х — положительная дробь, например Показатели . Тогда:
Показатели

Если х — положительное иррациональное число, то Показатели > 1, где a₁ — приближённое рациональное значение х по недостатку, а поэтому и Показатели. Таким образом, при всяком положительном х
Показатели

Пусть теперь х есть какое-либо отрицательное число, например x = —р. Тогда:
Показатели

Но согласно предыдущему Показатели > 1. Следовательно:
Показатели

При a>1 функция Показатели возрастает при возрастании х.

Если x₁ и x₂ — два целых положительных числа и x₂ > x₁, то очевидно, что при 1 будем иметь:
Показатели

Пусть теперь x₁ и x₂ — положительные дроби, например x₁= ПоказателиПоказатели и x₂ =Показатели. Пусть также Показатели. Тогда:
Показатели

Или по приведении дробей к одному знаменателю:
Показатели

Из двух неравных дробей с одинаковыми знаменателями та больше, у которой числитель больше. Следовательно:
Показатели

Так как рn и mq — целые числа, то к ним можно применить предыдущие рассуждения и мы получим:
Показатели

Извлечём из Показатели и Показатели корень степени qn. Мы знаем, что из двух корней одинаковой степени тот больше, у которого больше подкоренное число. Следовательно:
Показатели

Сокращая показатели, получим:
Показатели

Пусть x₁ и x₂ — два вещественных числа, из которых одно или оба иррациональны.

Обозначим через β приближённое рациональное значение x₁ по избытку, а через а приближённое значение x₂ по недостатку. Если x₁ < x₂, то можно выбрать а и β при условии β < α. Тогда будем иметь Показатели Но так как Показатели, то Показатели.

График показательной функции. Построим график следующих трёх показательных функций:
Показатели

Для построения графиков первых двух функций мы дадим переменному числу х ряд целых значений:
-3; -2; -1; 0; 1; 2; 3.

При x=—3 мы получим:
Показатели

Подобно этому вычислим значения у и для всех остальных значений x.

Для функции Показатели неудобно брать указанные значения числа х, так как мы получили бы тогда для у такие большие числа, которые на чертеже 29 не умещаются (например, при х = 3 мы получили бы y= 10³ = 1000). Для этой функции мы возьмём такие дробные значения (заключающиеся между —1 и +1):
Показатели

Соответствующие значения у вычислим в такой последовательности:
Показатели
Показатели

Далее простым умножением и делением находим:
Показатели
Показатели
Показатели
Показатели

Выпишем все найденные значения в следующие три таблицы:
Показатели

x = возрастает -3 -2 -1 0 1 2 3 возрастает
y = возрастает Показатели Показатели Показатели 1 2 4 8 возрастает

Показатели

x = возрастает -3 -2 -1 0 1 2 3 возрастает
y = возрастает 8 4 2 1 Показатели Показатели Показатели возрастает

Показатели

x = возрастает -1 Показатели Показатели Показатели 0 Показатели Показатели Показатели 1 возрастает
y = возрастает 0,1 0,17 0,32 0,56 1 1,78 3,16 5,62 10 возрастает

(в последней таблице числа округлены).

Нанеся эти значения на чертёж и соединяя полученные точки кривыми, мы получим (черт. 29) три графика взятых функций (удобно чертёж выполнить на миллиметровой бумаге, беря за единицу длины сантиметр).

Рассматривая графики показательных функций, мы видим на них в наглядном изображении следующие свойства:

  1. При всяком положительном основании функция Показателиположительна (все кривые расположены выше оси х-ов).
  2. При α > 1 функция Показатели> 1, если х > 0, и Показатели < 1, если х < 0 (при а < 1 знаки неравенств для Показатели противоположны).
  3. При возрастании х функция ах возрастает, если а > 1 (и убывает, если a < l).
  4. Если х=0, то Показатели=1 при всяком а (все кривые проходят через одну и ту же точку, лежащую на оси у-ов и отстоящую от точки 0 на +1).
  5. При a > 1 функция при возрастании х возрастает тем быстрее, чем больше а (кривая при a = 10 поднимается вверх значительно больше, чем при a=2).

Показатели

Черт. 29.

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Логарифмы в математике
  12. Исследование уравнений
  13. Уравнения высших степеней
  14. Уравнения высших степеней с одним неизвестным
  15. Комплексные числа
  16. Непрерывная дробь (цепная дробь)
  17. Алгебраические уравнения
  18. Неопределенные уравнения
  19. Соединения
  20. Бином Ньютона
  21. Число е
  22. Непрерывные дроби
  23. Функция
  24. Исследование функций
  25. Предел
  26. Интеграл
  27. Двойной интеграл
  28. Тройной интеграл
  29. Интегрирование
  30. Неопределённый интеграл
  31. Определенный интеграл
  32. Криволинейные интегралы
  33. Поверхностные интегралы
  34. Несобственные интегралы
  35. Кратные интегралы
  36. Интегралы, зависящие от параметра
  37. Квадратный трехчлен
  38. Производная
  39. Применение производной к исследованию функций
  40. Приложения производной
  41. Дифференциал функции
  42. Дифференцирование в математике
  43. Формулы и правила дифференцирования
  44. Дифференциальное исчисление
  45. Дифференциальные уравнения
  46. Дифференциальные уравнения первого порядка
  47. Дифференциальные уравнения высших порядков
  48. Дифференциальные уравнения в частных производных
  49. Тригонометрические функции
  50. Тригонометрические уравнения и неравенства
  51. Показательная функция
  52. Показательные уравнения
  53. Обобщенная степень
  54. Взаимно обратные функции
  55. Логарифмическая функция
  56. Уравнения и неравенства
  57. Положительные и отрицательные числа
  58. Алгебраические выражения
  59. Иррациональные алгебраические выражения
  60. Преобразование алгебраических выражений
  61. Преобразование дробных алгебраических выражений
  62. Разложение многочленов на множители
  63. Многочлены от одного переменного
  64. Алгебраические дроби
  65. Пропорции
  66. Уравнения
  67. Системы уравнений
  68. Системы уравнений высших степеней
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Степень числа

  • Возведение в степень
  • Выражения со степенями. Порядок действий
  • Калькулятор возведения в степень

Степень числа — это выражение, обозначающее краткую запись произведения одинаковых сомножителей.

Рассмотрим умножение одинаковых чисел, например:

5 · 5 · 5 = 125.

Произведение  5 · 5 · 5  можно записать так:  53  (пять в третьей степени). Выражение  53  — это степень. Следовательно,

5 · 5 · 5 = 53 = 125.

Рассмотрим выражение  53 . В этом выражении число  5  — основание степени, а число  3  — показатель степени.

основание и показатель степени

Основание степени — это повторяющийся множитель. Показатель степени — это число, указывающее количество повторений, то есть показатель степени показывает сколько одинаковых множителей содержится в произведении.

Читаются степени так:

  • 72  —  семь во второй степени.

    Вторую степень числа также называют квадратом этого числа. Следовательно, выражение 72 можно прочесть так: семь в квадрате или квадрат числа семь.

  • 23  —  два в третьей степени.

    Третью степень числа также называют кубом этого числа. Следовательно, выражение 23 можно прочесть так: два в кубе или два куб.

  • 64  —  шесть в четвёртой степени.
  • 1015  —  десять в пятнадцатой степени.
  • an  —  a  в энной степени  или  a  в степени эн.

Пример. Записать в виде степени:

a) 5 · 5;

б) 10 · 10 · 10 · 10;

в) 8 · 8 · 8.

Решение:

a) 5 · 5 = 52;

б) 10 · 10 · 10 · 10 = 104;

в) 8 · 8 · 8 = 83.

Возведение в степень

Возведение числа в степень — это вычисление произведения одинаковых множителей. Например, возвести число  2  в третью степень  (23)  — это значит найти произведение  2 · 2 · 2 , то есть

23 = 2 · 2 · 2 = 8.

Результат возведения в степень называется степенью (также как и само выражение, значение которого вычисляется). В выражении:

23 = 8,

2  — это основание степени,  3  — показатель степени,  8  — степень.

Пример. Вычислите:

a) 112;

б) 25;

в) 104.

Решение:

a) 112 = 11 · 11 = 121;

б) 25 = 2 · 2 · 2 · 2 · 2 = 32;

в) 104 = 10 · 10 · 10 · 10 = 10000.

Выражения со степенями. Порядок действий

Если выражение не содержит скобки и содержит степени, то сначала выполняется возведение в степень в порядке следования степеней (слева направо), а затем все остальные арифметические действия. Если выражение содержит скобки, то сначала выполняются действия в скобках, с учётом всех правил порядка выполнения действий.

Рассмотрим два выражения:

52 + 22

и

(5 + 2)2

В соответствии с порядком выполнения действий в первом случае сначала выполняется возведение в степень, а затем вычисляется сумма. Во втором случае сначала вычисляется сумма, а затем результат возводится в квадрат.

52 + 22 = 25 + 4 = 29,

(5 + 2)2 = 72 = 49.

Пример 1. Найти значение выражения:

5 · (10 — 8) 3.

Решение: Сначала выполняется действие, заключённое в скобки:

1) 10 — 8 = 2.

Затем, по правилам порядка действий, выполняется возведение в степень:

2) 23 = 2 · 2 · 2 = 8.

И последним действием вычисляется произведение:

3) 5 · 8 = 40.

Ответ:  5 · (10 — 8) 3 = 40.

Пример 2. Вычислить:

a) (4 + 2) · 32;

б) 3 · 52 — 50;

в) 3 · 4 + 62.

Решение:

a) (4 + 2) · 32 = 54

  1. 4 + 2 = 6
  2. 32 = 9
  3. 6 · 9 = 54

б) 3 · 52 — 50 = 25

  1. 52 = 25
  2. 3 · 25 = 75
  3. 75 — 50 = 25

в) 3 · 4 + 62 = 48

  1. 62 = 36
  2. 3 · 4 = 12
  3. 12 + 36 = 48

Калькулятор возведения в степень

Данный калькулятор поможет вам выполнить возведение в степень. Просто введите основание с показателем степени и нажмите кнопку Вычислить.

Степень числа

Степень числа — это выражение, обозначающее краткую запись произведения одинаковых сомножителей.

Рассмотрим умножение одинаковых чисел, например:

Произведение 5 · 5 · 5 можно записать так: 5 3 (пять в третьей степени). Выражение 5 3 — это степень. Следовательно,

5 · 5 · 5 = 5 3 = 125.

Рассмотрим выражение 5 3 . В этом выражении число 5 — основание степени, а число 3 — показатель степени.

основание и показатель степени

Основание степени — это повторяющийся множитель. Показатель степени — это число, указывающее количество повторений, то есть показатель степени показывает сколько одинаковых множителей содержится в произведении.

Степень числа: определения, обозначение, примеры

В рамках этого материала мы разберем, что такое степень числа. Помимо основных определений мы сформулируем, что такое степени с натуральными, целыми, рациональными и иррациональными показателями. Как всегда, все понятия будут проиллюстрированы примерами задач.

Степени с натуральными показателями: понятие квадрата и куба числа

Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a ), а в качестве показателя – натуральное (обозначим буквой n ).

Степени с натуральными показателями: понятие квадрата и куба числа

Степень числа a с натуральным показателем n – это произведение n -ного числа множителей, каждый из которых равен числу а . Записывается степень так: a n , а в виде формулы ее состав можно представить следующим образом:

Например, если показатель степени равен 1 , а основание – a , то первая степень числа a записывается как a 1 . Учитывая, что a – это значение множителя, а 1 – число множителей, мы можем сделать вывод, что a 1 = a .

В целом можно сказать, что степень – это удобная форма записи большого количества равных множителей. Так, запись вида 8 · 8 · 8 · 8 можно сократить до 8 4 . Примерно так же произведение помогает нам избежать записи большого числа слагаемых ( 8 + 8 + 8 + 8 = 8 · 4 ) ; мы это уже разбирали в статье, посвященной умножению натуральных чисел.

Как же верно прочесть запись степени? Общепринятый вариант – « a в степени n ». Или можно сказать « n -ная степень a » либо « a n -ной степени». Если, скажем, в примере встретилась запись 8 12 , мы можем прочесть « 8 в 12 -й степени», « 8 в степени 12 » или « 12 -я степень 8 -ми».

Вторая и третья степени числа имеют свои устоявшиеся названия: квадрат и куб. Если мы видим вторую степень, например, числа 7 ( 7 2 ) , то мы можем сказать « 7 в квадрате» или «квадрат числа 7 ». Аналогично третья степень читается так: 5 3 – это «куб числа 5 » или « 5 в кубе». Впрочем, употреблять стандартную формулировку «во второй/третьей степени» тоже можно, это не будет ошибкой.

Разберем пример степени с натуральным показателем: для 5 7 пятерка будет основанием, а семерка – показателем.

В основании не обязательно должно стоять целое число: для степени ( 4 , 32 ) 9 основанием будет дробь 4 , 32 , а показателем – девятка. Обратите внимание на скобки: такая запись делается для всех степеней, основания которых отличаются от натуральных чисел.

Например: 1 2 3 , ( — 3 ) 12 , — 2 3 5 2 , 2 , 4 35 5 , 7 3 .

Для чего нужны скобки? Они помогают избежать ошибок в расчетах. Скажем, у нас есть две записи: ( − 2 ) 3 и − 2 3 . Первая из них означает отрицательное число минус два, возведенное в степень с натуральным показателем три; вторая – число, соответствующее противоположному значению степени 2 3 .

Иногда в книгах можно встретить немного другое написание степени числа – a ^ n (где а – основание, а n — показатель). То есть 4 ^ 9 – это то же самое, что и 4 9 . В случае, если n представляет собой многозначное число, оно берется в скобки. Например, 15 ^ ( 21 ) , ( − 3 , 1 ) ^ ( 156 ) . Но мы будем использовать обозначение a n как более употребительное.

О том, как вычислить значение степени с натуральным показателем, легко догадаться из ее определения: нужно просто перемножить a n -ное число раз. Подробнее об этом мы писали в другой статье.

Понятие степени является обратным другому математическому понятию – корню числа. Если мы знаем значение степени и показатель, мы можем вычислить ее основание. Степень обладает некоторыми специфическими свойствами, полезными для решения задач, которые мы разобрали в рамках отдельного материала.

Что такое степени с целым показателем

В показателях степени могут стоять не только натуральные числа, но и вообще любые целые значения, в том числе отрицательные и нули, ведь они тоже принадлежат к множеству целых чисел.

Что такое степени с целым показателем

Степень числа с целым положительным показателем можно отобразить в виде формулы: .

При этом n – любое целое положительное число.

Разберемся с понятием нулевой степени. Для этого мы используем подход, учитывающий свойство частного для степеней с равными основаниями. Оно формулируется так:

Равенство a m : a n = a m − n будет верно при условиях: m и n – натуральные числа, m < n , a ≠ 0 .

Последнее условие важно, поскольку позволяет избежать деления на ноль. Если значения m и n равны, то мы получим следующий результат: a n : a n = a n − n = a 0

Но при этом a n : a n = 1 — частное равных чисел a n и a . Выходит, что нулевая степень любого отличного от нуля числа равна единице.

Однако такое доказательство не подходит для нуля в нулевой степени. Для этого нам нужно другое свойство степеней – свойство произведений степеней с равными основаниями. Оно выглядит так: a m · a n = a m + n .

Если n у нас равен 0 , то a m · a 0 = a m (такое равенство также доказывает нам, что a 0 = 1 ). Но если а также равно нулю, наше равенство приобретает вид 0 m · 0 0 = 0 m , Оно будет верным при любом натуральном значении n , и неважно при этом, чему именно равно значение степени 0 0 , то есть оно может быть равно любому числу, и на верность равенства это не повлияет. Следовательно, запись вида 0 0 своего особенного смысла не имеет, и мы не будем ему его приписывать.

При желании легко проверить, что a 0 = 1 сходится со свойством степени ( a m ) n = a m · n при условии, что основание степени не равно нулю. Таким образом, степень любого отличного от нуля числа с нулевым показателем равна единице.

Разберем пример с конкретными числами: Так, 5 0 — единица, ( 33 , 3 ) 0 = 1 , — 4 5 9 0 = 1 , а значение 0 0 не определено.

После нулевой степени нам осталось разобраться, что из себя представляет степень отрицательная. Для этого нам понадобится то же свойство произведения степеней с равными основаниями, которое мы уже использовали выше: a m · a n = a m + n .

Введем условие: m = − n , тогда a не должно быть равно нулю. Из этого следует, что a − n · a n = a − n + n = a 0 = 1 . Выходит, что a n и a − n у нас являются взаимно обратными числами.

В итоге a в целой отрицательной степени есть не что иное, как дробь 1 a n .

Такая формулировка подтверждает, что для степени с целым отрицательным показателем действительны все те же свойства, которыми обладает степень с натуральным показателем (при условии, что основание не равно нулю).

Степень a с целым отрицательным показателем n можно представить в виде дроби 1 a n . Таким образом, a — n = 1 a n при условии a ≠ 0 и n – любое натуральное число.

Проиллюстрируем нашу мысль конкретными примерами:

3 — 2 = 1 3 2 , ( — 4 . 2 ) — 5 = 1 ( — 4 . 2 ) 5 , 11 37 — 1 = 1 11 37 1

В последней части параграфа попробуем изобразить все сказанное наглядно в одной формуле:

Степень числа a с натуральным показателем z ​​ – это: a z = a z , e с л и z — ц е л о е п о л о ж и т е л ь н о е ч и с л о 1 , z = 0 и a ≠ 0 , ( п р и z = 0 и a = 0 п о л у ч а е т с я 0 0 , з н а ч е н и я в ы р а ж е н и я 0 0 н е о п р е д е л я е т с я ) 1 a z , е с л и z — ц е л о е о т р и ц а т е л ь н о е ч и с л о и a ≠ 0 ( е с л и z — ц е л о е о т р и ц а т е л ь н о е ч и с л о и a = 0 п о л у ч а е т с я 0 z , е г о з н а ч е н и е н е о п р е д е л я е т с я )

Что такое степени с рациональным показателем

Мы разобрали случаи, когда в показателе степени стоит целое число. Однако возвести число в степень можно и тогда, когда в ее показателе стоит дробное число. Это называется степенью с рациональным показателем. В этом пункте мы докажем, что она обладает теми же свойствами, что и другие степени.

Что такое рациональные числа? В их множество входят как целые, так и дробные числа, при этом дробные числа можно представить в виде обыкновенных дробей (как положительных, так и отрицательных). Сформулируем определение степени числа a с дробным показателем m / n , где n – натуральное число, а m – целое.

У нас есть некоторая степень с дробным показателем a m n . Для того, чтобы свойство степени в степени выполнялось, равенство a m n n = a m n · n = a m должно быть верным.

Учитывая определение корня n -ной степени и что a m n n = a m , мы можем принять условие a m n = a m n , если a m n имеет смысл при данных значениях m , n и a .

Приведенные выше свойства степени с целым показателем будут верными при условии a m n = a m n .

Основной вывод из наших рассуждений таков: степень некоторого числа a с дробным показателем m / n – это корень n -ой степени из числа a в степени m . Это справедливо в том случае, если при данных значениях m , n и a выражение a m n сохраняет смысл.

Далее нам необходимо определить, какие именно ограничения на значения переменных накладывает такое условие. Есть два подхода к решению этой проблемы.

1. Мы можем ограничить значение основания степени: возьмем a , которое при положительных значениях m будет больше или равно 0 , а для отрицательных – строго меньше (поскольку при m ≤ 0 мы получаем 0 m , а такая степень не определена). В таком случае определение степени с дробным показателем будет выглядеть следующим образом:

Степень с дробным показателем m / n для некоторого положительного числа a есть корень n -ной степени из a, возведенного в степень m . В виде формулы это можно изобразить так:

Для степени с нулевым основанием это положение также подходит, но только в том случае, если ее показатель – положительное число.

Степень с нулевым основанием и дробным положительным показателем m / n можно выразить как

0 m n = 0 m n = 0 при условии целого положительного m и натурального n .

При отрицательном отношении m n < 0 степень не определяется, т.е. такая запись смысла не имеет.

Отметим один момент. Поскольку мы ввели условие, что a больше или равно нулю, то у нас оказались отброшены некоторые случаи.

Выражение a m n иногда все же имеет смысл при некоторых отрицательных значениях a и некоторых m . Так, верны записи ( — 5 ) 2 3 , ( — 1 , 2 ) 5 7 , — 1 2 — 8 4 , в которых основание отрицательно.

2. Второй подход – это рассмотреть отдельно корень a m n с четными и нечетными показателями. Тогда нам потребуется ввести еще одно условие: степень a , в показателе которой стоит сократимая обыкновенная дробь, считается степенью a , в показателе которой стоит соответствующая ей несократимая дробь. Позже мы объясним, для чего нам это условие и почему оно так важно. Таким образом, если у нас есть запись a m · k n · k , то мы можем свести ее к a m n и упростить расчеты.

Если n – нечетное число, а значение m – положительно, a – любое неотрицательное число, то a m n имеет смысл. Условие неотрицательного a нужно, поскольку корень четной степени из отрицательного числа не извлекают. Если же значение m положительно, то a может быть и отрицательным, и нулевым, т.к. корень нечетной степени можно извлечь из любого действительного числа.

Объединим все данные выше определения в одной записи:

Здесь m/n означает несократимую дробь, m – любое целое число, а n – любое натуральное число.

Для любой обыкновенной сократимой дроби m · k n · k степень можно заменить на a m n .

Степень числа a с несократимым дробным показателем m / n – можно выразить в виде a m n в следующих случаях: — для любых действительных a , целых положительных значений m и нечетных натуральных значений n . Пример: 2 5 3 = 2 5 3 , ( — 5 , 1 ) 2 7 = ( — 5 , 1 ) — 2 7 , 0 5 19 = 0 5 19 .

— для любых отличных от нуля действительных a , целых отрицательных значений m и нечетных значений n , например, 2 — 5 3 = 2 — 5 3 , ( — 5 , 1 ) — 2 7 = ( — 5 , 1 ) — 2 7

— для любых неотрицательных a , целых положительных значений m и четных n , например, 2 1 4 = 2 1 4 , ( 5 , 1 ) 3 2 = ( 5 , 1 ) 3 , 0 7 18 = 0 7 18 .

— для любых положительных a , целых отрицательных m и четных n , например, 2 — 1 4 = 2 — 1 4 , ( 5 , 1 ) — 3 2 = ( 5 , 1 ) — 3 , .

В случае других значений степень с дробным показателем не определяется. Примеры таких степеней: — 2 11 6 , — 2 1 2 3 2 , 0 — 2 5 .

Теперь объясним важность условия, о котором говорили выше: зачем заменять дробь с сократимым показателем на дробь с несократимым. Если бы мы этого не сделали бы, то получились бы такие ситуации, скажем, 6 / 10 = 3 / 5 . Тогда должно быть верным ( — 1 ) 6 10 = — 1 3 5 , но — 1 6 10 = ( — 1 ) 6 10 = 1 10 = 1 10 10 = 1 , а ( — 1 ) 3 5 = ( — 1 ) 3 5 = — 1 5 = — 1 5 5 = — 1 .

Определение степени с дробным показателем, которое мы привели первым, удобнее применять на практике, чем второе, поэтому мы будем далее пользоваться именно им.

Таким образом, степень положительного числа a с дробным показателем m / n определяется как 0 m n = 0 m n = 0 . В случае отрицательных a запись a m n не имеет смысла. Степень нуля для положительных дробных показателей m / n определяется как 0 m n = 0 m n = 0 , для отрицательных дробных показателей мы степень нуля не определяем.

В выводах отметим, что можно записать любой дробный показатель как в виде смешанного числа, так и в виде десятичной дроби: 5 1 , 7 , 3 2 5 — 2 3 7 .

При вычислении же лучше заменять показатель степени обыкновенной дробью и далее пользоваться определением степени с дробным показателем. Для примеров выше у нас получится:

5 1 , 7 = 5 17 10 = 5 7 10 3 2 5 — 2 3 7 = 3 2 5 — 17 7 = 3 2 5 — 17 7

Что такое степени с иррациональным и действительным показателем

Что такое действительные числа? В их множество входят как рациональные, так и иррациональные числа. Поэтому для того, чтобы понять, что такое степень с действительным показателем, нам надо определить степени с рациональными и иррациональными показателями. Про рациональные мы уже упоминали выше. Разберемся с иррациональными показателями пошагово.

Допустим, что у нас есть иррациональное число a и последовательность его десятичных приближений a 0 , a 1 , a 2 , . . . . Например, возьмем значение a = 1 , 67175331 . . . , тогда

a 0 = 1 , 6 , a 1 = 1 , 67 , a 2 = 1 , 671 , . . . , a 0 = 1 , 67 , a 1 = 1 , 6717 , a 2 = 1 , 671753 , . . .

и так далее (при этом сами приближения являются рациональными числами).

Последовательности приближений мы можем поставить в соответствие последовательность степеней a a 0 , a a 1 , a a 2 , . . . . Если вспомнить, что мы рассказывали ранее о возведении чисел в рациональную степень, то мы можем сами подсчитать значения этих степеней.

Возьмем для примера a = 3 , тогда a a 0 = 3 1 , 67 , a a 1 = 3 1 , 6717 , a a 2 = 3 1 , 671753 , . . . и т.д.

Последовательность степеней можно свести к числу, которое и будет значением степени c основанием a и иррациональным показателем a . В итоге : степень с иррациональным показателем вида 3 1 , 67175331 . . можно свести к числу 6 , 27 .

Степень положительного числа a с иррациональным показателем a записывается как a a . Его значение – это предел последовательности a a 0 , a a 1 , a a 2 , . . . , где a 0 , a 1 , a 2 , . . . являются последовательными десятичными приближениями иррационального числа a . Степень с нулевым основанием можно определить и для положительных иррациональных показателей, при этом 0 a = 0 Так, 0 6 = 0 , 0 21 3 3 = 0 . А для отрицательных этого сделать нельзя, поскольку, например, значение 0 — 5 , 0 — 2 π не определено. Единица, возведенная в любую иррациональную степень, остается единицей, например, и 1 2 , 1 5 в 2 и 1 — 5 будут равны 1 .

Как узнать степень числа?

Самое разумное разложить число на простые множители, тогда можно найти и основание и показатель степени.
Если известно основание, то показатель можно найти логарифмированием, например,
2^x=8
Чтобы найти x нужно прологарифмировать обе части по основанию 2
x = log по основанию 2 от 8 = ln 8 / ln 2 (так можно на калькуляторе посчитать) = 3
Если известен показатель, то основание находится извлечением корня, например,
x^3=8
извлекаем корень кубический из обоих частей
x=корень кубический из 8 = 2

Если же неизвестно ни то ни другое разложи число на простые множители, это делается последовательным делением числа на простые множители
614656 / 2 = 307328
307328 / 2 = 153664
153664 / 2 = 76832
76832 / 2 = 38416
38416 / 2 = 19208
19208 / 2 = 9604
9604 / 2 = 4802
4802 / 2 = 2401
2401 не делится на 2, на 3, на 5 (последовательно перебираем простые числа)
2407 / 7 = 343
343 / 7 = 49
49 / 7 = 7
7 / 7 = 1
Итого мы делили на 2 восемь раз и на 7 четыре раза, следовательно
614656 = 2^8 * 7^4
Если мы хотим найти представление в виде a^b с натуральными a и b и b должно быть максимальным, то в качестве b нужно брать НОД степеней полученных в разложении на простые множители, то есть в данном случае b=НОД (8,4)=4
основанием степени a будет служить 2^(8/b) * 7^(4/b) = 2^2 * 7^1 = 4*7=28

Аналитического способа не существует. То бишь формулы для нахождения степени и числа, которое возводят в эту степень — нет.

Так для общего развития скажу, что даже нахождение достаточно больших простых чисел — занятие затруднительное и очень хорошо оплачиваемое. А для решения вашей задачи (как минимум) нужно знать что это число уже не простое. :)))

Здравствуйте, уважаемый Максим Сальников !

Общей методики для задач такого типа, как мне известно, нет .

Самый простой способ — разложить данное число на простые множители .

В приведённом Вами примере это будет выглядеть так :

614656 = ( 2 x 2 x2 x 2 x 2 x 2 x 2 x 2 ) x ( 7 x 7 x 7 x 7 )

Из 7 x 7 x 7 x 7 следует, что » вероятная степень » равна 4 : 7 x 7 x 7 x 7 = 7 ^ 4 ( 1 )

Тогда из 2 x 2 x2 x 2 x 2 x 2 x 2 x 2 образуем ( 2 x 2 ) x ( 2 x 2 ) x( 2 x 2 ) x ( 2 x 2 ) = 4 ^ 4 ( 2 )

Согласно ( 1 ) и ( 2 ) можем записать : 614656 = ( 4 ^ 4 ) x ( 7 ^ 4 ) = ( 4 x 7 ) ^ 4 = 28 ^ 4 !

Онлайн калькулятор для вычисления процентного соотношения чисел.
Процентное соотношение (или отношение) двух чисел — это отношение одного числа к другому умноженное на 100%.
Находится по формуле: R%= N1/N2×100%

Пример вычисления процентного соотношение между двумя числами:
Число 540 составляет 49.09% от числа 1100

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»

Понравилась статья? Поделить с друзьями:
  • Как найти популярных людей вк
  • Как найти запчасти с vin кодом
  • Как найти забытую сеть блютуз на айфоне
  • Как найти детский ютуб
  • Ссылка со страницы 404 не найдена как исправить