Как найти число всех возможных исходов

❓ Что такое теория вероятностей?

Теория вероятностей использует случайные величины и распределения вероятностей для математической оценки неопределенных ситуаций. Понятие вероятности используется для присвоения числового описания вероятности наступления события. Вероятность можно определить как число благоприятных исходов, деленное на общее число возможных исходов события.

Определение теории вероятностей

Теория вероятностей – это область математики и статистики, которая занимается определением вероятностей, связанных со случайными событиями. Существует два основных подхода к изучению теории вероятностей: теоретический и экспериментальный. Теоретическая вероятность определяется на основе логических рассуждений без проведения экспериментов. В отличие от нее, экспериментальная вероятность определяется на основе исторических данных путем проведения повторных экспериментов.

Пример теории вероятностей

Предположим, нам необходимо определить вероятность выпадения числа 4 при бросании игральной кости. Число благоприятных исходов равно 1. Возможные исходы игральной кости – {1, 2, 3, 4, 5, 6}. Из этого следует, что всего существует 6 исходов. Таким образом, вероятность выпадения 4 при бросании игральной кости, используя теорию вероятности, можно вычислить как 1 / 6 ≈ 0,167.

🎲 Основы теории вероятностей

Мы можем понять эту область математики с помощью нескольких основных терминов, напрямую связанных с теорией вероятностей.

Случайный эксперимент

Случайный эксперимент в теории вероятностей – это испытание, которое повторяется несколько раз для получения четко определенного набора возможных результатов. Подбрасывание монеты является примером случайного эксперимента.

Пространство выборки

Пространство выборки можно определить как множество всех возможных исходов, полученных в результате проведения случайного эксперимента. Например, пространство выборки при подбрасывании симметричной монеты (fair coin), стороны которой – это орел и решка.

Событие

Теория вероятностей определяет событие как набор исходов эксперимента, который образует подмножество пространства выборки.

Примеры событий:

  1. Независимые – те, на которые не влияют другие события, являются независимыми.
  2. Зависимые – те, на которые влияют другие события.
  3. Взаимоисключающие – события, которые не могут произойти в одно и то же время.
  4. Равновероятные – два или более события, которые имеют одинаковые шансы произойти.
  5. Исчерпывающие – это события, которые равны выборочному пространству эксперимента.

Случайная величина

В теории вероятностей случайную переменную можно определить как величину, которая принимает значение при всех возможных исходах эксперимента.

Существует два типа случайных величин:

  1. Дискретная случайная величина – принимает точные значения, такие как 0, 1, 2…. Описывается кумулятивной функцией распределения и функцией массы вероятности.
  2. Непрерывная случайная величина – переменная, которая может принимать бесконечное число значений. Для определения характеристик этой переменной используются кумулятивная функция распределения и функция плотности вероятности.

Вероятность

Вероятность мы можем определить как численную вероятность наступления события. Вероятность того, что событие произойдет, всегда лежит между 0 и 1. Это связано с тем, что число желаемых исходов никогда не может превысить общее число исходов события. Теоретическая вероятность и эмпирическая вероятность используются в теории вероятностей для измерения шанса наступления события.

Формула вероятности P(A): количество благоприятных исходов для A делимое на общее количество возможных исходов.

Формула вероятности P(A): количество благоприятных исходов для A делимое на общее количество возможных исходов.

Условная вероятность

Ситуация, когда необходимо определить вероятность наступления события, притом что другое событие уже произошло.

Обозначается как P(A | B).

Если хочешь подтянуть свои знания по математике, загляни на наш курс «Математика для Data Science», на котором ты:

  • Усвоишь специальную терминологию и сможешь читать статьи по Data Science без постоянных обращений к поисковику.
  • Подготовишься к успешной сдачи вступительных экзаменов в Школу анализа данных Яндекс.
  • Овладеешь математическим аппаратом, который необходим, чтобы стать специалистом в Data Science.

Ожидание

Ожидание случайной величины X можно определить как среднее значение результатов эксперимента, проводимого многократно. Ожидание обозначается как E[X]. Также известно как среднее значение случайной величины.

Дисперсия

Дисперсия – это мера, которая показывает, как распределение случайной величины изменяется относительно среднего значения. Дисперсия определяется как среднее квадратичное отклонение от среднего значения случайной величины. Обозначается как Var[X].

Функция распределения теории вероятностей

Распределение вероятностей или кумулятивная функция распределения – это функция, которая моделирует все возможные значения эксперимента, используя случайную переменную. Распределение Бернулли и биномиальное распределение – это примеры дискретных распределений вероятностей. Например, нормальное распределение представляет собой пример непрерывного распределения.

Массовая функция вероятности

Массовая функция вероятности определяется как вероятность того, что дискретная случайная величина будет в точности равна определенному значению.

Функция плотности вероятности

Функция плотности вероятности – это вероятность того, что непрерывная случайная величина принимает множество возможных значений.

Формулы теории вероятностей

В теории вероятностей существует множество формул, которые помогают рассчитать различные вероятности, связанные с событиями.

Наиболее важные формулы:

  1. Теоретическая вероятность: Число благоприятных исходов / Число возможных исходов.
  2. Эмпирическая вероятность: Число случаев, когда событие происходит / Общее число испытаний.
  3. Правило сложения: P(A ∪ B) = P(A) + P(B) – P(A∩B), где A и B – события.
  4. Правило комплементарности: P(A’) = 1 – P(A). P(A’) означает вероятность того, что событие не произойдет.
  5. Независимые события: P(A∩B) = P(A) ⋅ P(B).
  6. Условная вероятность: P(A | B) = P(A∩B) / P(B).
  7. Теорема Байеса: P(A | B) = P(B | A) ⋅ P(A) / P(B).
  8. Массовая функция вероятности: f(x) = P(X = x).
  9. Функция плотности вероятности: p(x) = p(x) = dF(x) / dx, где F(x) – кумулятивная функция распределения.
  10. Ожидание непрерывной случайной величины: ∫xf(x)dx, где f(x) является МФВ (Массовой функцией вероятности).
  11. Ожидание дискретной случайной величины: ∑xp(x), где p(x) – это ФПВ (Функцией плотности вероятности).
  12. Дисперсия: Var(X) = E[X2] – (E[X])2.

Применение теории вероятностей

Теория вероятностей используется во многих областях и помогает оценить риски, которые связаны с теми или иными решениями. Некоторые из направлений, где применяют теорию вероятностей:

  • В финансовой отрасли теория вероятностей используется для создания математических моделей фондового рынка с целью прогнозирования будущих тенденций. Это помогает инвесторам вкладывать средства в наименее рискованные активы, которые дают наилучший доход.
  • В потребительской индустрии теория вероятностей используется для снижения вероятности неудачи при разработке продукта.
  • Казино использует теорию вероятностей для разработки азартных игр с максимизацией своей прибыли.

🏋️ Практические задания

🎲 Орел или решка? Основы теории вероятностей простыми словами

Задача 1: При бросании двух игральных костей, какова вероятность того, что выпадет комбинация, сумма которой будет равна 8?

При бросании двух игральных костей существует 36 возможных исходов. Для получения суммы, равной 8, существует 5 благоприятных исходов: [(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)]. Используя формулы теории вероятностей: Вероятность = Число благоприятных исходов / общее число возможных исходов = 5 / 36. Ответ: Вероятность получения суммы 8 при бросании двух игральных костей равна 5 / 36.

Задача 2: Какова вероятность вытащить карту королеву из колоды?

Колода карт имеет 4 масти. Каждая масть состоит из 13 карт. Таким образом, общее число возможных исходов = (4) * (13) = 52. Может быть, 4 королевы, по одной из каждой масти. Следовательно, количество благоприятных исходов = 4. Карточная вероятность = 4 / 52 = 1 / 13. Ответ: Вероятность получить королеву из колоды карт равна 1 / 13

Задача 3: Из 10 человек 3 купили карандаши, 5 купили тетради, а 2 купили и карандаши, и тетради. Если покупатель купил тетрадь, какова вероятность того, что он также купил карандаш?

Используя понятие условной вероятности, P(A | B) = P(A∩B) / P(B). Пусть A – событие, когда люди покупают карандаши, а B – событие, когда люди покупают тетради. P(A) = 3 / 10 = 0,3P(B) = 5 / 10 = 0,5P(A∩B) = 2 / 10 = 0,2. Подставим полученные значения в приведенную формулу, P(A | B) = 0,2 / 0,5 = 0,4. Ответ: Вероятность того, что покупатель купил карандаш, при условии, что он купил блокнот, равна 0,4.

В заключение

Подведем итоги:

  • Теория вероятностей – это раздел математики, в котором рассматриваются вероятности случайных событий.
  • Понятие вероятности объясняет возможность наступления того или иного события.
  • Значение вероятности всегда лежит между 0 и 1.
  • В теории вероятностей все возможные исходы случайного эксперимента составляют пространство выборки.
  • Теория вероятностей использует такие важные понятия, как случайные величины и кумулятивные функции распределения для моделирования случайного события. Сюда же относится определение различных вероятностей, связанных с этим.

Если хочешь подтянуть свои знания по математике, загляни на наш курс «Математика для Data Science», который включает в себя:

  • 47 видеолекций и 150 практических заданий.
  • Консультации с преподавателями курса.

Как решать задачи на вероятность?

Если вас интересует вопрос заголовка, вы наверняка студент или школьник, столкнувшийся с новым для себя предметом. Задачи теории вероятностей сейчас решают и школьники пятых классов продвинутых школ, и старшеклассники перед ЕГЭ, и студенты буквально всех специальностей — от географов до математиков. Что же это за предмет такой, и как к нему подойти?

Понравилось? Добавьте в закладки

Вероятность. Что это?

Теория вероятностей, как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов.

Мы не знаем, какую карту вытянем из колоды наугад или сколько дней в мае будет идти дождь, но, имея некоторую дополнительную информацию, можем строить прогнозы и вычислять вероятности этих случайных событий.

Таким образом, мы сталкиваемся с основным понятием случайного события — явления, поведение которого невозможно предсказать, опыта, результат которого заранее невозможно вычислить и т.п. Именно вероятности событий вычисляются в типовых задачах.

Вероятность — это некоторая, строго говоря, функция, принимающая значения от 0 до 1 и характеризующая данное случайное событие. 0 — событие практически невозможно, 1 — событие практически достоверно, 0,5 (или «50 на 50») — с равной вероятностью событие произойдет или нет.

Подробно решим ваши задачи по теории вероятностей

Алгоритм решения задач на вероятность

Подробнее с основами теории вероятностей можно ознакомиться, например, в онлайн учебнике.

А теперь не будем ходить вокруг да около, и сформулируем схему, по которой следует решать стандартные учебные задачи на вычисление вероятности случайного события, а затем ниже на примерах проиллюстрируем ее применение.

  • Внимательно прочитать задачу и понять, что именно происходит (что из какого ящика вытаскивается, что где лежало, сколько приборов работает и т.п.)
  • Найти основной вопрос задачи вроде «вычислить вероятность того, что …» и вот это многоточие записать в виде события, вероятность которого надо найти.
  • Событие записано. Теперь надо понять, к какой «схеме» теории вероятностей относится задача, чтобы правильно выбрать формулы для решения. Ответьте на тестовые вопросы типа:
    • происходит одно испытание (например, выбрасывание двух костей) или несколько (например, проверка 10 приборов);
    • если испытаний несколько, зависимы ли результаты одного от других (зависимость или независимость событий);
    • событие происходит в единственной ситуации или задача говорит о нескольких возможных гипотезах (например, шар вынимается из любого ящика из трех, или из конкретного).

    Чем больше опыт решения задач, тем легче будет определить, какие формулы подходят.

  • Выбрана формула (или несколько) для решения. Записываем все данные задачи и подставляем в данную формулу.
  • Вуаля, вероятность найдена.

Как решать задачи: классическая вероятность

Пример 1. В группе из 30 студентов на контрольной работе 6 студентов получили «5», 10 студентов – «4», 9 студентов – «3», остальные – «2». Найти вероятность того, что 3 студента, вызванные к доске, получили по контрольной работе «2».

Начинаем решение по пунктам, описанным выше.

  • В задаче речь идет о выборе 3 студентов из группы, которые удовлетворяют определенным условиям.
  • Вводим основное событие $X$ = (Все 3 студента, вызванные к доске, получили по контрольной работе «2»).
  • Так как в задаче происходит только одно испытание и оно связано с отбором/выбором по определенному условию, речь идет о классическом определении вероятности. Запишем формулу: $P=m/n$, где $m$ – число исходов, благоприятствующих осуществлению события $X$, а $n$ – число всех равновозможных элементарных исходов.
  • Теперь необходимо найти значения $m$ и $n$ для этой задачи. Сначала найдем число всех возможных исходов — число способов выбрать 3 студентов из 30. Так как порядок выбора не имеет значения, это число сочетаний из 30 по 3: $$n=C_{30}^3=frac{30!}{3!27!}=frac{28cdot 29 cdot 30}{1cdot 2 cdot 3}=4060.$$ Найдем число способов вызвать только студентов, получивших «2». Всего таких студентов было $30-6-10-9=5$ человек, поэтому $$m=C_{5}^3=frac{5!}{3!2!}=frac{4 cdot 5}{1cdot 2}=10.$$
  • Получаем вероятность: $$P(X)=frac{m}{n}=frac{10}{4060}=0,002.$$ Задача решена.

Еще: Решенные задачи на классическое определение вероятности.

Некогда решать? Найди решенную задачу

Готовые решения задач по любым разделам теории вероятностей, более 10000 примеров! Найди свою задачу:

Как решать задачи: формула Бернулли

Пример 2. Какова вероятность того, что при 8 бросаниях монеты герб выпадет 5 раз?

Снова по схеме решения задач на вероятность рассматриваем данную задачу:

  • В задаче идет речь о серии одинаковых испытаний — бросаний монеты.
  • Вводим основное событие $X$ = (При 8 бросаниях монеты герб выпадет 5 раз).
  • Так как в задаче происходит несколько испытаний, и вероятность появления события (герба) одинакова в каждом испытании, речь идет о схеме Бернулли. Запишем формулу Бернулли, которая описывает вероятность того, что из $n$ бросков монет герб выпадет ровно $k$ раз:
    $$ P_{n}(k)=C_n^k cdot p^k cdot (1-p)^{n-k}.$$
  • Записываем данные из условия задачи: $n=8, p=0,5$ (вероятность выпадения герба в каждом броске равна 0,5) и $k=5$
  • Подставляем и получаем вероятность:
    $$ P(X)=P_{8}(5)=C_8^5 cdot 0,5^5 cdot (1-0,5)^{8-5}=frac{8!}{5!3!}cdot 0,5^8=frac{6cdot 7 cdot 8}{1cdot 2 cdot 3} cdot 0,5^8= 0,219.$$
    Задача решена.

Еще примеры: Решенные задачи на формулу Бернулли

И это все? Конечно, нет.

Выше мы упомянули только малую часть тем и формул теории вероятностей, для более подробного изучения вы можете посмотреть учебник онлайн на данном сайте (или скачать классические учебники по ТВ), ознакомиться со статьями по решению вероятностных задач, бесплатными примерами, воспользоваться онлайн калькуляторами. Удачи!

Полезная страница? Сохрани или расскажи друзьям

Полезные статьи по теории вероятностей

  • Как найти математическое ожидание случайной величины?
  • Как найти дисперсию случайной величины?
  • Как найти вероятность в задачах про выстрелы?
  • Как найти вероятность в задачах про подбрасывания монеты?
  • Как найти вероятность в задачах про подбрасывание игральных костей?
  • Как найти вероятность в задачах про станки?
  • Как найти вероятность в задачах про надежность схем и цепей?
  • Как найти вероятность наступления хотя бы одного события?


Загрузить PDF


Загрузить PDF

Вероятность показывает возможность того или иного события при определенном количестве повторений.[1]
Это число возможных результатов с одним или несколькими исходами, поделенное на общее количество возможных событий. Вероятность нескольких событий вычисляется путем разделения задачи на отдельные вероятности с последующим перемножением этих вероятностей.

  1. Изображение с названием Calculate Probability Step 1

    1

    Выберите событие со взаимоисключающими результатами. Вероятность можно рассчитать лишь в том случае, если рассматриваемое событие либо происходит, либо не происходит. Нельзя одновременно получить какое-либо событие и противоположный ему результат. Примером таких событий служат выпадение 5 на игровом кубике или победа определенной лошади на скачках. Пять либо выпадет, либо нет; определенная лошадь либо придет первой, либо нет.[2]

    Например:» невозможно вычислить вероятность такого события: при одном броске кубика выпадут 5 и 6 одновременно.

  2. Изображение с названием Calculate Probability Step 2

    2

    Определите все возможные события и результаты, которые могут произойти. Предположим, необходимо определить вероятность того, что при броске игрового кубика с 6 цифрами выпадет тройка. «Выпадение тройки» является событием, и поскольку мы знаем, что может выпасть любая из 6 цифр, число возможных исходов равно шести. Таким образом, мы знаем, что в данном случае есть 6 возможных результатов и одно событие, вероятность которого мы хотим определить. Ниже приведено еще два примера.[3]

    • Пример 1. Какова вероятность того, что вы случайно выберете день, который выпадает на выходные? В данном случае событием является «выбор дня, который приходится на выходные», а число возможных исходов равно количеству дней недели, то есть семи.
    • Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если достать из коробки случайный шар, какова вероятность того, что он окажется красным? Событием является «вынуть красный шар», а число возможных исходов равно общему количеству шаров, то есть двадцати.
  3. Изображение с названием Calculate Probability Step 3

    3

    Поделите число событий на количество возможных исходов. Таким образом вы определите вероятность одиночного события. Если мы рассматриваем случай выпадения 3 при бросании кубика, число событий равно 1 (тройка находится лишь на одной грани кубика), а общее количество исходов равно 6. В результате получаем соотношение 1/6, 0,166, или 16,6 %. Вероятность события для двух приведенных выше примеров находится следующим образом:[4]

    • Пример 1. Какова вероятность того, что вы случайно выберете день, который выпадает на выходные? Число событий равно 2, так как в одной неделе два выходных дня, а общее количество исходов составляет 7. Таким образом, вероятность равна 2/7. Полученный результат можно записать также как 0,285 или 28,5 %.
    • Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если достать из коробки случайный шар, какова вероятность того, что он окажется красным? Число событий равно 5, поскольку в коробке 5 красных шаров, а общее количество исходов составляет 20. Находим вероятность: 5/20 = 1/4. Полученный результат можно записать также как 0,25 или 25 %.
  4. Изображение с названием Calculate Probability Step 4

    4

    Сложите вероятности всех возможных событий и проверьте, получится ли в сумме 1. Суммарная вероятность всех возможных событий должна составлять 1, или 100 %. Если у вас не получится 100 %, скорее всего, вы допустили ошибку и пропустили одно или несколько возможных событий. Проверьте свои вычисления и убедитесь, что вы учли все возможные исходы.[5]

    • Например, вероятность выпадения 3 при бросании игрового кубика составляет 1/6. При этом вероятность выпадения любой другой цифры из пяти оставшихся также равна 1/6. В результате получаем 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 6/6, то есть 100 %.
    • Если вы, например, забудете о цифре 4 на кубике, сложение вероятностей даст вам лишь 5/6, или 83 %, что не равно единице и указывает на ошибку.
  5. Изображение с названием Calculate Probability Step 5

    5

    Представьте вероятность невозможного исхода в виде 0. Это означает, что данное событие не может произойти, и его вероятность равна 0. Таким образом вы сможете учесть невозможные события.[6]

    • Например, если бы вы вычисляли вероятность того, что в 2020 году Пасха придется на понедельник, то получили бы 0, поскольку Пасха всегда празднуется в воскресенье.

    Реклама

  1. Изображение с названием Calculate Probability Step 6

    1

    При рассмотрении независимых событий вычисляйте каждую вероятность отдельно. После того как вы определите, каковы вероятности событий, их можно будет рассчитать отдельно. Предположим, необходимо узнать вероятность того, что при бросании кубика два раза подряд выпадет 5. Мы знаем, что вероятность выпадения одной пятерки составляет 1/6, и вероятность выпадения второй пятерки также равна 1/6. Первый исход не связан со вторым.[7]

    • Несколько выпадений пятерок называются независимыми событиями, поскольку то, что выпадет первый раз, не влияет на второе событие.
  2. Изображение с названием Calculate Probability Step 7

    2

    Учитывайте влияние предыдущих исходов при расчете вероятности для зависимых событий. Если первое событие влияет на вероятность второго исхода, говорят о расчете вероятности зависимых событий. Например, если вы выбираете две карты из колоды, состоящей из 52 карт, после взятия первой карты состав колоды изменяется, что влияет на выбор второй карты. Чтобы рассчитать вероятность второго из двух зависимых событий, необходимо вычесть 1 из количества возможных результатов при расчете вероятности второго события.[8]

    • Пример 1. Рассмотрим следующее событие: Из колоды случайным образом одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность того, что первая карта будет иметь трефовую масть, составляет 13/52, или 1/4, поскольку всего в колоде 13 карт одной масти.

      • После этого вероятность того, что вторая карта окажется трефовой масти, составляет 12/51, поскольку одной трефовой карты уже нет. Это объясняется тем, что первое событие влияет на второе. Если вы вытянули тройку треф и не положили ее обратно, в колоде будет на одну карту меньше (51 вместо 52).
    • Пример 2. В коробке 4 синих, 5 красных и 11 белых шаров. Если наугад вынуть три шара, какова вероятность того, что первый окажется красным, второй синим, а третий белым?

      • Вероятность того, что первый шар окажется красным, составляет 5/20, или 1/4. Вероятность того, что второй шар будет синим, равна 4/19, поскольку в коробке осталось на один шар меньше, но по прежнему 4 синих шара. Наконец, вероятность того, что третий шар окажется белым, составляет 11/18, так как мы уже вынули два шара.
  3. Изображение с названием Calculate Probability Step 8

    3

    Перемножьте вероятности каждого отдельного события. Независимо от того, имеете ли вы дело с независимыми или зависимыми событиями, а также количества исходов (их может быть 2, 3 и даже 10), можно рассчитать общую вероятность, умножив вероятности всех рассматриваемых событий друг на друга. В результате вы получите вероятность нескольких событий, следующих одно за другим. Например, стоит задача Найти вероятность того, что при бросании кубика два раза подряд выпадет 5. Это два независимых события, вероятность каждого из которых равна 1/6. Таким образом, вероятность обоих событий составляет 1/6 x 1/6 = 1/36, то есть 0,027, или 2,7 %.[9]

    • Пример 1. Из колоды наугад одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность первого события составляет 13/52. Вероятность второго события равна 12/51. Находим общую вероятность: 13/52 x 12/51 = 12/204 = 1/17, то есть 0,058, или 5,8 %.
    • Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если наугад вытянуть из коробки три шара один за другим, какова вероятность того, что первый окажется красным, второй синим, а третий белым? Вероятность первого события составляет 5/20. Вероятность второго события равна 4/19. Вероятность третьего события составляет 11/18. Таким образом, общая вероятность равна 5/20 x 4/19 x 11/18 = 44/1368 = 0,032, или 3,2 %.

    Реклама

  1. Изображение с названием Calculate Probability Step 9

    1

    Рассматривайте возможность как дробь с положительным результатом в числителе. Вернемся к нашему примеру с разноцветными шарами. Предположим, необходимо узнать вероятность того, что вы достанете белый шар (всего их 11) из всего набора шаров (20). Шанс того, что данное событие произойдет, равен отношению вероятности того, что оно случится, к вероятности того, что оно не произойдет. Поскольку в коробке имеется 11 белых шаров и 9 шаров другого цвета, возможность вытянуть белый шар равна отношению 11:9.[10]

    • Число 11 представляет вероятность достать белый шар, а число 9 — вероятность вытянуть шар другого цвета.
    • Таким образом, более вероятно, что вы достанете белый шар.
  2. Изображение с названием Calculate Probability Step 10

    2

    Сложите полученные величины, чтобы перевести возможность в вероятность. Преобразовать возможность довольно просто. Сначала ее следует разбить на два отдельных события: шанс вытянуть белый шар (11) и шанс вытянуть шар другого цвета (9). Сложите полученные числа, чтобы найти общее число возможных событий. Запишите все как вероятность с общим количеством возможных результатов в знаменателе.[11]

    • Вы можете вынуть белый шар 11 способами, а шар другого цвета — 9 способами. Таким образом, общее число событий составляет 11 + 9, то есть 20.
  3. Изображение с названием Calculate Probability Step 11

    3

    Найдите возможность так, как если бы вы рассчитывали вероятность одного события. Как мы уже определили, всего существует 20 возможностей, причем в 11 случаях можно достать белый шар. Таким образом, рассчитать вероятность вытянуть белый шар можно так же, как и вероятность любого другого одиночного события. Поделите 11 (количество положительных исходов) на 20 (число всех возможных событий), и вы определите вероятность.[12]

    • В нашем примере вероятность достать белый шар составляет 11/20. В результате получаем 11/20 = 0,55, или 55 %.

    Реклама

Советы

  • Для описания вероятности того, что то или иное событие произойдет, математики обычно используют термин «относительная вероятность». Определение «относительная» означает, что результат не гарантирован на 100 %. Например, если подбросить монету 100 раз, то, вероятно, не выпадет ровно 50 раз орел и 50 решка. Относительная вероятность учитывает это.[13]
  • Вероятность какого-либо события не может быть отрицательной величиной. Если у вас получилось отрицательное значение, проверьте свои вычисления.[14]
  • Чаще всего вероятности записывают в виде дробей, десятичных дробей, процентов или по шкале от 1 до 10.
  • Вам может пригодиться знание того, что в спортивных и букмекерских ставках шансы выражаются как «шансы против» — это означает, что возможность заявленного события оценивается первой, а шансы того события, которое не ожидается, стоят на втором месте. Хотя это и может сбить с толку, важно помнить об этом, если вы собираетесь делать ставки на какое-либо спортивное событие.

Реклама

Об этой статье

Эту страницу просматривали 705 498 раз.

Была ли эта статья полезной?

Для успешной сдачи ЕГЭ нужно знать, как решать задачи на вероятность. Эту тему проходят в школе уже в 8-9 классе. Но многие ученики приходят в тупик при решении этих задач. Для их решения нужно быть очень внимательным и грамотно работать с формулами.

В этой статье разберем задачи по теории вероятностей по принципу от простого к сложному, научимся работать с формулой и разберем особенности решения отдельных типов задач.

    1. Что такое вероятность простыми словами
    2. Как решать задачи с перечислением: примеры решения задач
    3. Как решать задачи с фиксированными элементами: примеры решения задач
    4. Как решать задачи с двумя кубиками: используем таблицы
    5. Независимые события в теории вероятностей
    6. Число сочетаний: учимся работать с формулой на примерах

Что такое вероятность простыми словами

Вся наша жизнь состоит из случайных событий, которые могут либо произойти, либо нет. Например, вы сегодня идете на экзамен, по которому лучше остальных знаете один билет, достанется он именно вам или нет – случайность. Так как билетов всего 20, а вам нужно вытянуть всего 1, мы можем определить вероятность, с которой вам достанется желаемый билет. Эта вероятность будет составлять 1 шанс к 20 возможным, то есть 1 к 20 или 1/20 или 0,05.

Формула вероятности

Формула для вычисления вероятности события выглядит следующим образом:Kak reshat zadachi na veroyatnost 10где P – вероятность события;

m —  число вариантов, которые нас устраивают (число благоприятных исходов);

n – общее количество вариантов (возможных исходов).

Логично, что число благоприятных исходов всегда меньше, чем общее количество исходов, т.е. меньшее число мы делим на большее. Таким образом вероятность всегда находится в диапазоне от 0 до 1.

Приведем еще пример.

Задача 1

У нас есть пакет, в котором лежит 15 шариков, 9 из которых фиолетового цвета, а остальные белые. Какова вероятность вытащить из пакета один белый шарик?

Решение. Итак, общее количество белых шариков 15 – 9 = 6 штук, следовательно количество благоприятных исходов нашего события – 6. Общее количество возможных исходов – 15. Подставляем в формулу и получаем:Kak reshat zadachi na veroyatnost 3

Таким образом, вероятность вытащить белый шарик равна 6/15.

Ответ: 6/15

Задачи на вероятность нужно читать внимательно, чтобы не допускать досадных ошибок. Например, вот в такой задаче.

Задача 2

В автомате, продающем, маленькие мячики есть мячи 5 цветов: 21 синих, 30 красных, 15 зеленых, 8 белых, а остальные желтые. Всего в автомате 90 мячиков. Какова вероятность, что Коле достанется мяч не синего цвета.

Решение. Мы обращаем внимание на то, что Коле должен достаться мяч НЕ синего цвета, а любого другого. Многие ученики просто не замечают частицу НЕ и ищут вероятность выпадения именно синего мяча, и естественно допускаю ошибку. Внимательно читаем условия задачи.

Итак, общее количество возможных вариантов – 90. Нам нужен любой мяч, кроме синего. Следовательно, количество вариантов, когда выпадет не синий мяч равно 90 – 21 = 69. Таким образом, вероятность того, что выпадет мячик любого цвета, кроме синего, равна:Kak reshat zadachi na veroyatnost 6Kak reshat zadachi na veroyatnost 7

Ну и разберем еще задачу.

Задача 3

На конкурсе выступают 11 участников из Казани, 6 участников из Нижнего Новгорода, 3 участника из Москвы и 7 участников из Твери. Порядок выступления в конкурсе определяется жеребьевкой. Какова вероятность того, что последним будем выступать конкурсант из Нижнего Новгорода? Результат округлите до сотых.

Решение. Итак, представим, что все конкурсанты подошли к барабану, где лежат номерки и тянут по одному номерку. Общее количество конкурсантов n = 11 + 6 + 3 + 7 = 27. Нас интересует, какова вероятность того, что один из конкурсантов из Нижнего Новгорода вытянет номерок с цифрой 27. Конкурсантов из Нижнего Новгорода всего 6, следовательно m = 6. Таким образом, вероятность будет равна:Kak reshat zadachi na veroyatnost 8Как представить в виде десятичной дроби?

Очень просто. Нужно разделить 6,0000 на 27 уголком. Тогда вы получите 0,222… или округляя до сотых 0,22.

Ответ: 0,22

Как решать задачи с перечислением

Этот тип задач отличается от предыдущих лишь тем, что в задаче предметы поименованы. А вычисления выполняются по той же формуле:

Kak reshat zadachi na veroyatnost 10

Приведем пример такой задачи.

Задача 4

В портфеле у Васи лежали учебники по алгебре, геометрии, химии, биологии и литературе. Вася не глядя вынимает один учебник, какова вероятность того, что он вытянул алгебру?

Решение. Не смотря на то, что теперь предметы поименованы, принцип решения задачи остался прежним. Общее количество вариантов (т.е. учебников в портфеле) – 5.  Нужный нам вариант (т.е. учебник по алгебре) – 1. Следовательно, вероятность нужного нам события равна:

Р =  = 0,2

Ответ: 0,2

Как решать задачи с фиксированными элементами: разбираем на примере

Задачи на вероятность с фиксированными элементами сводятся к стандартным задачам на вероятность, но из элементов m и n нужно вычесть 1.

Давайте разберемся на примере.

Задача 5

Задача 8. В соревнованиях по борьбе участвуют 73 участника. Из них 25 участников из Москвы, в том числе Б. Егоров. На пары участники разбиваются с помощью жеребьевки. Какова вероятность того, что противником Б. Егорова станет участник из Москвы? Результат округлите до сотых.

Решение. В этой задаче есть фиксированный элемент – Б. Егоров. Это фиксированный элемент мы должны вычесть из элементов m и n.

Итак, общее количество участников – 73. Но Б. Егоров у нас уже выбран, поэтому он не участвует в жеребьевке. Следовательно, его мы исключаем из общего количества и получаем n = 72. Нас интересуют только участники из Москвы, их 25. Но опять же Б. Егоров у нас уже выбран, поэтому он не участвует в жеребьевке. Следовательно, количество устраивающих нас вариантов m = 24. А теперь считаем по нашей формуле:Kak reshat zadachi na veroyatnost 12Таким образом, вероятность того, что противником Б. Егорова станет участник из Москвы равна 0,33.

Ответ: 0,33

Еще раз обратим внимание. Если в задаче есть фиксированный элемент, то мы вычитаем единицу из m и n, а дальше решаем задачу по стандартной формуле нахождения вероятности.

Как решать задачи с двумя кубиками: используем таблицы

Таблицы полезны при решении задач, где речь идет о двух игральных кубиках. Например.

Задача 6

Петя подбросил два игральных кубика. Какова вероятность того, что в сумме выпадет не менее 9 очков.

Решение. Вот в таких задачах удобнее всего построить таблицу. По горизонтали мы размещаем очки, которые могут выпасть на первом кубике, т.е. числа от 1 до 6. А по вертикали мы размещаем числа, которые могут выпасть на втором кубике, т.е. также числа от 1 до 6. Начертим таблицу:

Kak reshat zadachi na veroyatnost 13

Далее заполняем таблицу. Для этого мы вписываем сумму чисел, которые находятся на пересечении этой ячейки. Например, заполним первую строку. В ячейке на пересечении двух единиц у нас получится 1+1 = 2, далее пересекаются 2 и 1 получаем 2 +1 = 3, далее 3 + 1 = 4, далее 4 + 1 = 5, далее 5 + 1 = 6 и в последней ячейке этой строки получим 6 + 1 = 7Kak reshat zadachi na veroyatnost 14Таким образом, заполняем всю таблицу и получаем:Kak reshat zadachi na veroyatnost 15Мы получили таблицу со всеми возможными вариантами выпадения значений двух кубиков и их сумму.

Теперь вернемся к нашей задаче. Нам требовалось найти вероятность того, что на кубиках выпадет сумма не менее 9 очков. Следовательно, отмечаем в таблице значения больше или равные 9:Kak reshat zadachi na veroyatnost 16Таким образом, количество вариантов, которые нас устроят (считаем количество обведенных чисел), m = 10

А общее количество возможных вариантов выпадения значений кубиков: n = 6 * 6 = 36

Следовательно, вероятность того, что выпадет тот вариант, который нас устроит, равна:Kak reshat zadachi na veroyatnost 17Итак, вероятность того, что на кубиках выпадет сумма не менее 9 очков, равна 0,27.

Ответ: 0,27

Задача 7

Маша подбрасывает два игральных кубика. Какова вероятность того, что в сумме на кубиках выпадет 6 очков? Результат округлите до сотых.

Решение. Берем нашу таблицу и находим значения, когда на кубиках сумма составит 6 очков:Kak reshat zadachi na veroyatnost 18Итак, количество вариантов, которые нас устроят (считаем количество обведенных чисел), m = 5.

А общее количество возможных вариантов выпадения значений кубиков: n = 6 * 6 = 36

Следовательно, вероятность того, что выпадет тот вариант, который нас устроит, равна:Kak reshat zadachi na veroyatnost 22Напомним, чтобы 5/36 перевести в десятичную дробь, необходимо разделить столбиком 5,00000 на 36, в результате чего получим 0,13888. Округляем до сотых и получаем 0,14.

Итак, вероятность того, что на кубиках выпадет сумма 6 очков, равна 0,14.

Ответ: 0,14

Независимые события в теории вероятностей

Если вероятность появления одного события не зависит от появления другого события, и наоборот, то такие события называются независимыми.

Если события независимые, то их вероятности перемножаются. В результате этого мы получаем вероятность возникновения этих событий одновременно.

Давайте рассмотрим задачи с независимыми событиями.

Задача 8

Стрелок стреляет  6 раз по мишеням. Вероятность попадания стрелка в мишень при каждом выстреле равна 0,8. Какова вероятность того, что стрелок попадет в мишень все 6 раз подряд?  Результат округлите до сотых.

Решение. В задаче происходит 6 независимых событий – 6 выстрелов. Вероятность каждого из них – 0,8. Чтобы найти вероятность возникновения этих независимых событий одновременно необходимо перемножить вероятности этих событий. Таким образом:

Р = 0,8 * 0,8 *0,8 * 0,8 *0,8 * 0,8 = 0,262144

Округляем результат до сотых и получаем 0,26.

Итак, вероятность того, что стрелок попадет в мишень все 6 раз подряд, равна 0,26.

Ответ: 0,26

Рассмотрим еще одну задачу, чуть сложнее.

Задача 9

Стрелок стреляет  6 раз по мишеням. Вероятность попадания стрелка в мишень при каждом выстреле равна 0,8. Какова вероятность того, что стрелок первые 2 раза промахнется, а остальные 4 раза попадет в цель? Результат округлите до сотых.

Решение. В задаче происходит 6 независимых событий – 6 выстрелов. Вероятность того, что стрелок попадет или не попадет в мишень, равна 1. Вероятность того, что стрелок попадет в мишень, равна 0,8. Тогда вероятность того, что не попадет в мишень, равна 1 — 0,8 = 0,2. Нам нужно найти вероятность, когда стрелок два раза промахнется, а потом четыре раза попадет. Перемножаем соответствующие вероятности:

Р = 0,2 * 0,2 * 0,8 * 0,8 * 0,8 * 0,8 = 0,016384

Округляем 0,016384 до сотых и получаем 0,02.

Итак, вероятность того, что стрелок два раза промахнется, а потом четыре раза попадет, равна 0,02.

Ответ: 0,26

Число сочетаний из n по m

Задача 10

Маше нужно выбрать из 8 книг 2 книги. Сколькими способами она может это сделать?

Мы понимаем, что здесь может быть большое количество вариантов сочетаний книг. Чтобы вычислить их количество нужно знать формулу числа сочетаний из n по m: Kak reshat zadachi na veroyatnost 19где С – это число сочетаний

n – количество элементов, из которого нужно выбрать

m – количество элементов, которое нужно выбрать

В формуле присутствует факториал. Записывается факториал следующим образом: n!, 5!, 7! Напомним, что это такое.

Факториал – это произведение всех натуральных чисел от 1 до основания факториала. Основание факториала – это число, которое стоит перед знаком «!». Т.е. факториал 5! имеет основание 5 и найти его можно следующим образом:

5! = 1 * 2 * 3 * 4 * 5

А факториал n! имеет основание n:

n! = 1 * 2 * 3 * 4 * 5 * … * n

Часто ученики путают, что в ставить внизу, а что наверху, т.е. меняют n и m местами. Применительно к нашей задаче можно перепутать, что ставить наверху: 2 или 8. Запомнить, что ставить наверху, а что внизу – легко. Сверху всегда стоит наименьшее число, т.е. в нашем случае – это 2.

Давайте вернемся к нашей задаче. Применяем формулу и получаем: Kak reshat zadachi na veroyatnost 20Обратите внимание, что не нужно умножать в числителе все натуральные числа от 1 до 8, у вас это отнимет очень много времени. Достаточно подробно расписать числитель и знаменатель, сделать сокращение и все легко считается.

Итак, Маша может выбрать книги 28 способами.

Ответ: 28

Давайте разберем еще одну задачу.

Задача 11

Из 15 школьников нужно отправить 2 учеников на дежурство. Сколькими способами можно это сделать?

Решение. Применяем нашу формулу:

Kak reshat zadachi na veroyatnost 21

Ответ: 105 способов

Итак, сегодня мы разбирались, как решать задачи на вероятность. Теперь вы можете приступить к практике, ведь только большое количество тренировок позволит вам успешно справиться с заданиями ЕГЭ. Еще больше информации для подготовки к ЕГЭ по математике вы можете получить на нашем сайте, а также .

2) Принять предположение о равновероятности (равновозможности) всех этих исходов;

3) Найти количество n(а) тех исходов опыта, в которых наступает событие а;

4) Найти частное , оно и будет равно вероятности событияА.

Принято
вероятность события А
обозначать: Р(А).
Объяснение
такого обозначения очень простое: слово
«вероятность» по-французски – probabilite,
по-английски
probability.
В обозначении
используется первая буква слова.

Используя
это обозначение, вероятность события
А
по классической схеме можно найти с
помощью формулы
.

Часто все пункты
приведенной классической вероятностной
схемы выражают одной довольно длинной
фразой.

КЛАССИЧЕСКОЕ
ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ Вероятностью
события
А
при
проведении некоторого испытания называют
отношение числа исходов, в результате
которых наступает событие А, к общему
числу всех равновозможных между собой
исходов этого испытания.

Пример
2.
Найти
вероятность того, что при одном бросании
игрального кубика выпадет: а) 4; б) 5; в)
четное число очков; г) число очков,
большее 4; д) число очков, не кратное
трем.

Решение.
Всего имеется N
=
6 возможных
исходов: выпадение грани куба с числом
очков, равным 1, 2, 3, 4, 5 или 6. Мы считаем,
что ни один из них не имеет никаких
преимуществ перед другими, т. е. принимаем
предположение
о равновероятности
этих исходов.

а)
Ровно в одном из исходов произойдет
интересующее нас событие А – выпадение
числа 4. Значит, N(А)
= 1
и
.

б) Решение и ответ
такие же, как и в предыдущем пункте.

в)
Интересующее нас событие В
произойдет
ровно в трех случаях, когда выпадет
число очков 2, 4 или 6. Значит, N(B)
= 3
и
.

г)
Интересующее нас событие С произойдет
ровно в двух случаях, когда выпадет
число очков 5 или 6. Значит, N(C)
= 2
и
.

д)
Из шести возможных выпавших чисел четыре
(1, 2, 4, и 5) не кратны трем, а остальные два
(3 и 6) делятся на три. Значит, интересующее
нас событие наступает ровно в четырех
из шести возможных и равновероятных
между собой исходах опыта. Поэтому в
ответе получается
.

Ответ:
а)
;
б);
в);
г);
д).

Реальный
игральный кубик вполне может отличаться
от идеального (модельного)
кубика,
поэтому для описания его поведения
требуется более точная и детальная
модель, учитывающая преимущества одной
грани перед другой, возможное наличие
магнитов и т. п. Но «дьявол кроется в
деталях», а большая точность ведет, как
правило, к большей сложности, и получение
ответа становится проблемой. Мы же
ограничиваемся рассмотрением простейшей
вероятностной модели, где все возможные
исходы равновероятны.

Замечание
1.
Рассмотрим
еще пример. Был задан вопрос: «Какова
вероятность выпадения тройки при одном
бросании кубика?» Ученик ответил так:
«Вероятность равна 0,5». И объяснил свой
ответ: «Тройка или выпадет, или нет.
Значит, всего есть два исхода и ровно в
одном наступает интересующее нас
событие. По классической вероятностной
схеме получаем ответ 0,5». Есть в этом
рассуждении ошибка? На первый взгляд –
нет. Однако она все же есть, причем в
принципиальном моменте. Да, действительно,
тройка или выпадет, или нет, т. е. при
таком определении исхода бросания N
= 2.
Правда и
то, что N(А)
= 1
и уж,
разумеется, верно, что
= 0,5, т.е. три пункта вероятностной схемы
учтены, а вот выполнение пункта 2) вызывает
сомнения. Конечно, с чисто юридической
точки зрения, мы имеем право считать,
что выпадение тройки равновероятно ее
невыпадению. Но вот можем ли мы так
считать, не нарушая свои же естественные
предположения об «одинаковости» граней?
Конечно, нет! Здесь мы имеем дело с
правильным рассуждением внутри некоторой
модели. Только вот сама эта модель
«неправильная», не соответствующая
реальному явлению.

Замечание
2
. Рассуждая
о вероятности, не упускайте из виду
следующее важное обстоятельство. Если
мы говорим, что при бросании кубика
вероятность выпадения одного очка равна
,
это совсем не значит, что, кинув кубик
6 раз, вы получите одно очко ровно один
раз, бросив кубик 12 раз, вы получите одно
очко ровно два раза, бросив кубик 18 раз,
вы получите одно очко ровно три раза и
т. д. Слововероятно
носит
предположительный характер. Мы
предполагаем, что,
скорее всего,
может произойти. Вероятно, если мы бросим
кубик 600 раз, одно очко выпадет 100 раз
или около 100. Если у вас будет время и
желание, проведите эксперимент: бросьте
игральный кубик, например, 60 раз и
составьте таблицу выпадений очков 1, 2,
3, 4, 5, 6. Скорее всего (вероятнее
всего),
все
числа в вашей таблице будут около 10.

Пример
3.
Найти
вероятность того, что при двукратном
бросании игрального кубика произведение
выпавших очков будет: а) кратно 5; б)
кратно 6.

Решение.
При каждом из двух бросаний кубика
возможны 6 исходов. Предполагается, что
эти два испытания независимы
друг от
друга. По правилу умножения получаем,
что данный опыт имеет 6 • 6 = 36 исходов.
Будем действовать по классической
вероятностной схеме, т. е. считать, что
все N = 36
исходов
равновероятны между собой.

Все 36 исходов можно
перечислить. Например, с помощью таблицы.
В данном случае все исходы – это пары
(1; 1), (1; 2), …, (1; 6), (2; 1), (2; 2), …, (6; 5), (6; 6).

а) Если на первом
месте стоит 5, то при любой второй цифре
их произведение кратно 5. Получается
шесть вариантов: (5; 1), (5; 2), (5; 3), (5; 4), (5;
5), (5; 6). Еще шесть вариантов получается,
если 5 стоит на втором месте. Так как 5 –
простое число, то других вариантов нет.

Вроде
бы, ответ 6 + 6 = 12. Но один результат (5; 5)
мы посчитали дважды.
Значит,
интересующее нас событие А
наступает
ровно в 11 из возможных 36 равновероятных
между собой исходах, т. е. N(А)
= 11, поэтому
.

б)
Если на первом или на втором месте стоит
6, то произведение выпавших чисел делится
на 6, а всего таких вариантов, как и в
случае а), будет 11. Но произведение
выпавших чисел будет кратно 6 в тех
случаях, когда одно из чисел, отличных
от 6, — четное, а другое кратно 3. Перечислим
благоприятные варианты: (2; 3), (4; 3), (3; 2),
(3; 4) – всего 4 варианта. Добавив их к
указанным выше 11 вариантам, получим 15
благоприятных исходов, т.е. N(А)
=
15. Значит,
.

Ответ:
а)
,
б)
.

Задачи
на отыскание вероятностей случайных
событий «в два с половиной раза» сложнее
задач по комбинаторике. Сначала мы
используем комбинаторику при нахождении
N
– количества всех исходов опыта. Во
второй раз комбинаторика нужна при
нахождении N(А).
При этом во
второй раз – это уже более сложная
комбинаторика. Наконец, надо еще уметь
вычислить значение дроби. Вот и получается
«две с половиной комбинаторики».

Теория
вероятностей возникла в XVII
веке при анализе различных азартных
игр. Неудивительно поэтому, что первые
примеры носят игровой характер. От
примеров с игральными кубиками перейдем
к случайному вытаскиванию игральных
карт из колоды.

Пример
4.
Из колоды
в 36 карт случайным образом одновременно
вытаскивают 3 карты. Какова вероятность
того, что среди них нет пиковой дамы?

Решение.
У нас имеется множество из 36 элементов.
Мы производим выбор трех элементов,
порядок которых не важен. Значит, возможно
получение N
=
исходов. Будем действовать по классической
вероятностной схеме, т. е. предположим,
что все эти исходы равновероятны.

Среди
всех N =исходов нам следует сосчитать те, в
которых нет пиковой дамы (событиеА).
Отложим даму
пик в сторону, и из оставшихся 35 карт
будем выбирать 3 карты. Получатся все
интересующие нас варианты. Значит, N(А)
=
.

Осталось
вычислить нужную вероятность по
классическому определению:
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как составить свою мандалу по дате рождения
  • Как по эквиваленту найти формулу вещества
  • Как правильно составить приказ по школе
  • Как найти контакт с учителем ребенка
  • Как правильно составить абрис