Дадим определение и приведем примеры взаимно обратных чисел. Рассмотрим, как находить число, обратное натуральному числу и обратное обыкновенной дроби. Помимо этого, запишем и докажем неравенство, отражающее свойство суммы взаимно обратных чисел.
Взаимно обратные числа. Определение
Взаимно обратные числа — такие числа, произведение которых дает единицу.
Если a·b=1, то можно сказать, что число a обратно числу b, так же как и число b обратно числу a.
Самый простой пример взаимно обратных чисел — две единицы. Действительно, 1·1=1, поэтому a=1 и b=1 — взаимно обратные числа. Другой пример — числа 3 и 13, -23 и -32, 613 и 136, log317 и log173. Произведение любой пары указанных выше чисел равно единице. Если это условие не выполняется, как например у чисел 2 и 23, то числа не являются взаимно обратными.
Определение взаимно обратных чисел справедливо для любый чисел — натуральных, целых, действительных и комплексных.
Как найти число, обратное данному
Рассмотрим общий случай. Если исходное число равно a, то обратное ему число запишется в виде 1a, или a-1. Действительно, a·1a=a·a-1=1.
Для натуральных чисел и обыкновенных дробей найти обратное число довольно просто. Можно сказать, даже очевидно. В случае нахождения числа, обратного иррациональному или комплексному числу, придется произвести ряд вычислений.
Рассмотрим наиболее часто встречающиеся на практике случаи нахождения обратного числа.
Число, обратное обыкновенной дроби
Очевидно, что число, обратное обыкновенной дроби ab — это дробь ba. Итак, чтобы найти обратное дроби число, дробь нужно просто перевернуть. То есть, поменять числитель и знаменатель местами.
Согласно этому правилу, записать обратное любой обыкновенной дроби число можно практически сразу. Так, для дроби 2857 обратным числом будет дробь 5728, а для дроби 789256 — число 256789.
Число, обратное натуральному числу
Найти число, обратное любому натуральному числу, можно так же, как и число, обратное дроби. Достаточно представить натуральное число a в виде обыкновенной дроби a1. Тогда обратным ему числом будет число 1a. Для натурального числа 3 обратным ему числом будет дробь 13, для числа 666 обратное число равно 1666, и так далее.
Отдельное внимание стоит уделить единице, так как это единственное число, обратное число для которого равно ему самому.
Других пар взаимно обратных чисел, где обе составляющие равны, не существует.
Число, обратное смешанному числу
Смешанное число имеем вид abc. Чтобы найти обратное ему число, необходимо смешанное число представить в сиде неправильной дроби, и уже для полученной дроби подобрать обратное число.
Например, найдем обратное число для 725. Сначала представим 725 в виде неправильной дроби: 725=7·5+25=375.
Для неправильной дроби 375 обратным числом будет дробь 537.
Число, обратное десятичной дроби
Десятичная дробь также можно представить в виде обыкновенной дроби. Нахождение обратного десятичной дроби числа сводится к представлению десятичной дроби в виде обыкновенной дроби и нахождению обратного числа для нее.
Например, есть дробь 5,128. Найдем обратное ей число. Сначала переводим десятичную дробь в обыкновенную: 5,128=51281000=532250=516125=641125. Для полученной дроби обратным числом будет дробь 125641.
Рассмотрим еще один пример.
Найдем обратное число для периодической десятичной дроби 2,(18).
Переводим десятичную дробь в обыкновенную:
2,18=2+18·10-2+18·10-4+…=2+18·10-21-10-2=2+1899=2+211=2411
После перевода можем легко записать обратное число для дроби 2411. Этим числом, очевидно, будет 1124.
Для бесконечной и непериодической десятичной дроби обратное число записывается в виде дроби и единицей в числителе и самой дробью в знаменателе. Например, для бесконечной дроби 3,6025635789… обратное число будет иметь вид 13,6025635789….
Аналогично и для иррациональных чисел, отвечающим непериодическим бесконечным дробям, обратные числа записываются в виде дробных выражений.
К примеру, обратным числом для π+3380 будет 80π+33, а для числа 8+е2+е обратным числом будет дробь 18+е2+е.
Взаимно обратные числа с корнями
Если вид двух чисел отличен от a и 1a, то не всегда можно легко определить, являются ли числа взаимно обратными. Это особенно актуально для чисел, которые имеют в своей записи знак корня, так как от корня обычно принято избавляться в знаменателе.
Обратимся к практике.
Ответим на вопрос: являются ли взаимно обратными числа 4-23 и 1+32.
Чтобы узнать, являются ли числа взаимно обратными, вычислим их произведение.
4-23·1+32=4-23+23-3=1
Произведение равно единице, значит, числа взаимно обратны.
Рассмотрим еще один пример.
Запишите число, обратное числу 53+1.
Сразу можно записать, что обратное число равно дроби 153+1. Однако, как мы уже говорили, принято избавляться от корня в знаменателе. Чтобы сделать это умножим числитель и знаменатель на 253-53+1. Получим:
153+1=253-53+153+1·253-53+1=253-53+1533+13=253-53+16
Взаимно обратные числа со степенями
Допустим, есть число, равное какой-то степени числа a. Другими словами, число a, возведенное в степень n. Обратным числу an будет число a-n. Проверим это. Действительно: an·a-n=an1·1an=1.
Найдем обратное число для 5-3+4.
Согласно написанному выше, искомое число равно 5—3+4=53-4
Взаимно обратные числа с логарифмами
Для логарифма числа a по основанию b обратным является число, равное логарифму числа b по основанию a.
logab и logba — взаимно обратные числа.
Проверим это. Из свойств логарифма следует, что logab=1logba, значит logab·logba.
Найти число, обратное log35-23.
Числом, обратным логарифму числа 3 по основанию 35-2 будет логарифм числа 35-2 по основанию 3.
Число, обратное комплексному числу
Как уже отмечалось ранее, определение взаимно обратных чисел справедливо не только для действительных чисел, но и для комплексных.
Обычно комплексные числа представляют в алгебраическом виде z=x+iy. Числом, обратным данному, будет дробь
1x+iy. Для удобства можно сократить это выражение, умножив числитель и знаменатель на x-iy.
Пусть есть комплексное число z=4+i. Найдем число, обратное ему.
Число, обратное z=4+i, будет равно 14+i.
Умножим числитель и знаменатель на 4-i и получим:
14+i=4-i4+i4-i=4-i42-i2=4-i16-(-1)=4-i17.
Помимо алгебраической формы, комплексное число может быть представлено в тригонометрической или показательной форме следующим образом:
z=r·cosφ+i·sinφ
z=r·ei·φ
Соответственно, обратное число будет иметь вид:
1rcos(-φ)+i·sin(-φ)
или
1rei(-φ)
Убедимся в этом:
r·cosφ+i·sinφ·1rcos(-φ)+i·sin(-φ)=rrcos2φ+sin2φ=1r·ei·φ·1rei·(-φ)=rre0=1
Рассмотрим примеры с представлением комплексных чисел в тригонометрической и показательной форме.
Найдем число, обратное для 23cosπ6+i·sinπ6.
Учитывая, что r=23, φ=π6, запишем обратное число
32cos-π6+i·sin-π6
Какое число будет обратным для 2·ei·-2π5.
Ответ: 12·ei2π5
Сумма взаимно обратных чисел. Неравенство
Существует теорема о сумме двух взаимно обратных чисел.
Сумма двух положительных и взаимно обратных чисел всегда больше или равна 2.
Приведем доказательство теоремы. Как известно, для любых положительных чисел a и b среднее арифметическое больше или равно среднему геометрическому. Это можно записать в виде неравенства:
a+b2≥a·b
Если вместо числа b взять число, обратное a, неравенство примет вид:
a+1a2≥a·1aa+1a≥2
Что и требовалось доказать.
Приведем практический пример, иллюстрирующий данное свойство.
Вычислим сумму чисел 23 и обратного ему числу.
23+32=4+96=136=216
Как и говорит теорема, полученное число больше двух.
Математика
Тема 3: Умножение и деление обыкновенных дробей
Урок 3: Взаимно обратные числа
- Видео
- Тренажер
- Теория
Заметили ошибку?
52. Взаимно обратные числа
Два числа, произведение которых равно 1, называются взаимно обратными.
Например, если умножить 815 на 158, то получится 1 – эти числа взаимно обратные.
815∙158=8∙1515∙8=1.
Другой пример – числа 3 и 13, при умножении которых получится 3∙13=1.
Также и числа 4,4 и 522 взаимно обратны, потому что 4,4∙522=4410∙522
Если нужно определить, являются ли два числа взаимно простыми, необходимо эти числа перемножить.
Если ответ равен единице, числа – взаимно обратные.
Чтобы найти число взаимно обратное данному, надо:
-
Если число натуральное, например 7, представить его в виде дроби 71 и перевернуть дробь – 17.
Действительно, 7∙17=1.
-
Если дробь обыкновенная, например 38 , ее надо перевернуть – 83 .
Действительно, 38∙83=3∙88∙3=1.
-
Если число смешанное, например 323 , представить его в виде неправильной дроби 113 и перевернуть дробь –311.
Действительно, 323∙311=113∙311=1.
-
Если десятичная дробь, например 5,8, представить его в виде дроби 5810 и перевернуть дробь –1058.
Действительно, 5,8∙1058=5810∙1058=1.
Сформулируем общее правило.
Число ab, где а ≠ 0 и b ≠ 0, обратно числу ba, так как ab·ba=a·bb·a=1
Пример 1. Найдем значение выражения, для этого сгруппируем взаимно обратные дроби и затем найдем произведение:
511∙37∙73=511∙37∙73=511∙1=511.
Если число х сначала умножить на некоторое число а , а потом на число, обратное а , то получим опять х.
x∙a∙1a=x∙1=x
Например, x∙5∙15=x∙1=x.
С помощью взаимно обратных чисел можно решать некоторые уравнения.
Пример 2. Решим уравнение 34x=1.
x=1:34=1∙43=43=113.
Пример 3. Решим уравнение 89x=89.
x=89:89=89∙98=1.
Заметили ошибку?
Расскажите нам об ошибке, и мы ее исправим.
Найти обратное число
Правила ввода
Вводить можно целые(1, 2, 3, -7), десятичные(0.25, -1.15), дробные(-1/8, 32/9). Если необходимо ввести смешанное число, то целую часть от дробной необходимо отделить пробелом(1 4/5)
Определение взаимно обратных чисел
Взаимно обратными числами называются числа, произведение которых равно единице.
Две дроби называются обратными дробями если их произведение равно единице.
Примеры взаимно обратных чисел
- 1/3 и 3
- 0.25 и 4
- 5 и 1/5
- 2/3 и 3/2
- 1 целая 2/5 и 5/7
При умножении этих чисел получится 1
Как найти число обратное обыкновенной дроби
Для этого необходимо числитель и знаменатель поменять местами. Для проверки можно перемножить исходную дробь и перевернутую, получится 1.
Например: 2/3 × 3/2 = 1
Как найти число обратное смешанному числу
Для начала необходимо смешанное число преобразовать в обыкновенную дробь. Затем числитель и знаменатель поменять местами.
Например: 2 7/8 = 23/8
23/8 × 8/23 = 1
Взаимно обратные числа
- Как находить обратные числа
Взаимно обратные числа — это два числа, произведение которых равно единице:
Обратное число к данному числу — это число, умножение которого на данное число, даёт в результате единицу. Так, если числа p и q взаимно обратные, то можно сказать, что число p — это число, обратное числу q, а число q — это число, обратное числу p:
p · q = 1.
Как находить обратные числа
Если взять обыкновенную дробь и перевернуть
её, т. е. поменять местами числитель со знаменателем, то мы получим дробь обратную данной.
Возьмём дробь и перевернём
её, получится дробь :
Проверить, правильно ли найдено обратное число к данному можно с помощью умножения:
Теперь рассмотрим, как найти число, обратное натуральному числу: возьмём к примеру число 15, представим его в виде дроби , затем «перевернём» эту дробь, получится дробь .
Из сказанного следует, что:
Число, обратное данному натуральному числу, получается от деления единицы на это натуральное число.
Чтобы найти число обратное смешанному числу нужно:
- Представить его в виде неправильной дроби.
Перевернуть
полученную дробь.
Найдём обратное число для :
Проверяем:
Обратное число для десятичной дроби находится точно так же, как и для смешанного числа:
Проверяем:
Для единицы обратным числом является сама единица, так как:
1 · 1 = 1.
Для нуля не существует обратного числа, так как невозможно умножить нуль на какое-то число и получить единицу.
Таким образом, для любого числа, кроме нуля, существует обратное число.