Как найти cosb в остроугольном треугольнике

Пользуйтесь нашим приложением

Доступно на Google Play

Загрузите в App Store

Мы используем файлы cookie. Пользуясь сайтом, вы принимаете условия нашего соглашения. Принять Детальнее

Ответ:

cosB=0,3

Объяснение:

1

Рассмотрим АВН, он прямоугольный, в котором АН и ВН катеты, а АВ гипотенуза.

Косинус угла – это отношение прилежащего к углу катета к гипотенузе, поэтому:

     cos(b)  =  frac{bh}{ab}

Найдём ВН по теореме Пифагора:

ВН²=АВ²АН²=10²(91)²=100–91=9;

ВН=9=3

Теперь найдём Косинус В:

     cos(b)  =  frac{3}{10}  = 0.3

ОТВЕТ: cosB=0,3

2

Рассмотрим АВН, он прямоугольный, в котором АН и ВН катеты, АВ гипотенуза. Найдём ВН по теореме Пифагора:

ВН²=АВ²АН²=10²–(2√21)²=100–4×21=100–84=16;

ВН=16=4

     cos(b)  =  frac{bh}{ab}  =  frac{4}{10}  =  frac{4 div 2}{10 div 2}  =  frac{2}{5}  =    = 0.4

ОТВЕТ: cosB=0,4

Теорема косинусов. Доказательство теоремы косинусов.

Теорема косинусов — теорема евклидовой геометрии, которая обобщающает теорему Пифагора.

Теорема косинусов:

Для плоского треугольника, у которого стороны a, b, c и угол α, который противолежит стороне a, справедливо соотношение:

Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Следствие из теоремы косинусов.

  • Теорема косинусов используется для определения cos угла треугольника:

h 2 = a 2 — (c – b cos α) 2 (2)

Приравниваем правые части уравнений (1) и (2):

b 2 — (b cos α) 2 = a 2 — (c — b cos α) 2

a 2 = b 2 + c 2 — 2bc cos α.

Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определить стороны b и c:

Теорема косинусов и синусов

О чем эта статья:

Формулировка и доказательство теоремы косинусов

Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Формула Теоремы Пифагора:

a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

a 2 = b 2 + c 2 — 2bc cos α

В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:

В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).

BC 2 = a 2 = (b cos α — c) 2 + b 2 sin 2 α = b 2 cos 2 α + b 2 sin 2 α — 2bc cos α + c 2 = b 2 (cos 2 α + sin 2 α) — 2bc cos α + c 2

cos 2 α + sin 2 α = 1основное тригонометрическое тождество.

Что и требовалось доказать.

Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.

С помощью теоремы косинусов можно найти косинус угла треугольника:

  • Когда b 2 + c 2 — a 2 > 0, угол α будет острым.
  • Когда b 2 + c 2 — a 2 = 0, угол α будет прямым.
  • Когда b 2 + c 2 — a 2

Сформулируем еще одно доказательство теоремы косинусов.

Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:

  • AD = b × cos α,
  • DB = c – b × cos α.

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

  • h 2 = b 2 — (b × cos α) 2
  • h 2 = a 2 — (c – b × cos α) 2

Приравниваем правые части уравнений:

  • b 2 — (b × cos α) 2 = a 2 — (c — b × cos α) 2
  • a 2 = b 2 + c 2 — 2bc × cos α

Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определим стороны b и c:

  • b 2 = a 2 + c 2 — 2ac × cos β;
  • c 2 = a 2 + b 2 — 2ab × cos γ.

Формулировка теоремы для каждой из сторон треугольника

Теорема косинусов справедлива для всех сторон треугольника, то есть:

a 2 = b 2 + c 2 — 2bc cos α

b 2 = c 2 + a 2 — 2ca cos β

c 2 = a 2 + b 2 — 2ab cos γ

Теорема косинусов может быть использована для любого вида треугольника.

Косинусы углов треугольника

Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Рассмотрение пределов изменения cos α и sin α

Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.

Предел изменения косинуса: -1 0, то α ∈ (0°;90°)
Если cos α

Примеры решения задач

При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.

Пример 1. Дан треугольник АВС. Найти длину СМ.

∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.

    Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
    Из треугольника АВС найдем cos B:

Из треугольника СМВ по теореме косинусов найдём СМ:

Пример 2. Дан треугольник АВС, в котором a2+ b22 + b 2 2 , то cos C 2 = a 2 + b 2 , то ∠C = 90°.

  • Если c 2 2 + b 2 , то ∠C — острый.


Теорема косинусов для треугольника: формула и задачи

В данной публикации мы рассмотрим одну из главных теорем евклидовой геометрии, теорему косинусов, которая определяет соотношение сторон в треугольнике, а также, научимся применять ее на практике для решения задач.

Формулировка и формула теоремы

В плоском треугольнике квадрат стороны равняется сумме квадратов двух других сторон минус удвоенное произведение данных сторон, умноженное на косинус угла между ними.

a 2 = b 2 + c 2 – 2 ⋅ b ⋅ c ⋅ cos α

Следствие из теоремы

Формула теоремы может применяться для того, чтобы найти косинус угла в треугольнике:

При этом:

  • если b 2 + c 2 – a 2 > 0, значит угол α – острый;
  • если b 2 + c 2 – a 2 = 0, значит угол α равен 90 градусам (терема косинусов принимает вид Теоремы Пифагора);
  • если b 2 + c 2 – a 2 Примеры задач

Задание 1
В треугольнике известны длины двух сторон – 5 и 9 см, а также, угол между ними – 60°. Найдите длину третьей стороны.

Решение:
Применим формулу теоремы, приняв известные стороны за b и c, а неизвестную за a:
a 2 = 5 2 + 9 2 – 2 ⋅ 5 ⋅ 9 ⋅ cos 60° = 25 + 81 – 45 = 61 см 2 . Следовательно, сторона

Задание 2
Самая большая сторона треугольника равна 26 см, а две другие – 16 и 18 см. Найдите угол между меньшими сторонами.

Решение:
Примем бОльшую сторону за a. Чтобы найти угол между сторонами b и c, воспользуемся следствием из теоремы:

Следовательно, угол α = arccos (-1/6) ≈ 99,59°.

источники:

http://skysmart.ru/articles/mathematic/teorema-kosinusov-i-sinusov

Теорема косинусов для треугольника: формула и задачи

Известно:

АВС — остроугольный треугольник; 

AH — высота треугольника; 

АН = 19√21; 

AB = 95. 

Найдем cos B. 

1) Высота АН перпендикулярна стороне ВС. 

2) Рассмотрим треугольник АНВ. Треугольник прямоугольный. Угол Н = 90°. 

3) Найдем катет ВН треугольника АВН. 

ВН = √(AB^2 — AH^2) = √(95^2 — (19√21)^2) = √(95 * 95 — 19 * 19 * 21) = √(19^2 * (5 * 5 — 21)) = √(19^2 * 4) = 19 * 2 = 38; 

3) Найдем cos B. 

cos B = BH/AB (отношение прилежащего катета к гипотенузе треугольника АВН); 

cos B = 38/95 = 1/(2.5) = 1/(5/2) = 2/5 = 0.4; 

Ответ: cos B = 0.4. 

ученик3212

ученик3212

+10

Решено

7 лет назад

Математика

5 — 9 классы

в остроугольном треугольнике АВС высота АН равна 4 корня из 51 , а сторона АВ равна 40. найдите cosB

Смотреть ответ

1


Ответ проверен экспертом

4
(5 оценок)

24

natalield
7 лет назад

Светило науки — 225 ответов — 0 раз оказано помощи

В ΔАВС проведём высоту АН , получили прямоугольный ΔВАН по Теореме Пифагора найдём НВ =√40²-(4√51)²=√1600-816=√784=28
Тогда cosB=HB/AB=28|40=0,7

(5 оценок)

https://vashotvet.com/task/5493148

Понравилась статья? Поделить с друзьями:
  • Как найти количество работников производительности труда
  • Ошибка при запуске приложения excel 0xc0000142 как исправить
  • Как составить смету затрат ремонта
  • Как найти чужие сторис
  • Как в симс 4 составить отчеты по работе