Как найти центр масс полусферы

Доброе время суток, к качестве упражнения мне нужно вывести формулу нахождения центра масс однородной полусферы массы $m$ и радиуса $R$, всем давно известен ответ, что она располагается на оси симметрии ровно посередке, однако в процессе вывода у меня почему-то возникает ошибка, прошу помочь разобраться.
Вот ход моего решения:

1. Для того, чтобы найти координаты центра масс попробуем найти потенциальную энергию однородной полусферы, лежащей на столе. Для этого проведем ось $x$ вдоль оси симметрии полусферы, направив ее вверх. Разобьем нашу полусферу на множество бесконечно тонких колечек и будем отсчитывать их бесконечно малую потенциальную энергию:
$dE =gxdm=gxsigma dS=gxsigma 2pi r(x)dx$, где $sigma = frac{m}{2pi R^2}$ — поверхностная плотность сферы,$r$ — радиус полусферы.

2. Найдем зависимость $r(x)$ от $x$ с помощью теоремы Пифагора:
$r = sqrt{R^2 - x^2}$
Подставив, получим:
$dE = gxsigma 2pi sqrt{R^2 - x^2}dx $

3. Для нахождения полной потенциальной энергии проинтегрируем найденное равенство:
$E = intlimits_{0}^{R}gxsigma 2pi sqrt{R^2 - x^2}dx$
Таким образом весь вопрос свелся к нахождению такого интеграла, для этого отметим, что:
$x=Rsinvarphi$, где $varphi$ — угол между поверхностью стола и радиусом сферы, проведенной к нашему бесконечно тонкому колечку.
$dx = Rcosvarphi dvarphi$
Подставим такое выражение в наш интеграл и легко сосчитаем его:
$E = intlimits_{0}^{frac{pi}{2}}gsigma 2pi Rsinvarphisqrt{R^2 - R^2sin^2varphi}Rcosvarphi dvarphi $
$E = intlimits_{0}^{frac{pi}{2}}gsigma 2pi R^3cos^2varphi sinvarphi dvarphi$
$E = intlimits_{0}^{frac{pi}{2}}gsigma pi R^3sin2varphicosvarphi dvarphi$
Финишная прямая:
$E =frac{gsigma pi R^3}{2} intlimits_{0}^{frac{pi}{2}}sin3varphi +sinvarphi dvarphi$
$E =frac{gsigma pi R^3}{2}(frac{1}{3} + 1)} = frac{2gsigma pi R^3}{3}= frac{1}{3}mgR $
И это, конечно, хорошо, но неверно! Заранее прошу извинение за невежество!

2018-01-21   comment

Определите положение центра масс однородного полушара радиусом $R$.

Решение:



Полушар симметричен относительно оси $x$ (рис.), поэтому его центр масс будет находиться на этой оси:

$r_{c} = x_{c} = frac{ sum_{i} Delta m_{i} x_{i}}{m}$, где $Delta m_{i}$ — элемент массы в виде диска радиусом $y$ и толщиной $Delta x$. Так как полушар сплошной, то от суммировании необходимо перейти к интегрированию, тогда $x_{c} = frac{ int_{0}^{R} xdm}{m}$.

$dm = rho dV = rho pi y^{2} dx; y^{2} = R^{2} — x^{2}; dm = rho pi (R^{2} — x^{2})dx$;

$rho$ — плотность материала полушара, $dV$ — элемент объема (диск). Масса полушара $m = frac{4}{6} pi R^{3} rho$, отсюда

$x_{c} = frac{6}{4 pi R^{3} rho } int_{0}^{R} rho pi (R^{2} — x^{2}) xdx = frac{3}{8}R$.

Механические и физические приложения поверхностного интеграла первого рода

Масса поверхности

Пусть на поверхности $sigma $ распределена масса с поверхностной плотностью $mu (mathbf { textit { x } } $,$mathbf { textit { y } } $,$mathbf { textit { z } } )$. Тогда масса $mathbf { textit { m } } $ поверхности равна

$mathbf { textit { m } } =iintlimits_sigma { mu (x,y,z)dsigma } $.

Статические моменты и центр масс

Статические моменты поверхности относительно координатных плоскостей $mathbf { textit { OYZ } } $, $mathbf { textit { OXZ } } $, $mathbf { textit { OXY } } $ равны соответственно $M_ { yz } =iintlimits_sigma { xmu dsigma } , M_ { xz } =iintlimits_sigma { ymu dsigma } , M_ { xy } =iintlimits_sigma { zmu dsigma } $

Координаты центра масс поверхности

$sigma $ равны $mathbf { textit { x } } _ { c } =frac { M_ { yz } } { m } $, $mathbf { textit { y } } _ { c } =frac { M_ { xz } } { m } $, $mathbf { textit { z } } _ { c } =frac { M_ { xy } } { m } $.

Моменты инерции

Момент инерции поверхности $sigma $ относительно прямой $mathbf { textit { L } } $ равен $mathbf { textit { I } } _ { L } =iintlimits_sigma { r_L^2 mu dsigma } $, где $r_L =mathbf { textit { r } } _ { L } (mathbf { textit { x } } ,mathbf { textit { y } } ,mathbf { textit { z } } )$ — расстояние от точки { $mathbf { textit { x } } ,mathbf { textit { y } } ,mathbf { textit { z } } $ } , лежащей на поверхности $sigma $, до прямой $mathbf { textit { L } } $. В частности, моменты инерции относительно координатных осей $mathbf { textit { OX } } ,mathbf { textit { OY } } $, $mathbf { textit { OZ } } $ равны

$I_x =iintlimits_sigma { (y^2+z^2)mu dsigma } $,

$I_y =iintlimits_sigma { (x^2+z^2)mu dsigma } $,

$I_z =iintlimits_sigma { (x^2+y^2)mu dsigma } $.

Момент инерции относительно точки $mathbf { textit { P } } (mathbf { textit { x } } _ { 0 } $,$mathbf { textit { y } } _ { 0 } $,$mathbf { textit { z } } _ { 0 } )$ равен $ I_p =iintlimits_sigma { ((x-x_0 )^2+(y-y_0 )^2+(z-z_0 )^2)mu (x,y,z)dsigma } $

Момент инерции относительно начала координат равен $ I_0 =iintlimits_sigma { (x^2+y^2+z^2)mu (x,y,z)dsigma =frac { 1 } { 2 } (I_x +I_y +I_z ). } $

Пример 1

Найти координаты центра масс полусферы $mathbf { textit { x } } ^ { 2 } +mathbf { textit { y } } ^ { 2 } +mathbf { textit { z } } ^ { 2 } =mathbf { textit { R } } ^ { 2 } ,mathbf { textit { z } } leqslant 0$, если поверхностная плотность в каждой точке сферы равна расстоянию от этой точки до оси $mathbf { textit { OZ } } $.

Решение

Масса полусферы $sigma $ равна

$ begin{array} { l } M=iintlimits_sigma { mu dsigma =iintlimits_sigma { sqrt { x^2+y^2 } dsigma = } } iintlimits_ { x^2+y^2leqslant R^2 } { sqrt { x^2+y^2 } cdot sqrt { 1+((sqrt { R^2-x^2-y^2 } { ) } ‘_x )^2+((sqrt { R^2-x^2-y^2 } { ) } ‘_y )^2 } } dxdy= \ =iintlimits_ { x^2+y^2leqslant R^2 } { sqrt { x^2+y^2 } cdot sqrt { 1+frac { x^2+y^2 } { R^2-x^2-y^2 } } dxdy= } iintlimits_ { x^2+y^2leqslant R^2 } { sqrt { x^2+y^2 } cdot frac { Rdxdy } { sqrt { R^2-x^2-y^2 } } =Rintlimits_0^ { 2pi } { dvarphi } intlimits_0^R { frac { r^2dr } { sqrt { R^2-r^2 } } = } } \ =2pi Rintlimits_0^R { frac { r^2-R^2+R^2 } { sqrt { R^2-r^2 } } dr=2pi Rleft( { R^2arcsin left. { frac { r } { R } }right|_0^R -intlimits_0^R { sqrt { R^2-r^2 } } dr }right)=frac { pi ^2R^3 } { 2 } . } \ end{array} $

{ Мы воспользовались тем, что интеграл $intlimits_0^R { sqrt { R^2-r^2 } dr } $ равен четверти площади круга радиуса $mathbf { textit { R } } $ , т.е. $frac { pi R^2 } { 4 } $ } .

Пример 2

Найти массу поверхности $G:left { { { begin{array} { * { 20 } c } { x^2+y^2+z^2=16 } hfill \ { ygeqslant 0 } hfill \ { 0leqslant zleqslant 3 } hfill \ end{array} } }right.$ с поверхностной плотностью $gamma = 2z^ { 2 } + 3$.

Решение

На рассматриваемой поверхности $z=sqrt { 16-x^2-y^2 } $,

$frac { partial z } { partial x } =-frac { x } { sqrt { 16-x^2-y^2 } } ,frac { partial z } { partial y } =-frac { y } { sqrt { 16-x^2-y^2 } } .$ Тогда

$ dS=sqrt { 1+frac { x^2 } { 16-x^2-y^2 } +frac { x^2 } { 16-x^2-y^2 } } dxdy=frac { 4 } { sqrt { 16-x^2-y^2 } } dxdy. $

Проекцией $D$ этой поверхности на координатную плоскость $Oxy$ является полукольцо с границами в виде дуг концентрических окружностей радиусов 3 и 4.

Применяя формулу массы поверхности и перехода к полярным координатам, получим:

$ begin{array} { c } M=4iintlimits_D { frac { 2(16-x^2-y^2)+3 } { sqrt { 16-x^2-y^2 } } } dxdy=4intlimits_0^pi { dvarphi } intlimits_3^4 { frac { 2(16-rho ^2)+3 } { sqrt { 16-rho ^2 } } } rho drho = \ =4pi left( { -frac { 1 } { 2 } }right)intlimits_7^0 { frac { 2t+3 } { sqrt t } } dt=2pi intlimits_0^7 { left( { 2t^ { frac { 1 } { 2 } } +3t^ { -frac { 1 } { 2 } } }right) } dt=2pi left( { frac { 4 } { 3 } t^ { frac { 3 } { 2 } } +6t^ { frac { 1 } { 2 } } }right)left| { { begin{array} { * { 20 } c } { ^7 } hfill \ { _0 } hfill \ end{array} } }right.= \ =2pi left( { frac { 28 } { 3 } sqrt 7 +6sqrt 7 }right)=frac { 92sqrt 7 } { 3 } pi . \ end{array} $

Понравилась статья? Поделить с друзьями:
  • Как найти вещество по функциональной группе
  • Как исправить оценки в виртуальной школе ученику
  • Как найти людей рядом в телеграм
  • Миньоны как найти хозяина
  • Как найти айфон на земле