2018-01-21
Определите положение центра масс однородного полушара радиусом $R$.
Решение:
Полушар симметричен относительно оси $x$ (рис.), поэтому его центр масс будет находиться на этой оси:
$r_{c} = x_{c} = frac{ sum_{i} Delta m_{i} x_{i}}{m}$, где $Delta m_{i}$ — элемент массы в виде диска радиусом $y$ и толщиной $Delta x$. Так как полушар сплошной, то от суммировании необходимо перейти к интегрированию, тогда $x_{c} = frac{ int_{0}^{R} xdm}{m}$.
$dm = rho dV = rho pi y^{2} dx; y^{2} = R^{2} — x^{2}; dm = rho pi (R^{2} — x^{2})dx$;
$rho$ — плотность материала полушара, $dV$ — элемент объема (диск). Масса полушара $m = frac{4}{6} pi R^{3} rho$, отсюда
$x_{c} = frac{6}{4 pi R^{3} rho } int_{0}^{R} rho pi (R^{2} — x^{2}) xdx = frac{3}{8}R$.
Содержание:
Центр тяжести:
При рассмотрении движения тел, особенно таких, как самолеты, ракеты, космические корабли, важное значение имеет понятие центра тяжести.
Определения и формулы для вычисления центров тяжести
Для введения понятия центра тяжести разобьем мысленно рассматриваемое тело на достаточно большое число малых по сравнению с телом или элементарных его частей произвольной формы. Силу тяжести элементарной частицы тела с индексом
Радиус-вектор центра тяжести тела вычисляем как радиус-вектор центра параллельных сил (рис. 88) по формуле
где — радиус-вектор точки приложения силы тяжести элементарной части тела, принятой за точку; — сила тяжести элементарной частицы; — сила тяжести всего тела; — число частей, на которое мысленно разбито все тело. Центр тяжести является точкой приложения равнодействующей силы тяжести, если силы тяжести отдельных его частей считать системой параллельных сил.
Рис. 88
Если в (1) перейти к пределу, увеличивая число элементарных частей до бесконечности, то после замены дифференциалом , а суммы — интегралом получим
где — радиус-вектор элементарной части тела, принятой за точку. В проекциях на оси координат из (1) и (1′) получаем:
где — координаты центра тяжести; — координаты точки приложения силы тяжести .
Используя понятие центра тяжести тела, введем понятие его центра масс. Силы тяжести элементарных частей тела и всего тела можно выразить через их массы и и ускорение силы тяжести с помощью формул
Подставляя эти значения сил тяжести в (1) и (1′) после сокращения на , которое принимаем одинаковым для всех частей тела, имеем
и соответственно
По формулам (2) и (2′) определяют радиус-вектор центра масс тела. Центр масс обычно определяют независимо от центра тяжести как геометрическую точку, радиус-вектор, которой вычисляется по формулам (2) или (2′). В проекциях на оси координат из (2) и (2′) получаем:
и
где — координаты центра масс тела.
Для однородного тела силу тяжести элементарной частицы тела и ее массу можно вычислить по формулам
где — объем элементарной частицы тела; и — соответственно удельный вес и плотность тела. Сила тяжести и масса всего тела
где — объем тела. Подставляя эти значения в (2) и (2′), после сокращения на и соответственно получим формулы
по которым определяют центр тяжести объема тела.
Если тело имеет форму поверхности, т. е. один из размеров мал по сравнению с двумя другими, как, например, у тонкого листа железа, то имеем
где — удельный вес; — площадь элементарной частицы поверхности; — площадь всей поверхности. После сокращения на для однородной поверхности получим следующие формулы для определения центра тяжести ее площади:
Для однородных тел типа проволоки, у которых два размера малы по сравнению с третьим, можно определить радиус-вектор центра тяжести длины линии по формулам
где — длина элемента линии; —общая длина линии, центр тяжести которой определяется.
Методы определения центров тяжести (Центров масс)
Метод симметрии
При определении центров тяжести широко используется симметрия тел. Докажем, что для однородного тела, имеющего плоскость симметрии, центр тяжести находится в плоскости симметрии. Для доказательства выберем начало координат в плоскости симметрии тела и одну из осей координат, ось направим перпендикулярно плоскости симметрии, а две других оси расположатся в плоскости симметрии (рис. 89). Каждая частица массой , находясь по одну сторону плоскости симметрии, имеет симметричную частицу такой же массы по другую сторону этой плоскости. Координаты у симметричных частиц одинаковы при сделанном выборе осей координат, а координаты по оси отличаются только знаком. Для координаты центра масс имеем следующее выражение:
Разбивая сумму в числителе на две по симметричным частям тела, получаем, что
так как симметричные части тела 1 и 2 одинаковы.
Таким образом, центр масс расположен в плоскости симметрии и для его определения достаточно вычислить только две его координаты и в этой плоскости.
Аналогично доказывается, что для однородного тела, имеющего ось или центр симметрии, центр масс находится соответственно на оси симметрии или в центре симметрии.
Рис. 89
Метод разбиения на части (метод группировки)
Некоторые тела сложной формы можно разбить на части, центры тяжести которых известны или предварительно могут быть определены. В таких случаях центры тяжести сложных тел вычисляются по общим формулам, определяющим центр тяжести, только вместо элементарных частиц тела берутся его конечные части, на которые оно разбито. Покажем это на частном примере плоской фигуры, изображенной на рис. 90. Плоскую фигуру можно разбить на три части, центры тяжести которых , и известны. Они находятся на пересечении диагоналей прямоугольников. Их радиусы-векторы обозначим и площади . Общая площадь сложной фигуры будет .
Используя определение центра тяжести и производя группировку слагаемых под знаком суммы по частям фигуры, на которые она разбита, получим
Радиусы-векторы центров тяжести частей тела выразятся в такой форме:
или
Используя эти формулы для радиуса-вектора всей фигуры, имеем
Полученная формула имеет ту же структуру, что и формула, определяющая радиус-вектор центра тяжести тела при разбиении его на элементарные частицы, только в нее входят величины для конечных частей тела.
Рис. 90
Метод отрицательных масс
Видоизменением метода разбиения на части является метод отрицательных масс. Проиллюстрируем его тоже на примере плоской фигуры (рис. 91). Для определения центра тяжести этой фигуры ее можно разбить на три части. Можно поступить по-другому. Для этого дополним нашу фигуру до прямоугольника и примем, что этот прямоугольник с площадью и центром масс полностью заполнен массой (имеет положительную площадь). На той части фигуры, которую добавили, следует распределить отрицательную массу (отрицательную площадь) той же плотности. Площадь этой фигуры с отрицательной массой обозначим , а ее центр масс — . Применяя метод разбиения на части, радиус-вектор заданной фигуры определим по формуле
В отличие от обычного метода разбиения на части в формуле (4) массы и, следовательно, площади входят со знаком минус.
Метод отрицательных масс особенно удобен при вычислении положения центров тяжести тел, имеющих отверстия.
Рис. 91
Центры тяжести простейших тел
Для определения центров тяжести тел сложной формы методом разбиения на части или методом отрицательных масс необходимо уметь вычислять центры тяжести простейших тел, на которые разбивается тело сложной формы. Рассмотрим некоторые из тел, для определения центров тяжести которых известны простые способы их нахождения или вычисления по формулам.
Прямолинейный отрезок
Центр тяжести прямолинейного однородного отрезка располагается на его середине, а неоднородного— на самом отрезке и не может находиться вне отрезка.
Площадь треугольника
Для определения центра тяжести площади треугольника разобьем его прямыми линиями, параллельными одной из его сторон , на полоски, которые в пределе можно принять за прямолинейные отрезки (рис. 92). Центры тяжести отрезков и, следовательно, полосок находятся посередине полоски. Все они расположатся на медиане . В пределе центры тяжести полосок непрерывно покроют медиану, но не равномерно, так как площади полосок разные. В каждом центре масс полоски следует считать сосредоточенной массу или площадь этой полоски, пропорциональную длине полоски, если ширину полосок выбирать одинаковой.
Затем разобьем треугольник на полоски прямыми линиями, параллельными другой стороне треугольника. Центры их тяжести в пределе покроют неравномерно медиану . Центры тяжести неоднородных прямолинейных отрезков и должны располагаться на этих отрезках, а следовательно, в точке их пересечения , являющейся точкой пересечения медиан треугольника. Эта точка делит медианы в отношении 1 к 2, т. е. если длина медианы равна , то , .
Рис. 92
Дуга окружности
Дуга окружности определяется радиусом и стягиваемым ею центральным углом (рис. 93). Она имеет ось симметрии, делящую угол пополам. Центр тяжести находится на оси симметрии дуги, которую примем за ось координат . Координату центра тяжести дуги вычисляем по формуле
Рис. 93
В рассматриваемом случае
Подставляя эти значения в формулу для , получим
Таким образом,
Для полуокружности . Приняв , получим:
Площадь кругового сектора
Центр тяжести площади кругового сектора с радиусом и центральным углом находится на оси симметрии, принимаемой за ось (рис. 94). Разобьем сектор на элементарные треугольники одинаковой величины. Центры тяжести треугольников в пределе при увеличении их числа до бесконечности равномерно покроют дугу окружности радиусом .
Рис. 94
Используя формулу для центра тяжести дуги окружности, получим
или
Для площади полукруга , . При получим
Объем пирамиды и конуса
Определим положение центра тяжести объема конуса (рис. 95). Для простоты рассмотрим прямой конус, у которого высота является осью симметрии. Высотой конуса является отрезок, соединяющий его вершину с центром тяжести площади основания . Выберем начало координат в вершине конуса, а ось направим по оси симметрии конуса. Тогда центр тяжести объема конуса расположится на оси .
Разобьем конус плоскостями, перпендикулярными оси , на элементарные тонкие диски толщиной и площадью . Все полученные сечения (диски) конуса подобны его основанию. Координату центра тяжести объема конуса вычислим по формуле
Отношения линейных размеров сечений к соответствующим размерам основания конуса пропорциональны их расстояниям до вершины конуса. Отношения площадей пропорциональны квадратам расстояний. Приняв , получим
Учитывая, что
имеем
или
Таким образом, центр тяжести прямого конуса находится на расстоянии от вершины или от основания.
Рис. 95
Это справедливо для объема любого конуса и любой пирамиды, как прямых, так и наклонных, т. е. центр тяжести объема пирамиды или конуса находится на расстоянии расстояния от центра тяжести площади основания до вершины.
Объем полушара
Полушар имеет ось симметрии, которую примем за координатную ось (рис. 96). Разобьем объем полушара на элементарные диски толщиной dx и радиусом у, который является координатой точки окружности, которая получилась от пересечения полушара с координатной плоскостью . Уравнение этой окружности
где — радиус полушара. Для координаты центра тяжести объема полушара имеем
где — координата центра тяжести элементарного диска. Объем полушара
Объем элементарного диска
так как радиус диска . Выполняя интегрирование в пределах от до , получим
Таким образом, центр тяжести объема полушара находится от его центра на расстоянии
Это расстояние меньше половины радиуса полушара.
Рис. 96
Задача №1
Определить координаты центра тяжести площади плоской фигуры, имеющей размеры, указанные на рис. 97.
Рис.97
Рис. 98
Решение. Присоединим к заданной фигуре дополнительно полукруг 3 и разобьем полученную фигуру на прямоугольник 1 и треугольник 2. Получили три фигуры, две из которых имеют положительные площади (прямоугольник 1 и треугольник 2) и одна — отрицательную (полукруг 3). В выбранной системе координат для координат центра тяжести заданной фигуры имеем
где — координаты центров тяжести отдельных фигур; — площади этих фигур.
Вычислим площади и координаты центров тяжести отдельных фигур, учитывая рис. 98 Имеем:
так как .
Подставляя полученные значения в (а), получим:
Центр тяжести плоской фигуры
постановка задачи. Найти площадь и координаты центра тяжести плоской фигуры.
План решения:
1. Разбиваем фигуру на простые отдельные части, положение центров тяжести которых известны.
2. Выбираем систему координат. Вычисляем площади и координаты центров тяжести отдельных частей. Площади вырезанных частей берем со знаком минус.
3. Находим общую площадь фигуры по формуле
4. Определяем координаты центра тяжести фигуры:
Задача №2
Найти площадь и координаты центра тяжести плоской фигуры. Криволинейный участок контура является половиной окружности с центром на оси Ох (рис. 74). Размеры на рисунке даны
Решение
1. Разбиваем фигуру на простые отдельные части, положение центров тяжести которых известны.
Центр тяжести прямоугольника находится в его геометрическом центре, положение центра тяжести других фигур, встречающихся в задачах, изображено на рис. 75
Представляем фигуру в виде двух треугольников 1,2, прямоугольника 3 и выреза 4 в виде полукруга (рис. 76).
2. Вычисляем площадь (в ) и координаты центра тяжести (в м) каждого элемента:
Площадь выреза берем со знаком минус.
3.Площадь фигуры
4. Находим координаты центра тяжести всей фигуры:
Вычисления удобно свести в таблицу:
Сначала заполняем столбцы затем вычисляем статические моменты Внизу записываем суммы столбцов, необходимые для вычисления координат центра тяжести. Таким образом
Замечание 1. Большинство задач на определение центра тяжести допускает несколько способов разбиения фигуры. Это можно использовать для проверки решения. Второй вариант разбиения фигуры в данном примере состоит из прямоугольника 3 с размерами и вырезанных из него полукруга 4 и двух треугольников 1 и 2 (рис. 77).
Замечание 2. Решение задачи в системе Maple V методом контурного интегрирования.
- Заказать решение задач по теоретической механике
Пространственная стержневая система
Постановка Задачи. Найти координаты центра тяжести пространственной фигуры, состоящей из N однородных стержней.
План решения:
1. Разбиваем фигуру на отдельные стержни.
2. Выбираем систему координат. Вычисляем длины и координаты центров тяжести отдельных стержней. Координаты центра прямолинейного однородного стержня вычисляем как полусумму координат его концов.
3. Находим суммарную длину стержней системы
4. Определяем координаты центра тяжести тела по формулам
Задача №3
Найти координаты центра тяжести пространственной фигуры, состоящей из шести однородных стержней (рис. 78). Даны размеры:
Решение
1. Разбиваем фигуру на шесть стержней.
2. Выбираем систему координат (рис. 78). Вычисляем длины и координаты центров тяжести отдельных стержней.
3. Находим суммарную длину стержней системы:
Промежуточные результаты удобно занести в таблицу:
4. Определяем координаты центра тяжести тела по формулам
Постановка задачи. Найти координаты центра тяжести однородного объемного тела.
План решения:
1. Разбиваем тело на простые части, положение центров тяжести которых известно.
2. Выбираем систему координат. Вычисляем объемы и координаты центров тяжести отдельных частей. Объемы вырезанных частей берем со знаком минус.
3. Находим общий объем тела по формуле
4. Определяем координаты центра тяжести тела:
Задача №4
Найти координаты центра тяжести однородного объемного тела (рис.79);
Решение
1. Разбиваем тело на пирамиду 1, параллелепипед 2 и половину цилиндра 3 (рис. 80).
2. Выбираем систему координат. Вычисляем объемы и координаты центров тяжестей отдельных частей. Центр тяжести пирамиды 1 лежит в точке
Центр тяжести параллелепипеда 2 совпадает с его геометрическим центром:
Объем половины цилиндра 3 берем со знаком минус:
где — расстояние по оси у от оси цилиндра до его центра тяжести .
3. Находим общий объем тела:
В общем случае объем тела, лежащего в области можно найти, вычисляя тройной интеграл по области а координаты центра тяжести, например, однородного тела можно определить по формуле см.
4. Определяем координаты центра тяжести тела:
Центр тяжести
Центр тяжести — точка, через которую проходит линия действия равнодействующей элементарных сил тяжести. Он обладает свойством центра параллельных сил. Поэтому формулы для определения положения центра тяжести различных тел имеют вид:
Если тело, центр тяжести которого нужно определить, можно отождествить с фигурой, составленной из линий (например, замкнутый или незамкнутый контур, изготовленный из проволоки, как на рис. 173), то вес каждого отрезка можно представить в виде произведения
где d — постоянный для всей фигуры вес единицы длины материала.
После подстановки в формулы (1) вместо их значений постоянный множитель d в каждом слагаемом числителя и знаменателя можно вынести за скобки (за знак суммы) и сократить. Таким образом, формулы для определения координат центра тяжести фигуры, составленной из отрезков линий, примут вид:
Если тело имеет вид фигуры, составленной из расположенных различным образом плоскостей или кривых поверхностей (рис. 174),
то вес каждой плоскости (поверхности) можно представить так:
где — площади каждой поверхности, ар — вес единицы площади фигуры.
После подстановки этого значения в формулы (1) получаем формулы координат центра тяжести фигуры, составленной из площадей:
Если же однородное тело можно разделить на простые части определенной геометрической формы (рис. 175), то вес каждой части
где — объем каждой части, а у — вес единицы объема тела.
После подстановки значений в формулы (I) получаем формулы для определения координат центра тяжести тела, составленного из однородных объемов;
При решении некоторых задач на определение положения центра тяжести тел иногда необходимо знать, где расположен центр тяжести дуги окружности, кругового сектора или треугольника.
Если известен радиус дуги г и центральный угол 2а, стягиваемый дугой и выраженный в радианах, то положение центра тяжести С (рис. 176, а) относительно центра дуги О определится формулой
Если же задана хорда дуги, то в формуле (5) можно произвести замену
и тогда
В частном случае для полуокружности обе формулы примут вид (рис. 176, б)
Положение центра тяжести кругового сектора, если задан его радиус r (рис. 176, в), определяется при помощи формулы
Если же задана хорда сектора, то
В частном случае для полукруга обе последние формулы примут вид (рис. 176, г)
Центр тяжести площади любого треугольника расположен от любой стороны на расстоянии, равном одной трети соответствующей высоты.
У прямоугольного треугольника центр тяжести находится на пересечении перпендикуляров, восставленных к катетам из точек, расположенных на расстоянии одной трети длины катетов, считая от вершины прямого угла (рис. 177).
При решении задач на определение положения центра тяжести любого однородного тела, й составленного либо из тонких стержней (линий), либо из пластинок (площадей), либо из объемов, целесообразно придерживаться следующего порядка:
- выполнить рисунок тела, положение центра тяжести которого нужно определить. Так как все размеры тела обычно известны, при этом следует соблюдать масштаб;
- разбить тело на составные части (отрезки линий или площади, или объемы), положение центров тяжести которых определяется исходя из размеров тела;
- определить или длины, или площади, или объемы составных частей;
- выбрать расположение осей координат;
- определить координаты центров тяжести составных частей;
- найденные значения длин или площадей, или объемов отдельных частей, а также координат их центров тяжести подставить в соответствующие формулы и вычислить координаты центра тяжести всего тела;
- по найденным координатам указать на рисунке положение центра тяжести тела.
- Кинематика точки
- Плоское движение твердого тела
- Мгновенный центр скоростей
- Мгновенный центр ускорений
- Условия равновесия системы сил
- Плоская система сил
- Трение
- Пространственная система сил
Механические и физические приложения поверхностного интеграла первого рода
Масса поверхности
Пусть на поверхности $sigma $ распределена масса с поверхностной плотностью $mu (mathbf { textit { x } } $,$mathbf { textit { y } } $,$mathbf { textit { z } } )$. Тогда масса $mathbf { textit { m } } $ поверхности равна
$mathbf { textit { m } } =iintlimits_sigma { mu (x,y,z)dsigma } $.
Статические моменты и центр масс
Статические моменты поверхности относительно координатных плоскостей $mathbf { textit { OYZ } } $, $mathbf { textit { OXZ } } $, $mathbf { textit { OXY } } $ равны соответственно $M_ { yz } =iintlimits_sigma { xmu dsigma } , M_ { xz } =iintlimits_sigma { ymu dsigma } , M_ { xy } =iintlimits_sigma { zmu dsigma } $
Координаты центра масс поверхности
$sigma $ равны $mathbf { textit { x } } _ { c } =frac { M_ { yz } } { m } $, $mathbf { textit { y } } _ { c } =frac { M_ { xz } } { m } $, $mathbf { textit { z } } _ { c } =frac { M_ { xy } } { m } $.
Моменты инерции
Момент инерции поверхности $sigma $ относительно прямой $mathbf { textit { L } } $ равен $mathbf { textit { I } } _ { L } =iintlimits_sigma { r_L^2 mu dsigma } $, где $r_L =mathbf { textit { r } } _ { L } (mathbf { textit { x } } ,mathbf { textit { y } } ,mathbf { textit { z } } )$ — расстояние от точки { $mathbf { textit { x } } ,mathbf { textit { y } } ,mathbf { textit { z } } $ } , лежащей на поверхности $sigma $, до прямой $mathbf { textit { L } } $. В частности, моменты инерции относительно координатных осей $mathbf { textit { OX } } ,mathbf { textit { OY } } $, $mathbf { textit { OZ } } $ равны
$I_x =iintlimits_sigma { (y^2+z^2)mu dsigma } $,
$I_y =iintlimits_sigma { (x^2+z^2)mu dsigma } $,
$I_z =iintlimits_sigma { (x^2+y^2)mu dsigma } $.
Момент инерции относительно точки $mathbf { textit { P } } (mathbf { textit { x } } _ { 0 } $,$mathbf { textit { y } } _ { 0 } $,$mathbf { textit { z } } _ { 0 } )$ равен $ I_p =iintlimits_sigma { ((x-x_0 )^2+(y-y_0 )^2+(z-z_0 )^2)mu (x,y,z)dsigma } $
Момент инерции относительно начала координат равен $ I_0 =iintlimits_sigma { (x^2+y^2+z^2)mu (x,y,z)dsigma =frac { 1 } { 2 } (I_x +I_y +I_z ). } $
Пример 1
Найти координаты центра масс полусферы $mathbf { textit { x } } ^ { 2 } +mathbf { textit { y } } ^ { 2 } +mathbf { textit { z } } ^ { 2 } =mathbf { textit { R } } ^ { 2 } ,mathbf { textit { z } } leqslant 0$, если поверхностная плотность в каждой точке сферы равна расстоянию от этой точки до оси $mathbf { textit { OZ } } $.
Решение
Масса полусферы $sigma $ равна
$ begin{array} { l } M=iintlimits_sigma { mu dsigma =iintlimits_sigma { sqrt { x^2+y^2 } dsigma = } } iintlimits_ { x^2+y^2leqslant R^2 } { sqrt { x^2+y^2 } cdot sqrt { 1+((sqrt { R^2-x^2-y^2 } { ) } ‘_x )^2+((sqrt { R^2-x^2-y^2 } { ) } ‘_y )^2 } } dxdy= \ =iintlimits_ { x^2+y^2leqslant R^2 } { sqrt { x^2+y^2 } cdot sqrt { 1+frac { x^2+y^2 } { R^2-x^2-y^2 } } dxdy= } iintlimits_ { x^2+y^2leqslant R^2 } { sqrt { x^2+y^2 } cdot frac { Rdxdy } { sqrt { R^2-x^2-y^2 } } =Rintlimits_0^ { 2pi } { dvarphi } intlimits_0^R { frac { r^2dr } { sqrt { R^2-r^2 } } = } } \ =2pi Rintlimits_0^R { frac { r^2-R^2+R^2 } { sqrt { R^2-r^2 } } dr=2pi Rleft( { R^2arcsin left. { frac { r } { R } }right|_0^R -intlimits_0^R { sqrt { R^2-r^2 } } dr }right)=frac { pi ^2R^3 } { 2 } . } \ end{array} $
{ Мы воспользовались тем, что интеграл $intlimits_0^R { sqrt { R^2-r^2 } dr } $ равен четверти площади круга радиуса $mathbf { textit { R } } $ , т.е. $frac { pi R^2 } { 4 } $ } .
Пример 2
Найти массу поверхности $G:left { { { begin{array} { * { 20 } c } { x^2+y^2+z^2=16 } hfill \ { ygeqslant 0 } hfill \ { 0leqslant zleqslant 3 } hfill \ end{array} } }right.$ с поверхностной плотностью $gamma = 2z^ { 2 } + 3$.
Решение
На рассматриваемой поверхности $z=sqrt { 16-x^2-y^2 } $,
$frac { partial z } { partial x } =-frac { x } { sqrt { 16-x^2-y^2 } } ,frac { partial z } { partial y } =-frac { y } { sqrt { 16-x^2-y^2 } } .$ Тогда
$ dS=sqrt { 1+frac { x^2 } { 16-x^2-y^2 } +frac { x^2 } { 16-x^2-y^2 } } dxdy=frac { 4 } { sqrt { 16-x^2-y^2 } } dxdy. $
Проекцией $D$ этой поверхности на координатную плоскость $Oxy$ является полукольцо с границами в виде дуг концентрических окружностей радиусов 3 и 4.
Применяя формулу массы поверхности и перехода к полярным координатам, получим:
$ begin{array} { c } M=4iintlimits_D { frac { 2(16-x^2-y^2)+3 } { sqrt { 16-x^2-y^2 } } } dxdy=4intlimits_0^pi { dvarphi } intlimits_3^4 { frac { 2(16-rho ^2)+3 } { sqrt { 16-rho ^2 } } } rho drho = \ =4pi left( { -frac { 1 } { 2 } }right)intlimits_7^0 { frac { 2t+3 } { sqrt t } } dt=2pi intlimits_0^7 { left( { 2t^ { frac { 1 } { 2 } } +3t^ { -frac { 1 } { 2 } } }right) } dt=2pi left( { frac { 4 } { 3 } t^ { frac { 3 } { 2 } } +6t^ { frac { 1 } { 2 } } }right)left| { { begin{array} { * { 20 } c } { ^7 } hfill \ { _0 } hfill \ end{array} } }right.= \ =2pi left( { frac { 28 } { 3 } sqrt 7 +6sqrt 7 }right)=frac { 92sqrt 7 } { 3 } pi . \ end{array} $
We calculate the centre of mass of a half-ball of radius $1$. Without loss of generality we may assume that the ball is made of material with density $1$.
Imagine that the ball is sitting on a table, flat side down. By symmetry the centre of mass is on the vertical line through the centre of the ball. The only question is: How far up?
We will calculate the moment of the ball about the plane of the table, and divide by the mass of the half-ball. By a standard formula, the mass of the half-ball is $dfrac{2pi}{3}$.
Imagine now that the half-ball is an industrial ham. Imagine a very thin slice of that ham, sliced parallel to the table, but left in place. Let the slice be taken from height $z$ to height $z+dz$, where $dz$ is extremely small. The slice is almost a cylinder of very small height $dz$.
We first calculate the radius $r=r(z)$ of the slice. By the Pythagorean Theorem, we have $r^2+z^2=1$, so $r=sqrt{1-z^2}$.
Thus the area of the slice is $pi r^2=pi(1-z^2)$. The thickness is $dz$, so the volume, and therefore the mass, of the slice is approximately $pi (1-z^2),dz$.
The slice is at perpendicular distance $z$ from the table. So the moment of the slice about the plane of the table is approximately $pi (1-z^2)(z),dz$.
«Add up» (integrate) from $z=0$ and $z=1$. The full moment of the ball is
$$int_0^1 pi (1-z^2)(z),dz.$$
Calculate. We get $dfrac{pi}{4}$.
Finally, divide by the mass $dfrac{2pi}{3}$. We get $dfrac{3}{8}$.
For a ball of radius $R$, just multiply by $R$. The centre of mass is $dfrac{3 R}{8}$ above the centre of the half-ball.
Центр тяжести
Статические моменты площади сечения. Центр тяжести площади сечения
Рассмотрим произвольное поперечное сечение стержня, связанный с координатными осями $XOY$ и выделим элемент площади $dA$ с координатами ($x,y$).
Статическим моментом площади сечения относительно оси называется сумма (интеграл) по всей площади сечения от произведения площади элементарной площадки на расстояние до рассматриваемой оси.
Для сечений, для которых известны площади $A$ и координаты центров тяжести $$, $$, статические моменты площадей рассчитываются по формулам:
Статический момент площади сечения может быть положительным, отрицательным и равняться нулю.
Оси, относительно которых статические моменты площади сечения равны нулю, называются центральными.
Примеры определения статических моментов
Треугольник.
Поскольку положение центра тяжести треугольника нам известно, его статический момент площади можно определить как произведение площади на соответствующую координату центра тяжести.
Четверть круга.
Поскольку положение центра тяжести четверти круга мы не знаем, определим статические моменты по общей формуле. Выделим элементарную площадь $dA$ с углом $dvarphi $ и высотой $dr$. Ширина площадки $ds = r cdot dvarphi ,$.
Площадь $A = frac<1> <4>cdot pi $.
Аналогично относительно другой оси $ = frac<<>> = frac<<4R>><<3pi >>$.
Статический момент составного сечения равен сумме статических моментов его составляющих.
Тогда положение центра тяжести составного сечения запишется так:
Центры тяжести некоторых однородных тел
Центр тяжести площади треугольника. Разобьем площадь треугольника ABD на ряд узких полосок, параллельных стороне AD (рис. 5.3). Центр тяжести каждой такой элементарной полоски находится в ее середине, а центры тяжести всех этих полосок будут лежать на медиане BE. Разбив площадь треугольника прямой, параллельной его другой стороне, например стороне АВ, убедимся, что центр тяжести треугольника должен лежать на медиане DK. Отсюда заключаем, что центр тяжести площади треугольника лежит в точке С пересечения его медиан. Точка пересечения медиан делит каждую медиану в отношении 2 : 1, т. е. СЕ= (1/3)ВЕ, СВ = (2/3)BE.
Если известны координаты вершин данного треугольника А(хЛ, у A, ZA), В(хв, ув, ZB), D(xd, yD, ZD), TO по формулам аналитической геометрии получим координаты центра тяжести С:
Центр тяжести дуги окружности. Рас-
смотрим дугу АВ радиусом R с центральным углом АОВ= 2а. Ввиду симметрии центр тяжести этой дуги лежит на оси
Ох (рис. 5.4). Выделим на дуге АВ элемент ab длиной dl = Rdiр, положение которого определяется углом ф. Координата х элемента ab будет х = R cos ф. Подставляя значения хи dl в первую из формул (5.8), заменив в ней знак суммирования на интеграл по всей
длине дуги АВ, получим
где L — длина дуги АВ, равная R • 2а. Отсюда окончательно находим, что центр тяжести дуги окружности лежит на оси ее симметрии на расстоянии от центра О, равном
где угол а измеряется в радианах.
Центр тяжести кругового сектора. Рассмотрим круговой сектор ОАВ радиусом R с центральным углом 2а (рис. 5.5). Разобьем площадь сектора ОАВ радиусами, проведенными из центра О, на элементарные секторы, каждый из которых можно рассматривать как
треугольники, центры тяжести которых лежат на дуге DE окружности радиусом 2R/2. Следовательно, центр тяжести сектора ОАВ совпадает с центром тяжести дуги DE, положение которого определится по формуле (5.10), подставив в нее значение радиуса 2/?/3:
В частности, для полукруга будем иметь a = я/2 и из (5.11) получим:
Приведем без доказательства еще некоторые результаты.
Центр тяжести призмы. Чтобы найти центр тяжести призмы, мысленно разобьем ее плоскостями, параллельными основанию, на тонкие пластины, которые можно принять за плоские многоугольники. Учитывая, что все они будут одинаковыми, то их центры тяжести лежат на отрезке прямой, соединяющей центры тяжести С| нижнего и С2 верхнего оснований этой призмы, а центр тяжести С всей призмы находится в середине указанного отрезка (рис. 5.6).
Центр тяжести пирамиды (конуса). Этот центр С лежит на отрезке прямой, соединяющей вершину пирамиды с центром тяжести ее основания, на расстоянии 1/4 этого отрезка от центра тяжести основания. Так, для пирамиды и конуса, изображенных на рис. 5.7,
Этот результат справедлив для любой многоугольной пирамиды и для конуса.
Центр тяжести полушара. Этот центр С лежит на оси Ох (ось симметрии, рис. 5.8), а его координата
где R — радиус полушара.
Задача 5.1. Из тонкой однородной проволоки сделан контур (рис. 5.9, а), представляющий собой две дуги полуокружностей радиусов R и г = R/2 и прямую AD. Определить центр тяжести контура.
Решение. Проводим оси Dxy и разбиваем контур на три элемента, для каждого из которых находим его длину и координаты центра тяжести.
Дуга АВ радиусом /?(/, = nR, х< = 0, у <— 2R/n, последнее получим из
формулы (5.10), положив а — п/2), дуга DB радиусом r—R/2(l2 — nR/2,
Подставив соответствующие значения в формулы (5.8), получим
Найденное положение центра тяжести С контура показано на рис. 5.9, а.
Задача 5.2. Определить центр тяжести пластины, ограниченной контуром, рассмотренным в предыдущей задаче.
Проводим оси Dxy (рис. 5.9, б) и разбиваем пластину на два элемента: полукруг радиусом R (ч. 1), из которого вырезан полукруг радиусом г = R/2 (ч. 2).
При выполнении расчетов площадь части 2, как вычитаемая, должна браться со знаком «минус». Тогда для каждой части имеем:
Подставив числовые значения величин в формулы (5.7), получим
Центр тяжести С, координаты которого определены, показываем на чертеже (рис. 5.9, б); он располагается на прямой СХС2 левее точки Сх.
Сопоставив результаты задач 5.1 и 5.2, видим, что центр тяжести пластины (рис. 5.9, б) не совпадает с центром тяжести контура (рис. 5.9, а), окаймляющего ее.
Задача 5.3. Определить положение центра тяжести однородной пластины, изображенной на рис. 5.10 (размеры даны в сантиметрах).
Решение. Проводим оси Вху. Площадь пластины рассматриваем как фигуру, составленную из трех частей: треугольника ЛВК (ч. 1) и прямоугольника BKED (ч. 2), из которого вырезан полукруг (ч. 3) радиусом R = 3 см.
Вычисляем площадь и координаты центров тяжести каждой части пластины:
S3 = —uF?/2 — —14,13 см 2 (площадь полукруга берем со знаком минус, так как она вычитается из площади прямоугольника), х3 = 8 — 4/?/Зтг = 6,73 см, у3 = 3 см.
Площадь всей пластины S = о) + S2 + о3 = 42,87 см .
Подставив соответствующие значения в формулы (5.7), получим:
Найденное положение центра тяжести С показываем на чертеже.
Задача 5.4. Определить положение центра тяжести однородного твердого тела (рис. 5.11), состоящего из трех частей: полушара I радиусом /?, прямого круглого цилиндра II радиусом г — /?/2 и высотой Н — 4/?, круглого конуса III с основанием радиусом /? и высотой h = 2/?.
Решение. Проводим оси координат Oxyz так, что ось у совмещена с осью симметрии тела. Тогда хс— 0, Zq
Обозначим центры тяжести полушара через Сх, цилиндра — через С2, конуса — через С3. Для вычисления ус воспользуемся формулой (5.6), которая в данном случае имеет вид:
где ух, у2, у3 — координаты центров тяжести полушара, цилиндра и конуса; V], v2, v3 — соответственно объемы этих тел; общий объем V— v, + v2 + v3.
Находим: для полушара I vx — 2kR 3 /3, yx= — 3R/8 для цилиндра II v2 = nr 2 H= kR 3 , у2 = Н/2 = 2R; для конуса III v3 = nF^h/3 = 2nR 3 /3, у3 =
= // + -h -4,5R, V-7nR /3. Подставив эти значения в формулу, получим У с — (57/28) /?.
Ответ: положение центра тяжести С данного твердого тела (см. рис. 5.11) определяется координатами хс— 0, ус — (57/28)/?, ?с= 0.
Статические моменты и координаты центра тяжести
Вычисление статических моментов и координат центра тяжести кривой
а) Пусть материальная точка массы отстоит от оси на расстоянии . Статическим моментом этой точки относительно оси называют число . Статическим моментом системы материальных точек , расположенных по одну сторону от оси , массы которых равны , а расстояния от оси равны называют число
Если же эти точки расположены по разные стороны от оси, то для точек, находящихся по одну сторону оси, расстояния берутся положительными, а для точек по другую сторону от оси — отрицательными.
Поэтому если точки расположены на координатной плоскости,
где — статический момент относительно оси и — относительно оси .
б) Рассмотрим теперь случай, когда масса равномерно распределена по некоторой кривой или по некоторой области . Будем считать, что плотность распределения равна единице. Тогда масса дуги численно равна ее длине, а масса области — ее площади.
Начнем со случая кривой линии , задаваемой уравнением , причем предположим, что функция непрерывна и неотрицательна.
Как обычно, разобьем отрезок на части точками и обозначим через и наименьшее и наибольшее значения функции на отрезке , Этому разбиению соответствует разбиение дуги на части (рис. 60). Из физических соображений ясно, что статический момент части относительно оси абсцисс заключен между и , где —длина этой части, (напомним, что мы положили линейную плотность дуги равной единице). Таким образом,
Так как на отрезке выполняется неравенство
то в тех же границах, что и , заключен интеграл . Значит,
Этот интеграл обозначают также следующим образом: или .
Физики обычно заменяют проведенное рассуждение более коротким. Они берут «бесконечно малый участок дуги» . Его статический момент равен . А статический момент всей дуги равен сумме элементарных статических моментов, т. е. . Преимуществом этого вывода является его наглядность. Однако в нем не определено, что такое «бесконечно малый участок дуги», или как еще говорят, «элемент дуги». При уточнении этого понятия мы вновь приходим к более длинному выводу, изложенному ранее. В дальнейшем для краткости изложения мы будем использовать принятый в физике метод рассуждений. С его помощью сразу выводим, что
Как формула (1), так и формула (2) верны и в случае, когда кривая пересекает оси координат.
в) Введем понятие центра тяжести.
Определение. Центром тяжести тела называется такая точка , что если в ней сосредоточить всю его массу, то статический момент этой точки относительно любой оси будет равен статическому моменту всего тела относительно той же оси.
Обозначим через и расстояния центра тяжести кривой от осей ординат и абсцисс.
Тогда, пользуясь определением центра тяжести кривой, получим:
Разрешая полученные равенства относительно и , найдем координаты центра тяжести плоской кривой
Замечание. Если кривая расположена симметрично относительно некоторой прямой, то центр тяжести такой кривой находится на этой прямой.
Это замечание позволяет в некоторых случаях упростить нахождение координат центра тяжести плоской кривой.
Пример 1. Найти статический момент полуокружности относительно диаметра.
Решение. Выберем систему координат так, чтобы центр окружности совпал с началом координат, а диаметр, относительно которого мы ищем статический момент, совпал с осью . Тогда статический момент полуокружности относительно диаметра выразится формулой
В выбранной системе координат уравнение полуокружности запишется так: . Тогда
Пример 2. Найдем центр тяжести четверти окружности , расположенной в первом квадранте.
Решение. Данная кривая расположена симметрично относительна биссектрисы первого координатного угла, следовательно, центр тяжести этой кривой лежит на биссектрисе, а потому . Достаточно найти только .
Вычисление проще провести, перейдя к параметрическим уравнениям окружности. Так как ее радиус равен двум, то для четверти окружности имеем:
Отсюда находим, что и
Поскольку длина четверти данной окружности равна , то
Вычисление статических моментов и координат центров тяжести плоских фигур
Найдем статический момент прямоугольника со сторонами и относительно стороны . Разобьем этот прямоугольник на элементарные прямоугольники, имеющие стороны и (рис. 61). Масса элементарного прямоугольника равна его площади (напомним, что по предположению плотность распределения массы равна единице). Поэтому элементарный статический момент равен , а статический момент всего прямоугольника равен
Теперь уже легко найти статический момент криволинейной трапеции, ограниченной сверху кривой , где — непрерывная и неотрицательная функция на отрезке , снизу осью абсцисс, а с боков прямыми .
Разобьем криволинейную трапецию на элементарные прямоугольники, основание каждого из которых равно и высота . Статический момент такого прямоугольника относительно оси абсцисс по формуле (1) равен , а потому статический момент всей криволинейной трапеции равен . В случае, когда не выполняется предположение о неотрицательности функции , эту формулу надо заменить такой:
(части фигуры, расположенные ниже оси абсцисс, дают отрицательный вклад в ).
Поскольку по предположению плотность равна единице, то масса криволинейной трапеции равна ее площади, т. е. интегралу , а потому ордината центра тяжести этой трапеции выражается формулой
Нетрудно найти и статический момент криволинейной трапеции относительно оси ординат. Для этого достаточно заметить, что расстояние элементарного прямоугольника от этой оси равно . Поэтому его статический момент равен , а статический момент всей трапеции выражается формулой
Пример 3. Найти статический момент (относительно оси ) фигуры, ограниченной осью абсцисс и одной аркой циклоиды:
Решение. Так как параметр одной арки циклоиды изменяется от до , то
Пример 4. Найти центр тяжести фигуры, ограниченной осью и одной полуволной синусоиды .
Решение. Так как фигура под полуволной синусоиды расположена симметрично относительно прямой , то центр тяжести лежит на этой прямой и, следовательно, . Ордината центра тяжести находится по формуле .
Итак, центр тяжести данной фигуры находится в точке .
Пример 5. Найти центр тяжести фигуры, ограниченной осью абсцисс и одной аркой циклоиды .
Решение. Данная фигура расположена симметрично относительно прямой , следовательно, центр тяжести ее находится на этой прямой, и потому . Найдем по формуле .
Площадь данной фигуры была вычислена раньше, она равна . Следовательно,
Центр тяжести данной фигуры находится в точке .
http://studref.com/496042/matematika_himiya_fizik/tsentry_tyazhesti_nekotoryh_odnorodnyh
http://mathhelpplanet.com/static.php?p=staticheskie-momenty-i-koordinaty-tsentra-tyazhesti