Как найти центр момента инерции

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции».

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела. Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

Масса - мера инертности тела

 

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm, то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

физика инерция формулы

Это общая формула для момента инерции в физике. Для материальной точки массы m, вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

определение момента инерции

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

момент инерции для чайников

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:

Формулы для момента инерции

 

Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:

определение момента инерции тела

Массу кольца можно представить в виде:

инерция тела физика

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

момент инерции формула физика

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Пример решения задачи на нахождение момента инерции

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

   Как уже известно, зная для данной фигуры центральные моменты инерции , и , можно вычислить момент инерции и относительно любой другой оси.

   При этом можно за основную систему осей принять такую систему, при которой формулы существенно упрощаются. Именно, можно найти систему координатных осей, для которых центробежный момент инерции равен.нулю. В самом деле, моменты инерции и всегда положительны, как суммы положительных слагаемых, центробежный же момент

может быть и положительным и отрицательным, так как слагаемые zydF могут быть разного знака в зависимости от знаков z и у для той или иной площадки. Значит, он может быть равен нулю.

   Оси, относительно которых центробежный момент инерции обращается в нуль, называются главными осями инерции. Если начало такой системы помещено в центре тяжести фигуры, то это будут главные центральные оси. Эти оси мы будем обозначать и ; для них

Найдем, под каким углом наклонены к центральным осям у и z (фиг. 198) главные оси.

Рис.1. Расчетная модель для определения положения главных осей инерции.

   В известном выражении для перехода от осей yz к осям , для центробежного момента инерции дадим углу значение ; тогда оси и , совпадут c главными, и центробежный момент инерции будет равен нулю:

или

откуда:

(1)

   Этому уравнению удовлетворяют два значения , отличающиеся на 180°, или два значения , отличающиеся на 90°. Таким образом, это уравнение дает нам положение двух осей, составляющих между собой прямой угол. Это и будут главные центральные оси и , для которых .

   Пользуясь этой формулой, можно по известным , и получить формулы для главных моментов инерции и . Для этого опять воспользуемся выражениями для осевых моментов инерции общего положения. Они определяют значения и если вместо подставить

(2)

   Полученными соотношениями можно пользоваться при решении задач. Одним из главных моментов инерции является , другим .

   Формулы (2) можно преобразовать к виду, свободному от значения . Выражая и через и подставляя их значения в первую формулу (2), получим, делая одновременно замену из формулы (1):

Заменяя здесь из формулы (1) дробь на

получаем

(3)

   К этому же выражению можно прийти, делая подобное же преобразование второй формулы (3).

   За основную систему центральных осей, от которых можно переходить к любой другой, можно взять не Оу и Oz, а главные оси и ; тогда в формулах не будет фигурировать центробежный момент инерции (). Обозначим угол, составленный осью , (Рис.2) с главной осью , через . Для вычисления , и , переходя от осей и нужно в ранее найденных выражениях для , и , заменить угол через , а , и — через , и . В результате получаем:

   По своему виду эти формулы совершенно аналогичны формулам для нормальных и касательных напряжений по двум взаимно-перпендикулярным площадкам в элементе, подвергающемся растяжению в двух направлениях. Укажем лишь формулу, позволяющую из двух значений угла выделить то, которое соответствует отклонению первой главной оси (дающей max J) от начального положения оси у:

   Теперь можно окончательно формулировать, что надо сделать, чтобы получить возможность простейшим образом вычислять момент инерции фигуры относительно любой оси. Необходимо через центр тяжести фигуры провести оси Оу и Oz так, чтобы, разбивая фигуру на простейшие части, мы могли легко вычислить моменты , и после этого следует найти по формуле (14.17) величину угла и вычислить главные центральные моменты инерции и по формулам (14.18).

Рис.2. Расчетная модель нахождения положения главных осей.

   Далее, можно найти момент инерции относительно любой центральной оси (Рис.2), наклоненной к под углом :

   Зная же центральный момент инерции , можно сейчас же найти момент инерции относительно любой параллельной ей оси , проходящей на расстоянии (рис.2) от центра тяжести:

   Во многих случаях удается сразу провести главные оси фигуры; если фигура имеет ось симметрии, то это и будет одна из главных осей. В самом деле, при выводе формулы мы уже имели дело с интегралом, представляющим собой центробежный момент инерции сечения относительно осей у и z; было доказано, что если ось Oz является осью симметрии, этот интеграл обращается в нуль.

   Стало быть, в данном случае оси Оу и Oz являются главными центральными осями инерции сечения. Таким образом, ось симметрии — всегда главная центральная ось; вторая главная центральная ось проходит через центр тяжести перпендикулярно к оси симметрии.

   Пример. Найти моменты инерции прямоугольника (Рис.3) относительно осей и и центробежный момент его относительно тех же осей.

Рис.3. Пример расчета моментов инерции.

   Центральные оси у и z как оси симметрии будут главными осями; моменты инерции сечения относительно этих осей равны:

Центральные моменты относительно повернутых осей и равны:

Центробежный момент инерции относительно осей и равен:

Координаты центра тяжести прямоугольника относительно осей и равны:

Моменты инерции относительно осей и равны:

Центробежный момент инерции равен:

Наибольшее и наименьшее значения центральных моментов инерции.

   Как известно, центральные моменты инерции являются наименьшими из всех моментов относительно ряда параллельных осей.

   Найдем теперь крайние значения (максимум и минимум) для центральных моментов инерции. Возьмем ось , и начнем ее вращать, т. е. менять угол ; при этом будет изменяться величина

Наибольшее и наименьшее значения этого момента инерции соответствуют углу , при котором производная обращается в нуль. Эта производная равна:

Подставляя в написанное выражение и приравнивая его нулю, получаем:

отсюда

   Таким образом, осями с наибольшим и наименьшим центральными моментами инерции будут главные центральные оси. Так как при повороте центральных осей сумма соответствующих моментов инерции не меняется, то

Когда один из центральных моментов инерции достигает наибольшего значения, другой оказывается минимальным, т, е. если

то

   Следовательно, главные центральные оси инерции — это такие взаимно перпендикулярные оси, проходящие через центр тяжести сечения, относительно которых центробежный момент инерции обращается в нуль, а осевые моменты инерции имеют наибольшее и наименьшее значения.

Дальше…

Содержание:

Геометрия масс:

Центр масс

При рассмотрении движения твердых тел и других механических систем важное значение имеет точка, называемая центром масс. Если механическая система состоит из конечного числа материальных точек Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — масса системы. Обозначая декартовы координаты материальных точек Геометрия масс в теоретической механике, из (1) проецированием на декартовы оси координат получим следующие формулы для координат центра масс:

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 21

Центр масс является не материальной точкой, а геометрической. Он может не совпадать ни с одной материальной точкой системы, как, например, в случае кольца. Центр масс системы характеризует распределение масс в системе.

Векторная величина Геометрия масс в теоретической механике называется статическим моментом массы относительно точки Геометрия масс в теоретической механике. Скалярная величина Геометрия масс в теоретической механике называется статическим моментом

массы относительно координатной плоскости Геометрия масс в теоретической механике. Величины Геометрия масс в теоретической механике и Геометрия масс в теоретической механике являются соответственно статическими моментами массы относительно координатных плоскостей Геометрия масс в теоретической механике и Геометрия масс в теоретической механике.

Радиус-вектор и координаты центра масс через статические моменты массы выражаются формулами

Геометрия масс в теоретической механике

Если механическая система представляет собой сплошное тело, то его разбивают на элементарные частицы с бесконечно малыми массами Геометрия масс в теоретической механике и с изменяющимися от частицы к частице радиусом-вектором Геометрия масс в теоретической механике.

Суммы в пределе переходят в интегралы. Формулы (1) и (Г) принимают форму

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — масса тела.

Для однородных сплошных тел Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике — плотность тела, общая для всех элементарных частиц; Геометрия масс в теоретической механике—объем элементарной частицы; Геометрия масс в теоретической механике—объем тела.

Для тел типа тонкого листа, которые можно принять за однородные материальные поверхности, Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике — поверхностная плотность; Геометрия масс в теоретической механике—площадь поверхности элементарной частицы; Геометрия масс в теоретической механике—площадь поверхности.

Для тонкой проволоки, которую можно принять за отрезок линии, Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике — линейная плотность; Геометрия масс в теоретической механике—длина элемента линии; Геометрия масс в теоретической механике—длина отрезка линии.

В этих случаях определение центра масс тел сводится к вычислению центра масс объемов, площадей и длин линий соответственно.

Моменты инерции

Для характеристики распределения масс в телах при рассмотрении вращательных движений требуется ввести понятия моментов инерции.

Моменты инерции относительно точки и оси

Моментом инерции механической системы, состоящей из Геометрия масс в теоретической механике материальных точек, относительно точки Геометрия масс в теоретической механике называется сумма произведений масс этих точек на квадраты их расстояний до точки Геометрия масс в теоретической механике (рис. 22), т. е.

Геометрия масс в теоретической механике

Момент инерции относительно точки часто называют полярным моментом инерции. В случае сплошного тела сумма переходит в интеграл и для полярного момента инерции имеем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — масса элементарной частицы тела, принимаемой в пределе за точку; Геометрия масс в теоретической механике—ее расстояние до точки Геометрия масс в теоретической механике.

Моментом инерции  Геометрия масс в теоретической механике системы материальных точек относительно оси Геометрия масс в теоретической механике называется сумма произведений масс этих точек на квадраты их расстояний Геометрия масс в теоретической механике до оси Геометрия масс в теоретической механике (рис. 22), т. е.

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 22

В частном случае сплошного тела сумму следует заменить интегралом:

Геометрия масс в теоретической механике

Моменты инерции одинаковых по форме однородных тел, изготовленных из разных материалов, отличаются друг от друга. Характеристикой, не зависящей от массы материала, является радиус инерции. Радиус инерции Геометрия масс в теоретической механике относительно оси Геометрия масс в теоретической механике определяется по формуле

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике—масса тела.

Момент инерции относительно оси через радиус инерции относительно этой оси определяется выражением

Геометрия масс в теоретической механике

В справочниках по моментам инерции приводят таблицы значений радиусов инерции различных тел.

Формула (5′) позволяет считать радиус  инерции тела относительно оси расстоянием от этой оси до такой точки, в которой следует поместить массу тела, чтобы ее момент инерции оказался равным моменту инерции тела относительно рассматриваемой оси.

Моменты инерции относительно оси и точки имеют одинаковую размерность — произведение массы на квадрат длины Геометрия масс в теоретической механике.

Кроме моментов инерции относительно точки и оси используются также моменты инерции относительно плоскостей и центробежные моменты инерции. Эти моменты инерции удобно рассмотреть относительно координатных плоскостей и осей декартовой системы координат.

Моменты инерции относительно осей координат

Моменты инерции относительно декартовых осей координат Геометрия масс в теоретической механике, Геометрия масс в теоретической механике и Геометрия масс в теоретической механике и их начала — точки Геометрия масс в теоретической механике (рис. 23) — определяются выражениями

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — координаты материальных точек системы. Для сплошных тел эти формулы примут вид

Геометрия масс в теоретической механике

Из приведенных формул следует зависимость

Геометрия масс в теоретической механике

Если через точку Геометрия масс в теоретической механике провести другую систему декартовых осей координат Геометрия масс в теоретической механике, то для них по формуле (8) получим

Геометрия масс в теоретической механике

Из сравнения (8) и (8′) следует, что

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 23

Сумма моментов инерции относительно декартовых осей координат не зависит от ориентации этих осей в рассматриваемой точке, т. е. является величиной, инвариантной по отношению к направлению осей координат.

Для осей координат Геометрия масс в теоретической механике можно определить следующие три центробежных момента инерции:

Геометрия масс в теоретической механике

Центробежные моменты инерции часто называют произведениями инерции.

Моменты инерции относительно осей и точек — величины положительные, так как в них входят квадраты координат. Центробежные моменты инерции содержат произведения координат и могут быть как положительными, так и отрицательными.

Центробежные моменты инерции имеют важное значение при рассмотрении давлений на подшипники при вращении твердого тела вокруг неподвижной оси и в других случаях.

Кроме рассмотренных моментов инерции иногда используются моменты инерции относительно координатных плоскостей Геометрия масс в теоретической механике, которые определяются выражениями

Геометрия масс в теоретической механике

Теорема о моментах инерции относительно параллельных осей (теорема Штейнера)

Установим зависимость между моментами инерции системы относительно параллельных осей, одна из которых проходит через центр масс. Пусть имеем две системы прямоугольных, взаимно параллельных осей координат Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Начало системы координат Геометрия масс в теоретической механике находится в» центре масс системы (рис. 24).

Геометрия масс в теоретической механике

Рис. 24

По определению момента инерции относительно оси имеем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — масса точки Геометрия масс в теоретической механике, а Геометрия масс в теоретической механике и Геометрия масс в теоретической механике — координаты этой точки относительно систем координат Геометрия масс в теоретической механике и Геометрия масс в теоретической механике соответственно. Если обозначить Геометрия масс в теоретической механике координаты центра масс относительно системы координат Геометрия масс в теоретической механике, то для взаимно параллельных осей координаты одной и той же точки Геометрия масс в теоретической механике связаны соотношениями параллельного переноса

Геометрия масс в теоретической механике

Подставим эти значения координат в выражение момента инерции Геометрия масс в теоретической механике. После преобразований получим

Геометрия масс в теоретической механике

В этом соотношении Геометрия масс в теоретической механике—масса системы, Геометрия масс в теоретической механике, так как Геометрия масс в теоретической механике и Геометрия масс в теоретической механике вследствие k = 1

того, что по условию центр масс находится в начале координат этой системы координат.

Величина Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике—расстояние между осями Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Окончательно

Геометрия масс в теоретической механике

Связь моментов инерции относительно двух параллельных осей, одна из которых проходит через центр масс, составляет содержание так называемой теоремы Штейнера или Гюйгенса— Штейнера: момент инерции системы относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр масс, плюс произведение массы системы на квадрат расстояния между этими осями.

Из теоремы Штейнера следует, что для совокупности параллельных осей момент инерции является наименьшим относительно оси, проходящей через центр масс.

Если взять ось Геометрия масс в теоретической механике параллельной Геометрия масс в теоретической механике, то для нее получим

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — расстояние между параллельными осями Геометрия масс в теоретической механике и Геометрия масс в теоретической механике.

Исключая момент инерции Геометрия масс в теоретической механике из двух последних формул, получим зависимость моментов инерции относительно двух параллельных осей, не проходящих через центр масс:

Геометрия масс в теоретической механике

Установим изменение центробежных моментов инерции при параллельном переносе осей координат. Имеем

Геометрия масс в теоретической механике

Учитывая, что Геометрия масс в теоретической механике получаем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — координаты центра масс относительно системы координат Геометрия масс в теоретической механике. Аналогичные формулы получаются для двух других центробежных моментов инерции:

Геометрия масс в теоретической механике

Так как начало системы координат Геометрия масс в теоретической механике находится в центре масс, то Геометрия масс в теоретической механике, Геометрия масс в теоретической механике, Геометрия масс в теоретической механике и тогда

Геометрия масс в теоретической механике

т. е. центробежные моменты инерции при параллельном переносе осей координат из любой точки в центре масс изменяются в соответствии с (10).

Если производится параллельный перенос осей Геометрия масс в теоретической механике из точки Геометрия масс в теоретической механике в центр масс, то, согласно (10), имеем:

Геометрия масс в теоретической механике

Исключая из (10) и (10′) центробежные моменты инерции Л’з» Лу, получим формулы для изменения центробежных моментов инерции при параллельном переносе осей координат из точки Геометрия масс в теоретической механике в точку Геометрия масс в теоретической механике:

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике и Геометрия масс в теоретической механике — координаты центра масс в двух системах взаимно параллельных осей координат.

Моменты инерции простейших однородных тел

Моменты инерции тел сложной формы часто удается вычислить, если их предварительно разбить на тела простой формы. Моменты инерции сложных тел получают суммируя моменты инерции частей этих тел. Получим формулы для вычисления моментов инерции некоторых однородных простейших тел.

Однородный стержень

Имеем однородный стержень длиной Геометрия масс в теоретической механике и массой Геометрия масс в теоретической механике (рис. 25). Направим по стержню ось Геометрия масс в теоретической механике. Вычислим момент инерции стержня относительно оси Геометрия масс в теоретической механике, проходящей перпендикулярно стержню через его конец. Согласно определению момента инерции сплошного тела относительно оси, имеем

Геометрия масс в теоретической механике

так как Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике—плотность стержня.

Вычисляя интеграл, получаем

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 25

Таким образом,

Геометрия масс в теоретической механике

Момент инерции стержня относительно оси Геометрия масс в теоретической механике, проходящей через центр масс и параллельной оси Геометрия масс в теоретической механике, определяется по теореме Штейнера:

Геометрия масс в теоретической механике

Следовательно,

Геометрия масс в теоретической механике

т. е.

Геометрия масс в теоретической механике

Прямоугольная пластина

Прямоугольная тонкая пластина имеет размеры Геометрия масс в теоретической механике и Геометрия масс в теоретической механике и массу Геометрия масс в теоретической механике (рис. 26). Оси Геометрия масс в теоретической механике и Геометрия масс в теоретической механике расположим в плоскости пластины, а ось Геометрия масс в теоретической механике—перпендикулярно ей. Для определения момента инерции пластины относительно оси Геометрия масс в теоретической механике разобьем пластину на элементарные полоски шириной Геометрия масс в теоретической механике и массой Геометрия масс в теоретической механике и проинтегрируем по Геометрия масс в теоретической механике от 0 до Геометрия масс в теоретической механике. Получим

Геометрия масс в теоретической механике

так как Геометрия масс в теоретической механике.

Аналогичные вычисления для оси Геометрия масс в теоретической механике дадут

Геометрия масс в теоретической механике

так как эта ось Геометрия масс в теоретической механике проходит через середину пластины. Для определения момента инерции пластины относительно оси Геометрия масс в теоретической механике следует предварительно вычислить момент инерции отдельной заштрихованной полоски относительно параллельной оси Геометрия масс в теоретической механике по формуле (12) для стержня и применить затем теорему Штейнера. Для элементарной полоски имеем

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 26

Интегрируя это выражение в пределах от 0 до Геометрия масс в теоретической механике, получим

Геометрия масс в теоретической механике

Итак, для моментов инерции пластины относительно осей координат получены следующие формулы:

Геометрия масс в теоретической механике

Круглый диск

Имеем тонкий однородный диск радиусом Геометрия масс в теоретической механике и массой Геометрия масс в теоретической механике (пис. 27). Вычислим момент его инерции Геометрия масс в теоретической механике относительно точки Геометрия масс в теоретической механике. Этот момент инерции для тонкого диска совпадает с моментом инерции Геометрия масс в теоретической механике относительно координатной оси Геометрия масс в теоретической механике, перпендикулярной плоскости диска. Разобьем диск на концентрические полоски шириной Геометрия масс в теоретической механике, принимаемые в пределе за материальные окружности. Масса полоски равна ее площади Геометрия масс в теоретической механике, умноженной на плотность Геометрия масс в теоретической механике, т.е. Геометрия масс в теоретической механике. Момент одной полоски относительно точки Геометрия масс в теоретической механике равен Геометрия масс в теоретической механике. Для всего диска

Геометрия масс в теоретической механике

Таким образом, 

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 27

Для осей координат Геометрия масс в теоретической механике и Геометрия масс в теоретической механике, расположенных в плоскости диска, в силу симметрии Геометрия масс в теоретической механике. Используя (8), имеем Геометрия масс в теоретической механике, но Геометрия масс в теоретической механике, поэтому

Геометрия масс в теоретической механике

В случае тонкого проволочного кольца или круглого колеса, у которых масса распределена не по площади, а по его ободу, имеем

Геометрия масс в теоретической механике

Круглый цилиндр

Геометрия масс в теоретической механике

Рис. 28

Для круглого однородного цилиндра, масса которого Геометрия масс в теоретической механике, радиус Геометрия масс в теоретической механике и длина Геометрия масс в теоретической механике(рис. 28), вычислим прежде всего его момент инерции относительно продольной оси симметрии Геометрия масс в теоретической механике. Для этого разобьем цилиндр плоскостями, перпендикулярными оси Геометрия масс в теоретической механике, на тонкие диски массой Геометрия масс в теоретической механике и толщиной Геометрия масс в теоретической механике. Для такого диска момент инерции относительного оси Геометрия масс в теоретической механике равен Геометрия масс в теоретической механике. Для всего цилиндра

Геометрия масс в теоретической механике

т.е.

Геометрия масс в теоретической механике

Вычислим момент инерции цилиндра относительно его поперечной оси симметрии Геометрия масс в теоретической механике. Для этого разобьем цилиндр поперечными сечениями, перпендикулярными его продольной оси, на элементарные диски толщиной Геометрия масс в теоретической механике. Момент инерции элементарного диска массой Геометрия масс в теоретической механике относительно оси Геометрия масс в теоретической механике, по теореме Штейнера, Геометрия масс в теоретической механике.

Чтобы получить момент инерции всего цилиндра относительно оси Геометрия масс в теоретической механике, следует проинтегрировать полученное выражение по Геометрия масс в теоретической механике в пределах от 0 до Геометрия масс в теоретической механике и результат удвоить. Получим

Геометрия масс в теоретической механике

Но Геометрия масс в теоретической механике — масса цилиндра. Следовательно,

Геометрия масс в теоретической механике

Таким образом, момент инерции цилиндра относительно его поперечной оси симметрии получается как сумма моментов инерции относительно этой оси диска и стержня, массы которых равны по отдельности массе цилиндра. Диск получается из цилиндра симметричным сжатием его с торцов до срединной плоскости при сохранении радиуса, а стержень — сжатием цилиндра в однородный стержень, расположенный по оси цилиндра, при сохранении длины.

Шар

Пусть масса шара Геометрия масс в теоретической механике, радиус Геометрия масс в теоретической механике (рис. 29). Разобьем шар на концентрические сферические слои радиусом Геометрия масс в теоретической механике и толщиной Геометрия масс в теоретической механике. Масса такого слоя Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике; Геометрия масс в теоретической механике—объем слоя, равный произведению площади поверхности сферы радиусом Геометрия масс в теоретической механике на толщину слоя Геометрия масс в теоретической механике, т.е. Геометрия масс в теоретической механике. Таким образом, масса элементарного слоя Геометрия масс в теоретической механике.  Для момента инерции шара относительно его центра Геометрия масс в теоретической механике имеем

Геометрия масс в теоретической механике

т.е.

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 29

Для осей координат, проходящих через центр шара, в силу симметрии Геометрия масс в теоретической механике. Но Геометрия масс в теоретической механике. Следовательно,

Геометрия масс в теоретической механике

Моменты инерции относительно осей, проходящих через заданную точку

В заданной точке Геометрия масс в теоретической механике выберем декартову систему осей координат Геометрия масс в теоретической механике. Ось Геометрия масс в теоретической механике образует с осями координат углы  Геометрия масс в теоретической механике (рис. 30). По определению момента инерции относительно оси Геометрия масс в теоретической механике имеем

Геометрия масс в теоретической механике

или для сплошных тел

Геометрия масс в теоретической механике

В дальнейшем используется определение (20). Сплошные тела считаются разбитыми на Геометрия масс в теоретической механике малых частей, принимаемых за точки.

Из прямоугольного треугольника Геометрия масс в теоретической механике получаем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — координаты точки Геометрия масс в теоретической механике. Отрезок Геометрия масс в теоретической механике является проекцией радиуса-вектора Геометрия масс в теоретической механике на ось Геометрия масс в теоретической механике. Для получения проекции вектора Геометрия масс в теоретической механике на ось Геометрия масс в теоретической механике его следует умножить скалярно на единичный вектор этой оси Геометрия масс в теоретической механике. Имеем

Геометрия масс в теоретической механике

Умножая в (21) Геометрия масс в теоретической механике, выраженный через координаты точки Геометрия масс в теоретической механике, на единицу в виде Геометрия масс в теоретической механике и используя значение (22) для Геометрия масс в теоретической механике, получим

Геометрия масс в теоретической механике

Подставляя (23) в (20) и вынося косинусы углов за знаки сумм, имеем

Геометрия масс в теоретической механике

Учитывая, что

Геометрия масс в теоретической механике

—    моменты инерции относительно осей координат, а

Геометрия масс в теоретической механике

—    центробежные моменты инерции относительно тех же осей, получим

Геометрия масс в теоретической механике

Для определения момента инерции Геометрия масс в теоретической механике, кроме углов Геометрия масс в теоретической механике, определяющих направление оси, необходимо знать в точке Геометрия масс в теоретической механике шесть моментов инерции: Геометрия масс в теоретической механике. Их удобно расположить как элементы единой таблицы или матрицы:

Геометрия масс в теоретической механике

Матрица, или таблица (25), составленная из осевых и центробежных моментов инерции относительно декартовых осей координат, называется тензором инерции в точке Геометрия масс в теоретической механике. В тензоре инерции условились центробежные моменты инерции брать со знаком минус. Компоненты тензора инерции (отдельные осевые или центробежные моменты инерции) зависят не только от выбора точки, но и от ориентации осей координат в этой точке.

Для определения момента инерции относительно какой-либо оси, проходящей через заданную точку, для рассматриваемого тела необходимо иметь тензор инерции в этой точке и углы, определяющие направление оси с осями координат.

Геометрия масс в теоретической механике

Рис. 30

Эллипсоид инерции

Для характеристики распределения моментов инерции тела относительно различных осей, проходящих через заданную точку, используется поверхность второго порядка — эллипсоид инерции. Для построения этой поверхности на каждой оси Геометрия масс в теоретической механике (см. рис. 31), проходящей через точку Геометрия масс в теоретической механике, откладывают от этой точки отрезок

Геометрия масс в теоретической механике

Геометрическое место концов отрезков Геометрия масс в теоретической механике расположится на поверхности, которая называется эллипсоидом инерции. Получим уравнение эллипсоида инерции. Для этого выразим косинусы углов Геометрия масс в теоретической механике через координаты Геометрия масс в теоретической механике точки Геометрия масс в теоретической механике. Имеем:

Геометрия масс в теоретической механике

Подставляя эти значения косинусов углов в (24) и сокращая на Геометрия масс в теоретической механике, получим уравнение поверхности второго порядка:

Геометрия масс в теоретической механике

Это действительно уравнение эллипсоида, так как отрезок Геометрия масс в теоретической механике имеет конечную длину для всех осей, для которых моменты инерции не обращаются в нуль. Другие поверхности второго порядка, например гиперболоиды и параболоиды, имеют бесконечно удаленные точки. Эллипсоид инерции вырождается в цилиндр для тела в виде прямолинейного отрезка, если точка Геометрия масс в теоретической механике расположена на самом отрезке. Для оси, направленной по этой прямой линии, момент инерции обращается в нуль и соответственно отрезок Геометрия масс в теоретической механике равен бесконечности.

Для каждой точки Геометрия масс в теоретической механике имеется свой эллипсоид инерции. Эллипсоид инерции для центра масс тела называют центральным эллипсоидом инерции. Оси эллипсоида инерции (его сопряженные диаметры) называются главными осями инерции. В общем случае эллипсоид инерции имеет три взаимно перпендикулярные главные оси инерции. Они являются его осями симметрии.

В случае эллипсоида вращения все прямые, расположенные в экваториальной плоскости эллипсоида, перпендикулярной оси вращения, будут главными осями инерции. Для шара любая прямая, проходящая через его центр, есть главная ось инерции.

Моменты инерции относительно главных осей инерции называются главными моментами инерции, а относительно главных центральных осей инерции — главными центральными моментами инерции.

Если уравнение эллипсоида инерции отнести к его главным осям Геометрия масс в теоретической механике, то оно примет вид

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике —текущие координаты точки, расположенной на эллипсоиде инерции, относительно главных осей инерции; Геометрия масс в теоретической механикеГеометрия масс в теоретической механике— главные моменты инерции. Уравнение эллипсоида инерции (27′) не содержит слагаемых с произведениями координат точек. Поэтому центробежные моменты инерции относительно главных осей инерции равны нулю, т. е.

Геометрия масс в теоретической механике

Справедливо и обратное утверждение: если центробежные моменты инерции относительно трех взаимно перпендикулярных осей равны нулю, то эти оси являются главными осями инерции. Обращение в нуль трех центробежных моментов инерции является необходимым и достаточным условием того, что соответствующие прямоугольные оси координат есть главные оси инерции.

Главные моменты инерции часто обозначают Геометрия масс в теоретической механике, вместо Геометрия масс в теоретической механикеГеометрия масс в теоретической механике. Для главных осей инерции формула (24) принимает форму

Геометрия масс в теоретической механике

  • Заказать решение задач по теоретической механике

Свойства главных осей инерции

Теорема 1. Если одна из декартовых осей координат, например Геометрия масс в теоретической механике (рис. 31), является главной осью инерции для точки Геометрия масс в теоретической механике, а две другие оси Геометрия масс в теоретической механике и Геометрия масс в теоретической механике— любые, то два центробежных момента инерции, содержащих индекс главной оси инерции Геометрия масс в теоретической механике, обращаются в нуль, т.е. Геометрия масс в теоретической механике и Геометрия масс в теоретической механике.

Главная ось инерции Геометрия масс в теоретической механике является осью симметрии эллипсоида инерции. Поэтому каждой точке эллипсоида, например Геометрия масс в теоретической механике, соответствует симметричная относительно этой оси точка Геометрия масс в теоретической механике. Подставляя в уравнение эллипсоида инерции (27) последовательно координаты этих точек, получим

Геометрия масс в теоретической механике

Вычитая из первого уравнения второе, имеем

Геометрия масс в теоретической механике

Так как всегда можно выбрать точки, для которых Геометрия масс в теоретической механике и Геометрия масс в теоретической механике отличны от нуля, то Геометрия масс в теоретической механике.

Геометрия масс в теоретической механике

Рис. 31

Аналогичные рассуждения для двух симметричных относительно оси Геометрия масс в теоретической механике точек Геометрия масс в теоретической механике и Геометрия масс в теоретической механике приводят к заключению, что Геометрия масс в теоретической механике. В аналитической геометрии при исследовании уравнений поверхностей второго порядка доказывается обратное утверждение, что если Геометрия масс в теоретической механике и Геометрия масс в теоретической механике, то ось Геометрия масс в теоретической механике есть главная ось. Таким образом, обращение в нуль центробежных моментов инерции Геометрия масс в теоретической механике и Геометрия масс в теоретической механике является необходимым и достаточным условием, чтобы ось Геометрия масс в теоретической механике была главной осью инерции для точки Геометрия масс в теоретической механике.

Теорема 2. Если однородное тело имеет плоскость симметрии, то для любой точки, лежащей в этой плоскости, одна из главных осей инерции перпендикулярна плоскости симметрии, а две другие главные оси инерции расположены в этой плоскости.

Геометрия масс в теоретической механике

Рис. 32

Для доказательства теоремы выберем в плоскости симметрии Геометрия масс в теоретической механике точку Геометрия масс в теоретической механике и в ней оси прямоугольной системы координат Геометрия масс в теоретической механике, причем ось Геометрия масс в теоретической механике направим перпендикулярно плоскости симметрии (рис. 32). Тогда каждой точке тела Геометрия масс в теоретической механике массой Геометрия масс в теоретической механике соответствует симметричная относительно плоскости Геометрия масс в теоретической механике точка Геометрия масс в теоретической механике с такой же массой. Координаты точек Геометрия масс в теоретической механике и Геометрия масс в теоретической механике отличаются только знаком у координат Геометрия масс в теоретической механике.

Для центробежного момента инерции Геометрия масс в теоретической механике имеем

Геометрия масс в теоретической механике

так как часть тела (I), соответствующая точкам с положительными координатами Геометрия масс в теоретической механике, одинакова с частью тела (II), у которой точки имеют такие же координаты Геометрия масс в теоретической механике, но со знаком минус. Аналогично доказывается, что

Геометрия масс в теоретической механике

Так как центробежные моменты инерции Геометрия масс в теоретической механике и Геометрия масс в теоретической механике обращаются в нуль, то ось Геометрия масс в теоретической механике есть главная ось инерции для точки Геометрия масс в теоретической механике. Другие две главные оси инерции перпендикулярны оси Геометрия масс в теоретической механике и, следовательно, расположены в плоскости симметрии.

Центр масс однородного симметричного тела находится в плоскости симметрии. Поэтому одна из главных центральных осей инерции перпендикулярна плоскости симметрии, а две другие расположены в этой плоскости.

Доказанная теорема справедлива и для неоднородного тела, имеющего плоскость материальной симметрии.

Теорема 3. Если однородное тело имеет ось симметрии или неоднородное тело имеет ось материальной симметрии, то эта ось является главной центральной осью инерции.

Теорема доказывается аналогично предыдущей. Для каждой точки тела Геометрия масс в теоретической механике с положительными координатами Геометрия масс в теоретической механике и массой Геометрия масс в теоретической механике существует симметричная относительно оси точка с такой же массой и такими же по величине, но отрицательными координатами Геометрия масс в теоретической механике, если осью симметрии является ось Геометрия масс в теоретической механике. Тогда

Геометрия масс в теоретической механике

так как суммы по симметричным относительно оси частям тела (I) и (II) отличаются друг от друга только знаком у координаты Геометрия масс в теоретической механике.

Аналогично доказывается, что Геометрия масс в теоретической механике.

Таким образом, ось Геометрия масс в теоретической механике является главной осью инерции для любой точки, расположенной на оси симметрии тела. Она есть главная центральная ось инерции, так как центр масс находится на оси симметрии.

Теорема 4. Главные оси инерции для точки Геометрия масс в теоретической механике, расположенной на главной центральной оси инерции, параллельны главным центральным осям инерции (рис. 33).

Выберем в точке Геометрия масс в теоретической механике главной центральной оси инерции Геометрия масс в теоретической механике систему декартовых осей координат Геометрия масс в теоретической механике, взаимно параллельных главным центральным осям инерции Геометрия масс в теоретической механике. Тогда координаты точки тела Геометрия масс в теоретической механике в двух системах осей координат будут связаны между собой формулами параллельного переноса осей

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике. Используя эти формулы, вычисляем центробежные моменты инерции Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Имеем

Геометрия масс в теоретической механике

так как

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике—масса тела; Геометрия масс в теоретической механике — координата центра масс относительно системы координат Геометрия масс в теоретической механике. Аналогично получаем

Геометрия масс в теоретической механике

Если Геометрия масс в теоретической механике— центр масс системы, то Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Для главных центральных осей инерции центробежные моменты инерции равны нулю, т. е.

Геометрия масс в теоретической механике

Используя полученные формулы при этих условиях, имеем:    

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 33

Следовательно, оси Геометрия масс в теоретической механике есть главные оси инерции для произвольной точки Геометрия масс в теоретической механике, расположенной на главной центральной оси инерции Геометрия масс в теоретической механике. Теорема доказана.

Из доказанной теоремы в качестве следствия получаем: главная центральная ось инерции является главной осью инерции для всех своих точек. Действительно, главная ось инерции Геометрия масс в теоретической механике для точки Геометрия масс в теоретической механике, лежащей на главной центральной оси инерции Геометрия масс в теоретической механике, совпадает с этой осью. Главная ось инерции таким свойством не обладает. Главные оси инерции для точки Геометрия масс в теоретической механике, расположенной на главной оси инерции точки Геометрия масс в теоретической механике, не параллельны главным осям инерции для этой точки. Они в общем случае повернуты относительно этих осей.

Определение главных моментов инерции и направления главных осей

Пусть известны компоненты тензора инерции в точке Геометрия масс в теоретической механике относительно осей координат Геометрия масс в теоретической механике. Для определения направления главных осей инерции в точке Геометрия масс в теоретической механике используем уравнение эллипсоида инерции относительно этих осей

Геометрия масс в теоретической механике

Если оси координат Геометрия масс в теоретической механике являются главными осями инерции, то радиус-вектор Геометрия масс в теоретической механике точки Геометрия масс в теоретической механике эллипсоида инерции, расположенной на главной оси инерции, например оси Геометрия масс в теоретической механике (рис. 34), направлен по нормали к эллипсоиду, т. е. параллельно вектору Геометрия масс в теоретической механике, который, согласно его определению, вычисляется по формуле

Геометрия масс в теоретической механике

Параллельные векторы отличаются друг от друга скалярным множителем, который обозначим Геометрия масс в теоретической механике. Тогда для параллельных векторов Геометрия масс в теоретической механике и Геометрия масс в теоретической механике и их проекций на оси координат имеем:

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 34

В этих уравнениях Геометрия масс в теоретической механике являются координатами точки конца вектора Геометрия масс в теоретической механике, проведенного из точки Геометрия масс в теоретической механике вдоль какой-либо главной оси инерции для этой точки.

Для частных производных из (27′) получаем:

Геометрия масс в теоретической механике

Подставляя их значения в (28′) и перенося все слагаемые в левую часть, после объединения и сокращения на общий множитель получим следующую систему уравнений для определения координат Геометрия масс в теоретической механике точки Геометрия масс в теоретической механике, находящейся на главной оси инерции:

Геометрия масс в теоретической механике

Так как (29) является однородной системой линейных уравнений, то отличные от нуля решения для координат Геометрия масс в теоретической механике получаются только при условии, что определитель этой системы равен нулю, т. е.

Геометрия масс в теоретической механике

Это кубическое уравнение для определения Геометрия масс в теоретической механике называется уравнением собственных значений тензора инерции.

В общем случае имеется три различных действительных корня кубического уравнения Геометрия масс в теоретической механике,  которые являются главными моментами инерции. Действительно, если ось Геометрия масс в теоретической механике совпадает с главной осью инерции, то для точки Геометрия масс в теоретической механике эллипсоида инерции, расположенной на этой оси, Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Первое уравнение (29) принимает вид

Геометрия масс в теоретической механике

Так как Геометрия масс в теоретической механике, то Геометрия масс в теоретической механике и Геометрия масс в теоретической механике, которое следует обозначить Геометрия масс в теоретической механике. Аналогично можно получить Геометрия масс в теоретической механике, если оси Геометрия масс в теоретической механике и Геометрия масс в теоретической механике — главные оси инерции.

Подставляя в (29) Геометрия масс в теоретической механике получим только два независимых уравнения для определения координат точки Геометрия масс в теоретической механике эллипсоида инерции, соответствующих главной оси инерции, для которой главный момент инерции есть Геометрия масс в теоретической механике. Третье уравнение системы будет следствием двух других уравнений, так как определитель этой системы равен нулю. Из (29) можно найти только две величины, например Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Они определят направление вектора вдоль главной оси инерции, момент инерции относительно которой есть Геометрия масс в теоретической механике. Модуль радиуса-вектора Геометрия масс в теоретической механике остается неопределенным. Аналогично определяются направления векторов Геометрия масс в теоретической механике и Геометрия масс в теоретической механике вдоль двух других главных осей инерции, для которых главные моменты инерции равны Геометрия масс в теоретической механике и . Можно доказать, что векторы Геометрия масс в теоретической механике, Геометрия масс в теоретической механикеГеометрия масс в теоретической механике, направленные вдоль главных осей инерции, взаимно перпендикулярны.

Таким образом, если известен тензор инерции для осей  Геометрия масс в теоретической механике, то можно определить как направление главных осей инерции, так и главные моменты инерции. Для главных осей инерции тензор инерции (25) принимает форму

Геометрия масс в теоретической механике

Выражение компонентов тензора инерции через главные моменты инерции

Определим компоненты тензора инерции в точке Геометрия масс в теоретической механике относительно осей координат Геометрия масс в теоретической механике, если в этой точке известны главные моменты инерции относительно главных осей инерции Геометрия масс в теоретической механике, т. е. Геометрия масс в теоретической механике. Предположим, что ориентация осей координат Геометрия масс в теоретической механике относительно главных осей инерции Геометрия масс в теоретической механике задана таблицей углов:

Геометрия масс в теоретической механике

Осевые моменты инерции относительно осей Геометрия масс в теоретической механике через главные моменты инерции определяются по формуле (24′). Принимая последовательно за ось Геометрия масс в теоретической механике оси координат Геометрия масс в теоретической механике, получим

Геометрия масс в теоретической механике

Для выражения центробежных моментов инерции через главные моменты инерции используем формулы преобразования координат точек тела при повороте осей координат вокруг точки Геометрия масс в теоретической механике (рис. 35). Эти формулы получим проецированием на оси Геометрия масс в теоретической механике радиуса-вектора Геометрия масс в теоретической механике точки Геометрия масс в теоретической механике, разложенного предварительно на составляющие, параллельные осям двух систем осей координат в точке Геометрия масс в теоретической механике. Имеем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — координаты точки Геометрия масс в теоретической механике относительно системы осей координат Геометрия масс в теоретической механике, а Геометрия масс в теоретической механике — относительно Геометрия масс в теоретической механике. Проецирование вектора на какую-либо ось прямоугольной системы координат эквивалентно скалярному умножению этого вектора на единичный вектор оси. Умножая обе части (32) последовательно на единичные векторы осей координат Геометрия масс в теоретической механике и учитывая таблицу углов для осей, получим

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 35

Используя (33) для центробежного момента инерции Геометрия масс в теоретической механике, имеем

Геометрия масс в теоретической механике

так как центробежные моменты инерции относительно главных осей инерции равны нулю, т. е.

Геометрия масс в теоретической механике

Оси координат Геометрия масс в теоретической механике и Геометрия масс в теоретической механике взаимно перпендикулярны, поэтому косинусы их углов удовлетворяют условию

Геометрия масс в теоретической механике

или

Геометрия масс в теоретической механике

Используя это соотношение для исключения величины Геометрия масс в теоретической механике и добавляя в первом слагаемом (34) под знаком суммы Геометрия масс в теоретической механике, а во втором Геометрия масс в теоретической механике, после объединения слагаемых с одинаковыми произведениями косинусов получим

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике

— главные моменты инерции. Аналогично получаются выражения для Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Итак имеем

Геометрия масс в теоретической механике

Формулы (31) и (35) дают выражения всех компонентов тензора инерции для осей координат Геометрия масс в теоретической механике через главные моменты инерции, если известны углы этих осей с главными осями инерции. В приложениях встречаются частные случаи, когда одна из осей координат Геометрия масс в теоретической механике совпадает с главной осью инерции.

Если ось Геометрия масс в теоретической механике совпадает с главной осью инерции Геометрия масс в теоретической механике (рис. 36), то Геометрия масс в теоретической механике. Это же можно получить из (35). Необходимые для вычисления углы соответственно равны:

Геометрия масс в теоретической механике

Из (35) имеем

Геометрия масс в теоретической механике

В формуле (35′) с полюсом следует брать главный момент инерции с индексом той оси, на положительное направление которой указывает дуговая стрелка поворота осей Геометрия масс в теоретической механике на угол Геометрия масс в теоретической механике до совпадения с осями Геометрия масс в теоретической механике. В рассматриваемом случае поворот осей Геометрия масс в теоретической механике вокруг Геометрия масс в теоретической механике до совпадения с главными осями производится от оси Геометрия масс в теоретической механике к оси Геометрия масс в теоретической механике; следовательно, с плюсом следует взять главный момент инерции Геометрия масс в теоретической механике и с минусом — Геометрия масс в теоретической механике.

Геометрия масс в теоретической механике

Рис. 36    

Если оси расположены, как показано на рис. 37, то дуговая стрелка поворота осей Геометрия масс в теоретической механике до совпадения с главными осями инерции Геометрия масс в теоретической механике на угол Геометрия масс в теоретической механике направлена к отрицательному направлению оси Геометрия масс в теоретической механике. Поэтому в (35′) Геометрия масс в теоретической механике, следует взять со знаком минус, а Геометрия масс в теоретической механике знаком плюс, в чем нетрудно убедиться, используя (35) и таблицу углов. Имеем:

= 90°; р2 = а; Р3 = 90° + а;

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 37

Аналогично при совпадении осей Геометрия масс в теоретической механике с Оу’ и повороте осей Oxz вокруг Геометрия масс в теоретической механике до совпадения с осями Геометрия масс в теоретической механике на угол Геометрия масс в теоретической механике от Геометрия масс в теоретической механике к Геометрия масс в теоретической механике в направлении против часовой стрелки имеем:

Геометрия масс в теоретической механике

При совпадении осей Геометрия масс в теоретической механике и Геометрия масс в теоретической механике и повороте осей вокруг Геометрия масс в теоретической механике на угол Геометрия масс в теоретической механике от Геометрия масс в теоретической механике к Геометрия масс в теоретической механике против часовой стрелки получим:

Геометрия масс в теоретической механике

  • Свойства внутренних сил системы 
  • Дифференциальное уравнение движения системы
  • Теоремы об изменении количества движения и о движении центра масс
  • Теорема об изменении кинетического момента
  • Прямолинейное движение точки
  • Криволинейное движение материальной точки
  • Движение несвободной материальной точки
  • Относительное движение материальной точки

Главная >> Фейнмановские лекции по физике >> Том 2 >> Глава 19. Центр масс; момент инерции

Вычисление момента инерции

Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инерции объекта относительно оси z имеет вид

Маленькое изображение

 

Иными словами, нужно сложить все массы, умножив каждую из них на квадрат ее расстояния до оси (x2i + y2i). Заметьте, что это верно даже для трехмерного тела, несмотря на то, что расстояние имеет такой «двумерный вид». Впрочем, в большинстве случаев мы будем ограничиваться двумерными телами.

Маленькое изображениеВ качестве простого примера рассмотрим стержень, вращающийся относительно оси, проходящей через его конец и перпендикулярной к нему (фиг. 19.3). Нам нужно просуммировать теперь все массы, умноженные на квадраты расстояния х (в этом случае все у — нулевые). Под суммой, разумеется, я имею в виду интеграл от х2, умноженный на «элементики» массы. Если мы разделим стержень на кусочки длиной dx, то соответствующий элемент массы будет пропорционален dx, а если бы dx составляло длину всего стержня, то его масса была бы равна М. Поэтому

Маленькое изображение

 

Размерность момента инерции всегда равна массе, умноженной на квадрат длины, так что единственная существенная величина, которую мы вычислили, это множитель 1/3.

А чему будет равен момент инерции I, если ось вращения проходит через середину стержня? Чтобы найти его, нам снова нужно взять интеграл, но уже в пределах от —1/2L до +1/2L. Заметим, однако, одну особенность этого случая. Такой стержень с проходящей через центр осью можно представлять себе как два стержня с осью, проходящей через конец, причем масса каждого из них равна М/2, а длина равна L/2. Моменты инерции двух таких стержней равны друг другу и вычисляются по формуле (19.5). Поэтому момент инерции всего стержня равен

Маленькое изображение

 

Таким образом, стержень гораздо легче крутить за середину, чем за конец.

Можно, конечно, продолжить вычисление моментов инерции других интересующих нас тел. Но поскольку такие расчеты требуют большого опыта в вычислении интегралов (что очень важно само по себе), они как таковые не представляют для нас большого интереса. Впрочем, здесь имеются некоторые очень интересные и полезные теоремы. Пусть имеется какое-то тело и мы хотим узнать его момент инерции относительно какой-то оси. Это означает, что мы хотим найти его инертность при вращении вокруг этой оси. Если мы будем двигать тело за стержень, подпирающий его центр масс так, чтобы оно не поворачивалось при вращении вокруг оси (в этом случае на него не действуют никакие моменты сил инерции, поэтому тело не будет поворачиваться, когда мы начнем двигать его), то для того, чтобы повернуть его, понадобится точно такая же сила, как если бы вся масса была сосредоточена в центре масс и момент инерции был бы просто равен I1 = MR2ц.м., где Rц.м — расстояние от центра масс до оси вращения. Однако формула эта, разумеется, неверна. Она не дает правильного момента инерции тела. Ведь в действительности при повороте тело вращается. Крутится не только центр масс (что давало бы величину I1), само тело тоже должно поворачиваться относительно центра масс. Таким образом, к моменту инерции I1 нужно добавить Iц — момент инерции относительно центра масс. Правильный ответ состоит в том, что момент инерции относительно любой оси равен

Маленькое изображение

 

Эта теорема называется теоремой о параллельном переносе оси. Доказывается она очень легко. Момент инерции относительно любой оси равен сумме масс, умноженных на сумму квадратов х и у, т. е. I = Σmi(x2i + y2i). Мы сейчас сосредоточим наше внимание на х, однако все в точности можно повторить и для у. Пусть координата х есть расстояние данной частной точки от начала координат; посмотрим, однако, как все изменится, если мы будем измерять расстояние х` от центра масс вместо х от начала координат. Чтобы это выяснить, мы должны написать
xi = x`i + Xц.м.
Возводя это выражение в квадрат, находим
x2i = x`2i + 2Xц.м.x`i + X2ц.м.

Что получится, если умножить его на mi и просуммировать по всем r? Вынося постоянные величины за знак суммирования, находим

Ix = Σmix`2i + 2Xц.м.Σmix`i + X2ц.м.Σmi

Третью сумму подсчитать легко; это просто МХ2ц.м. . Второй член состоит из двух сомножителей, один из которых Σmix`i; он равен x`-координате центра масс. Но это должно быть равно нулю, ведь х` отсчитывается от центра масс, а в этой системе координат среднее положение всех частиц, взвешенное их массами, равно нулю. Первый же член, очевидно, представляет собой часть х от Iц. Таким образом, мы и приходим к формуле (19.7).

Давайте проверим формулу (19.7) на одном примере. Просто проверим, будет ли она применима для стержня. Мы уже нашли, что момент инерции стержня относительно его конца должен быть равен ML2/3. А центр масс стержня, разумеется, находится на расстоянии L/2. Таким образом, мы должны получить, что ML2/3=ML2/12+M(L/2)2. Так как одна четвертая + одна двенадцатая = одной третьей, то мы не сделали никакой грубой ошибки.

Кстати, чтобы найти момент инерции (19.5), вовсе не обязательно вычислять интеграл. Можно просто предположить, что он равен величине ML2, умноженной на некоторый неизвестный коэффициент γ. После этого можно использовать рассуждения о двух половинках и для момента инерции (19.6) получить коэффициент 1/4γ. Используя теперь теорему о параллельном переносе оси, докажем, что γ=1/4γ + 1/4, откуда γ=1/3. Всегда можно найти какой-нибудь окольный путь!

При применении теоремы о параллельных осях важно помнить, что ось Iц должна быть параллельна оси, относительно которой мы хотим вычислять момент инерции.

Стоит, пожалуй, упомянуть еще об одном свойстве, которое часто бывает очень полезно при нахождении момента инерции некоторых типов тел. Оно состоит в следующем: если у нас есть плоская фигура и тройка координатных осей с началом координат, расположенным в этой плоскости, и осью z, направленной перпендикулярно к ней, то момент инерции этой фигуры относительно оси z равен сумме моментов инерции относительно осей х и у. Доказывается это совсем просто. Заметим, что

Маленькое изображение

 

Момент инерции однородной прямоугольной пластинки, например с массой М, шириной ω и длиной L относительно оси, перпендикулярной к ней и проходящей через ее центр, равен просто

Маленькое изображение

 

поскольку момент инерции относительно оси, лежащей в плоскости пластинки и параллельной ее длине, равен Mω2/12, т. е. точно такой же, как и для стержня длиной ω, а момент инерции относительно другой оси в той же плоскости равен ML2/12, такой же, как и для стержня длиной L.

Итак, перечислим свойства момента инерции относительно данной оси, которую мы назовем осью z:

1. Момент инерции равен

Маленькое изображение

 

2. Если предмет состоит из нескольких частей, причем момент инерции каждой из них известен, то полный момент инерции равен сумме моментов инерции этих частей.
3. Момент инерции относительно любой данной оси равен моменту инерции относительно параллельной оси, проходящей через центр масс, плюс произведение полной массы на квадрат расстояния данной оси от центра масс.
4. Момент инерции плоской фигуры относительно оси, перпендикулярной к ее плоскости, равен сумме моментов инерции относительно любых двух других взаимно перпендикулярных осей, лежащих в плоскости фигуры и пересекающихся с перпендикулярной осью.

Маленькое изображение

 

В табл. 19.1 приведены моменты инерции некоторых элементарных фигур, имеющих однородную плотность масс, а в табл. 19.2 — моменты инерции некоторых фигур, которые могут быть получены из табл. 19.1 с использованием перечисленных выше свойств.

Маленькое изображение

 

СМОТРИТЕ ТАКЖЕ:

Социальные комментарии Cackle

Определение:
Моментом
инерции материальной точки относительно
неподвижной оси называется скалярная
физическая величина, являющаяся мерой
инертности этой точки при вращательном
движении и, равная произведению её массы
на квадрат расстояния до оси,

т.е.
,
а также,
где
угловая скорость тела относительно
данной оси.

Определение:
Моментом
инерции системы материальных точек
относительно неподвижной оси называется
скалярная физическая величина, являющаяся
мерой инертности этой системы при
вращательном движении и, равная
алгебраической сумме произведений масс
всех материальных точек системы на
квадрат их расстояний до оси,

т.е.
.

Момент
инерции определен только относительно
оси.

В случае непрерывного распределения
масс с плотностью сумма за­менится
на интеграл по всему объему тела:
(Интегрирование производится по всему
объёму; пределы интегрирования
устанавливаются исходя из конфигурации
тела и его размеров). Если тело однородно,
то его плотность во всех точках постоянна
и
можно вынести из-под знака интеграла.

Найдем моменты инерции для простейших
(геометрически правильных) форм твердого
тела, масса которого равномерно
распределена по объему, т.е.
.

1. Момент инерции
обруча
относительно оси, перпендикулярной
к его плоскости и проходящей через его
центр.

Обруч считается бесконечно тонким, т.е.
толщиной обода можно пре­небречь по
сравнению с радиусом R..
Поскольку в этой системе все массы
находятся на одинаковом расстоянии от
оси вращения, R2можно вынести из-под знака интеграла:,
гдеm— полная масса обруча.

2. Момент инерции
диска
относительно оси, перпендикулярной
его плоскости и проходящей через центр.
Диск считается бесконечно тонким, т.е.
его толщина много меньше ра­диуса
R.Момент инерции,
согласно определению, величина аддитивная:
момент инерции целого тела равен сумме
моментов инерции его частей. Разобьем
диск на бесконечно тонкие обручи радиусомsи толщинойds
(См.рис.).

Момент инерции диска относительно
перпендикулярной оси, проходящей через
центр.

Площадь поверхности обруча равна
произведению его длины на толщину: 2

s
ds.Поскольку массатдиска распределена равномерна, масса
обручаdmпропорциональна площади его поверхности:

.

Момент инерции обруча мы уже знаем:
. Осталось просуммировать моменты
инерции всех таких обручей:.

Такой же результат получится и для
момента инерции цилиндра конеч­ной
длины относительно его продольной оси.

3. Момент инерции
шара
относительно его диаметра.
Поступим аналогичным образом: «нарежем»
шар на бесконечно тон­кие диски
толщинойdz.находящиеся на расстоянииzот центра (См.рис.).

Момент инерции шара относительно
диаметра.

Радиус такого диска равен
. Объем дискаdVz
равен произведению его площади
на толщину:

. Массу дискаdmнаходим, разде­лив массу шаратна его объем, умножив на объем диска:

.

Момент инерции диска был найден выше.
В применении к данному слу­чаю, он
равен:

.

Момент инерции шара находится
интегрированием по всем таким дискам:

4.Момент инерции
тонкого стержня
относительно оси,
проходящей через его середину
перпендикулярно стержню.

Пусть стержень имеет длину
.Направим осьxвдоль стержня. Начало координат по
условию находится в центре стрежня.
Возьмем эле­мент стержня длинойdx.находящийся на расстоянииxот оси враще­ния. Его масса равна

dm
=
(m/ℓ)
dx,а момент инерцииdJ=(m/ℓ)
x2

dx.
Отсюда находим момент инерции стрежня:

(*).

Момент инерции величина аддитивная,
т.е. суммарный момент инерции системы
тел относительно какой-либо оси, равен
сумме моментов инерции каждого из тел
данной системы относительно той же оси:

Физический смысл момента инерции:Инерционные свойства при поступательном
движении характеризуются только массой
тела, т.е. зависит только от массы.
Инерционные свойства при вращательном
движении характеризуются моментом
инерции, т.е. зависят от его массы,
расстояния до оси вращения и расположению
теда по отношению к этой оси. Последнее
означает, что относительно двух разных
осей инерционные свойства вращательного
движения одного и того же движения тела
будут разными. Пример.

Понравилась статья? Поделить с друзьями:
  • Как найти прозрачность в иллюстраторе
  • Как найти в телеграмме сливы видео
  • Как найти тему для разговора с мальчиком
  • Если в табеле допущены ошибки как исправить
  • Как найти шрифт в документе