Как найти центр окружности через координаты диаметра

Найти центр и радиус окружности

Если окружность задана уравнением вида

найти центр (a;b) и радиус R такой окружности несложно.

Определить по уравнению окружности координаты её центра и радиуса:

Таким образом, центр данной окружности — точка (3;7), радиус R=2.

a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.

Центр окружности — (0;-3), радиус R=3.

Центр — в точке (6;0), радиус R=√5.

Это уравнение задаёт окружность с центром в начале координат. Центр — O(0;0), радиус R=√11.

Чтобы найти центр и радиус окружности, заданной уравнением вида

нужно дополнить его до полных квадратов, чтобы привести к привычному виду.

Для этого сначала сгруппируем слагаемые

затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)

При a²+b²-c>0 это уравнение задаёт окружность с радиусом

При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).

При a²+b²-c

Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:

Центром этой окружности является точка (-5;3), радиус R=7.

Центр окружности — точка (2,5;0), радиус R=1,5.

Нахождение центра и радиуса окружности по общему уравнению окружности

Этот калькулятор проверяет, является ли введенное уравнение общим уравнением окружности, и вычисляет координаты центра и радиуса окружности, если это возможно. Описание способа решения подобных задач находится под калькулятором

Нахождение центра и радиуса окружности по общему уравнению окружности

Уравнение НЕ является общим уравнением окружности

Приведение общего уравнения окружности к стандартному виду

Калькулятор выше можно применять для решения задач на уравнение окружности. Чаще всего вы имеете дело с уравнением окружности, выраженном в так называемом стандартном виде

Из этого уравнения достаточно легко найти центр окружности — это будет точка с координатами (a,b), и радиус окружности — это будет квадратный корень из правой части уравнения.

Однако, если возвести в квадрат выражения в скобках и перенести правую часть налево, то уравнение станет выглядеть примерно так:

Это — уравнение окружности в общем виде. Здесь радиус и центр окружности уже не выделены явно, и в задачах обычно просят их найти именно по общему виду уравнения окружности.

Способ решения такого рода задач следующий:

Перегруппируем слагаемые уравнения

  • Для каждой скобки применим метод выделения полного квадрата (подробнее смотри тут — Метод выделения полного квадрата), то есть заменим выражение вида на выражение вида . С учетом того, что коэффициенты при квадратах равны единице, а свободный член можно принять за ноль, формула для вычисления h и k упрощаются.
  • Как видим, выражение в конце это уравнение окружности в стандартном виде, из которого уже легко получить и координаты центра окружности и ее радиус. Если же справа получилось отрицательное число — значит заданное вначале уравнение не является уравнением окружности (бывают задачи и на такую проверку). Калькулятор тоже проверяет это условие.

    Для решения обратной задачи — нахождения общего уравнения окружности по координатам центра и радиусу — можно использовать калькулятор Уравнение окружности по заданному центру и радиусу в различных формах

    Уравнение окружности.

    Окружностью принято обозначать множество всех точек плоскости, равноудаленных от одной точки – от центра.

    В формулировке окружности упоминается расстояние между точкой окружности и центром.

    Формула расстояния между двумя точками М11; у1) и М22; у2) имеет вид:

    ,

    Применив формулу и формулировку окружности, получаем уравнение окружности с центром в точке С (х0; у0) и радиусом r.

    Отметим произвольную точку М(х; у) на этой окружности.

    .

    Предположим, что М принадлежит окружности с центром С и радиусом r, то МС = r.

    Следовательно, МС 2 = r 2 и координаты точки М удовлетворяют уравнению окружности (х – х0 ) 2 +(у – у0 ) 2 = r 2 .

    Из выше изложенного делаем вывод, что уравнение окружности с центром в точке С (х0; у0) и радиусом r имеет вид:

    В случае когда центр окружности совпадает с началом координат, то получаем частный случай уравнения окружности с центром в точке О (0;0):

    источники:

    http://planetcalc.ru/9507/

    http://www.calc.ru/Uravneniye-Okruzhnosti.html

    Если окружность задана уравнением вида

        [{(x - a)^2} + {(y - b)^2} = {R^2},]

    найти центр (a;b) и радиус R такой окружности несложно.

    Примеры.

    Определить по уравнению окружности координаты её центра и радиуса:

        [1){(x - 3)^2} + {(y - 7)^2} = 4;]

        [2){(x + 2)^2} + {(y - 5)^2} = 1;]

        [3){x^2} + {(y + 3)^2} = 9;]

        [4){(x - 6)^2} + {y^2} = 5;]

        [5){x^2} + {y^2} = 11.]

    Решение:

        [1){(x - 3)^2} + {(y - 7)^2} = 4;]

    a=3, b=7, R²=4.

    Таким образом, центр данной окружности — точка (3;7), радиус R=2.

        [2){(x + 2)^2} + {(y - 5)^2} = 1;]

    a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.

        [3){x^2} + {(y + 3)^2} = 9;]

    a=0, b=-3, R²=9.

    Центр окружности — (0;-3), радиус R=3.

        [4){(x - 6)^2} + {y^2} = 5;]

    a=6, b=0, R²=5.

    Центр — в точке (6;0), радиус R=√5.

        [5){x^2} + {y^2} = 11.]

    Это уравнение задаёт окружность с центром в начале координат. Центр — O(0;0), радиус R=√11.

    Чтобы найти центр и радиус окружности, заданной уравнением вида

        [{x^2} + {y^2} - 2ax - 2by + c = 0,]

    нужно дополнить его до полных квадратов, чтобы привести к привычному виду.

    Для этого сначала сгруппируем слагаемые

        [({x^2} - 2ax) + ({y^2} - 2by) + c = 0,]

    затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)

        [({x^2} - 2ax + {a^2}) - {a^2} + ({y^2} - 2by + {b^2}) - {b^2} + c = 0.]

    Отсюда

        [{(x - a)^2} + {(y - b)^2} + c - {a^2} - {b^2} = 0,]

        [{(x - a)^2} + {(y - b)^2} = {a^2} + {b^2} - c.]

    При a²+b²-c>0 это уравнение задаёт окружность с радиусом

        [R = sqrt {{a^2} + {b^2} - c} .]

    При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).

    При a²+b²-c<0 нет ни одной точки, удовлетворяющей этому уравнению.

    Примеры.

    Найти координаты центра и радиус окружности:

        [1){x^2} + {y^2} + 10x - 6y - 15 = 0;]

        [2){x^2} + {y^2} - 5x + 4 = 0;]

        [3)3{x^2} + 3{y^2} - 4x - 9y + 4 = 0.]

    Решение:

        [1){x^2} + {y^2} + 10x - 6y - 15 = 0]

    Группируем слагаемые

        [({x^2} + 10x) + ({y^2} - 6y) - 15 = 0]

    Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:

        [{x^2} + 10x = ({x^2} + 2 cdot x cdot 5 + {5^2}) - {5^2}.]

    Аналогично

        [{y^2} - 6y = ({y^2} - 2 cdot y cdot 3 + {3^2}) - {3^2}.]

    Таким образом,

        [({x^2} + 2 cdot x cdot 5 + {5^2}) - {5^2} + ({y^2} - 2 cdot y cdot 3 + {3^2}) - {3^2} - 15 = 0]

        [{(x + 5)^2} + {(y - 3)^2} - 25 - 9 - 15 = 0]

        [{(x + 5)^2} + {(y - 3)^2} = 49]

    Центром этой окружности является точка (-5;3), радиус R=7.

        [2){x^2} + {y^2} - 5x + 4 = 0]

        [({x^2} - 5x) + {y^2} + 4 = 0]

        [({x^2} - 2 cdot x cdot 2,5 + {2,5^2}) - {2,5^2} + {y^2} + 4 = 0]

        [{(x - 2,5)^2} + {y^2} + 4 - 6,25 = 0]

        [{(x - 2,5)^2} + {y^2} = 2,25]

    Центр окружности — точка (2,5;0), радиус R=1,5.

        [3)3{x^2} + 3{y^2} - 4x - 9y + 4 = 0]

    Разделим обе части уравнения на 3:

        [{x^2} + {y^2} - frac{4}{3}x - 3y + frac{4}{3} = 0]

    Далее — аналогично

        [({x^2} - frac{4}{3}x) + ({y^2} - 3y) + frac{4}{3} = 0]

        [({x^2} - 2 cdot x cdot frac{2}{3} + {(frac{2}{3})^2}) - {(frac{2}{3})^2} + ({y^2} - 2 cdot y cdot frac{3}{2} + {(frac{3}{2})^2}) - ]

        [ - {(frac{3}{2})^2} + frac{4}{3} = 0]

        [{(x - frac{2}{3})^2} + {(y - frac{3}{2})^2} - frac{{{4^{backslash 4}}}}{9} - frac{{{9^{backslash 9}}}}{4} + frac{{{4^{backslash 12}}}}{3} = 0]

        [{(x - frac{2}{3})^2} + {(y - frac{3}{2})^2} = frac{{49}}{{36}}]

    Центр этой окружности лежит в точке

        [(frac{2}{3};frac{3}{2}),R = frac{7}{6}.]

    Как найти координаты центра окружности

    Окружность − геометрическое место точек плоскости, равноудаленных от центра на некоторое расстояние, называемое радиусом. Если задана нулевая точка отсчета, единичный отрезок и направление координатных осей, центр окружности будет характеризоваться определенными координатами. Как правило, окружность рассматривают в декартовой прямоугольной системе координат.

    Как найти координаты центра окружности

    Инструкция

    Аналитически окружность задается уравнением вида (x-x0)²+(y-y0)²=R², где x0 и y0 − координаты центра окружности, R − ее радиус. Итак, центр окружности (x0;y0) здесь задан в явном виде.

    Пример. Установите центр фигуры, заданной в декартовой системе координат уравнением (x-2)²+(y-5)²=25.Решение. Данное уравнение является уравнением окружности. Ее центр имеет координаты (2;5). Радиус такой окружности равен 5.

    Уравнение x²+y²=R² соответствует окружности с центром в начале координат, то есть, в точке (0;0). Уравнение (x-x0)²+y²=R² означает, что центр окружности имеет координаты (x0;0) и лежит на оси абсцисс. Вид уравнения x²+(y-y0)²=R² говорит о расположении центра с координатами (0;y0) на оси ординат.

    Общее уравнение окружности в аналитической геометрии запишется как: x²+y²+Ax+By+C=0. Чтобы привести такое уравнение к выше обозначенному виду, надо сгруппировать члены и выделить полные квадраты: [x²+2(A/2)x+(A/2)²]+[y²+2(B/2)y+(B/2)²]+C-(A/2)²-(B/2)²=0. Для выделения полных квадратов, как можно заметить, требуется добавлять дополнительные величины: (A/2)² и (B/2)². Чтобы знак равенства сохранялся, эти же величины надо вычесть. Прибавление и вычитание одного и того же числа не меняет уравнения.

    Таким образом, получается: [x+(A/2)]²+[y+(B/2)]²=(A/2)²+(B/2)²-C. Из этого уравнения уже видно, что x0=-A/2, y0=-B/2, R=√[(A/2)²+(B/2)²-C]. Кстати, выражение для радиуса можно упростить. Домножьте обе части равенства R=√[(A/2)²+(B/2)²-C] на 2. Тогда: 2R=√[A²+B²-4C]. Отсюда R=1/2·√[A²+B²-4C].

    Окружность не может быть графиком функции в декартовой системе координат, так как, по определению, в функции каждому x соответствует единственное значение y, а для окружности таких «игреков» будет два. Чтобы убедиться в этом, проведите перпендикуляр к оси Ox, пересекающий окружность. Вы увидите, что точек пересечения две.

    Но окружность можно представить как объединение двух функций: y=y0±√[R²-(x-x0)²]. Здесь x0 и y0, соответственно, представляют собой искомые координаты центра окружности. При совпадении центра окружности с началом координат объединение функций принимает вид: y=√[R²-x²].

    Обратите внимание

    Две окружности, имеющие центром точку с одними и теми же координатами, называются концентрическими. Если они заданы уравнениями (x-x0)²+(y-y0)²=R² и (x-x0′)²+(y-y0′)²=R’², тогда x0=x0′, y0=y0′. В общем уравнении для концентрических окружностей A1=A2 и B1=B2.

    Полезный совет

    Кстати, в физике окружность может рассматриваться как тонкое однородное кольцо. Центр этого кольца будет являться центром масс (или центром инерции) такого тела. Если кольцо имеет массу m и радиус r, а через центр перпендикулярно плоскости кольца провести ось, то момент инерции кольца относительно оси будет равен mr². Момент инерции принципиально важен при рассмотрении вращательного движения тела.

    Войти на сайт

    или

    Забыли пароль?
    Еще не зарегистрированы?

    This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

    Improve Article

    Save Article

    Like Article

  • Read
  • Discuss
  • Improve Article

    Save Article

    Like Article

    Given two endpoint of diameter of a circle (x1, y1) and (x2, y2) find out the center of a circle. 
    Examples : 
     

    Input  : x1 = -9, y1 = 3, and 
             x2 = 5, y2 = –7
    Output : -2, –2
    
    Input  :  x1 = 5, y1 = 3 and 
              x2 = –10 y2 = 4
    Output : –2.5, 3.5

    Midpoint Formula: 
    The midpoint of two points, (x1, y2) and (x2, y2) is : M = ((x 1 + x 2) / 2, (y 1 + y 2) / 2) 
    The center of the circle is the mid point of its diameter so we calculate the mid point of its diameter by using midpoint formula. 
     

    center of the circle using endpoints of diameter

    C++

    #include <iostream>

    using namespace std;

    void center(int x1, int x2,

                int y1, int y2)

    {

        cout << (float)(x1 + x2) / 2 << 

              ", " << (float)(y1 + y2) / 2;

    }

    int main()

    {

        int x1 = -9, y1 = 3, x2 = 5, y2 = -7;

        center(x1, x2, y1, y2);

        return 0;

    }

    Java

    class GFG {

        static void center(int x1, int x2, 

                                int y1, int y2) 

        {

            System.out.print((float)(x1 + x2) / 2 

                + ", " + (float)(y1 + y2) / 2);

        }

        public static void main(String arg[]) {

            int x1 = -9, y1 = 3, x2 = 5, y2 = -7;

            center(x1, x2, y1, y2);

        }

    }

    Python3

    def center(x1, x2, y1, y2) :

        print(int((x1 + x2) / 2), end= "")

        print(",", int((y1 + y2) / 2) )

    x1 = -9; y1 = 3; x2 = 5; y2 = -7

    center(x1, x2, y1, y2) 

    C#

    using System;

    class GFG {

        static void center(int x1, int x2, 

                                int y1, int y2) 

        {

            Console.WriteLine((float)(x1 + x2) / 2

                    + ", " + (float)(y1 + y2) / 2);

        }

        public static void Main() {

            int x1 = -9, y1 = 3, x2 = 5, y2 = -7;

            center(x1, x2, y1, y2);

        }

    }

    PHP

    <?php

    function center($x1, $x2, $y1, $y2)

    {

        echo((float)($x1 + $x2) / 2 . ", " .

                    (float)($y1 + $y2) / 2);

    }

    $x1 = -9; $y1 = 3; $x2 = 5; $y2 = -7;

    center($x1, $x2, $y1, $y2);

    ?>

    Javascript

    <script>

        function center(x1, x2, 

                         y1, y2) 

        {

            document.write((x1 + x2) / 2 

                + ", " + (y1 + y2) / 2);

        }

             let x1 = -9, y1 = 3, x2 = 5, y2 = -7;

            center(x1, x2, y1, y2);

    </script>

    Output : 
     

    -2, -2

    Time complexity: O(1)
    Auxiliary Space: O(1) 

    Last Updated :
    20 Feb, 2023

    Like Article

    Save Article

    Содержание:

    Окружность:

    Определение: Кривой второго порядка называется линия, описываемая уравнением Окружность - определение и вычисление с примерами решения

    Замечание: Если коэффициенты Окружность - определение и вычисление с примерами решения

    При определенных значениях параметров, входящих в это уравнение, оно дает канонические у равнения окружности, эллипса (не путать с овалом), гиперболы и параболы. Рассмотрим эти кривые второго порядка в указанной последовательности.

    Определение: Окружностью называется геометрическое место точек равноудаленных от выделенной точки Окружность - определение и вычисление с примерами решения называемой центром окружности, на расстояние R, которое называется радиусом окружности.

    Получим уравнение окружности (Рис. 27). Пусть точка М(х;у) лежит на окружности:

    Окружность - определение и вычисление с примерами решения

    Рис. 27. Вывод уравнения окружности.

    Из рисунка видно, что по теореме Пифагора Окружность - определение и вычисление с примерами решения которое определяет уравнение окружности (Рис. 28): Окружность - определение и вычисление с примерами решения

    Рис. 28. Окружность. Окружность - определение и вычисление с примерами решения

    Если Окружность - определение и вычисление с примерами решения то уравнение принимает вид Окружность - определение и вычисление с примерами решения который называется каноническим уравнением окружности.

    Пример:

    Составить уравнение окружности, центр которой совпадает с точкой М (2; 1), прямая линия Окружность - определение и вычисление с примерами решения является касательной к окружности.

    Окружность - определение и вычисление с примерами решения

    Решение:

    Радиус окружности равен расстоянию от центра окружности точки М (2; 1) до прямой l, т.е.

    Окружность - определение и вычисление с примерами решения

    В уравнении окружности Окружность - определение и вычисление с примерами решения таким образом оно имеет вид: Окружность - определение и вычисление с примерами решения

    Пример:

    Составить уравнение окружности, касающейся двух параллельных прямых Окружность - определение и вычисление с примерами решения причем одной из них в т. А (1; 2).

    Окружность - определение и вычисление с примерами решения

    Решение:

    Прежде всего определим, на какой из прямых Окружность - определение и вычисление с примерами решения или Окружность - определение и вычисление с примерами решениялежит точка A(1; 2). Для этого подставим ее координаты в уравнения прямых Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения следовательно, точка A(1; 2) принадлежит линии Окружность - определение и вычисление с примерами решения(в сокращенной форме это предложение пишут так: Окружность - определение и вычисление с примерами решения где значок Окружность - определение и вычисление с примерами решения означает “принадлежит”. Таким образом, диаметр окружности D равен расстоянию от точки A(1; 2) до прямой Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    а радиус окружности Окружность - определение и вычисление с примерами решения Найдём координаты центра окружности точки Окружность - определение и вычисление с примерами решения которая делит отрезок АВ пополам. Вначале составим уравнение прямой (АВ) и вычислим координаты точки Окружность - определение и вычисление с примерами решения перейдем от общего уравнения прямой Окружность - определение и вычисление с примерами решения к уравнению прямой с угловым коэффициентом Окружность - определение и вычисление с примерами решения Так как прямаяОкружность - определение и вычисление с примерами решениято её угловой коэффициент Окружность - определение и вычисление с примерами решения Прямая (АВ) проходит через известную точку A(1;2), следовательно, Окружность - определение и вычисление с примерами решения Отсюда находим Окружность - определение и вычисление с примерами решения Таким образом,уравнение прямой (АВ):Окружность - определение и вычисление с примерами решения

    Найдем координаты точки B, которая является пересечением прямых Окружность - определение и вычисление с примерами решения и (АВ), т.е. решим систему линейных алгебраических уравнений, составленную из уравнений прямых Окружность - определение и вычисление с примерами решения и (АВ): (В): Окружность - определение и вычисление с примерами решения Подставим выражение для переменной у из второго у равнения в первое, получим Окружность - определение и вычисление с примерами решения Подставив это значение во второе уравнение системы, найдем Окружность - определение и вычисление с примерами решения т.е. Окружность - определение и вычисление с примерами решения

    Для вычисления координат точки О применим формулы деления отрезка пополам (О): Окружность - определение и вычисление с примерами решения в этой формуле Окружность - определение и вычисление с примерами решения (координаты точки О), Окружность - определение и вычисление с примерами решения (координаты точки А), Окружность - определение и вычисление с примерами решения (координаты точки В), следовательно, Окружность - определение и вычисление с примерами решения т.е. координаты точки О Окружность - определение и вычисление с примерами решения

    Таким образом, уравнение искомой окружности имеет вид: Окружность - определение и вычисление с примерами решения

    Окружность в высшей математике

    Рассмотрим уравнение

    Окружность - определение и вычисление с примерами решения

    которое получается из уравнения (I), если положить Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения.

    Если в формулу, выражающую расстояние между двумя точками, подставить Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения, то получим Окружность - определение и вычисление с примерами решения Из уравнения (1) находим, что Окружность - определение и вычисление с примерами решения, т. е. Окружность - определение и вычисление с примерами решения. Это значит, что все точки Окружность - определение и вычисление с примерами решения, координаты которых удовлетворяют уравнению (1), находятся на расстоянии Окружность - определение и вычисление с примерами решения от начала координат. Следовательно, геометрическое место точек, координаты которых удовлетворяют уравнению (1), есть окружность радиуса Окружность - определение и вычисление с примерами решения с центром в начале координат. Аналогично получаем, что уравнение Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения определяет окружность радиуса Окружность - определение и вычисление с примерами решения с центром в точке Окружность - определение и вычисление с примерами решения.

    Пример:

    Найдем уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом, равным 10.

    Решение:

    ПолагаяОкружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения получим Окружность - определение и вычисление с примерами решения.

    Разрешим это уравнение относительно Окружность - определение и вычисление с примерами решения, будем иметь

    Окружность - определение и вычисление с примерами решения

    и

    Окружность - определение и вычисление с примерами решения

    Первое из этих уравнений есть уравнение верхней половины окружности, второе—нижней.

    Центральный угол. Градусная мера дуги

    Дуга окружности. Если отметить на окружности точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения, то окружность разделится на две дуги: большую дугу (мажорная дуга) и меньшую дугу (минорная дуга). Если точка Окружность - определение и вычисление с примерами решения является какой-либо точкой дуги Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения. Если точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения являются концами диаметра, го каждая дуга является полуокружностью.

    Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

    Центральный угол. Угол, вершина которого находится в центре окружности, называется центральным углом. Дугу окружности можно измерять в градусах. Градусная мера дуги равна градусной мере соответствующего центрального угла: Окружность - определение и вычисление с примерами решения

    Сумма всех центральных углов окружности, не имеющих общую внутреннюю точку, равна Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Дуги окружности и их величины

    Окружность - определение и вычисление с примерами решения

    Пример: Окружность - определение и вычисление с примерами решения минорная дуга: Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения мажорная дуга: Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

    Конгруэнтные дуги

    В окружности конгруэнтным центральным углам соответствуют конгруэнтные дуги и наоборот.

    Если Окружность - определение и вычисление с примерами решения

    Если Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Длина дуги

    Какую часть составляет центральный угол от всей окружности, такую же часть длина дуги составляет от длины всей окружности.

    Длина дуги в Окружность - определение и вычисление с примерами решения равна Окружность - определение и вычисление с примерами решения части длины окружности.

    Длина дуги, соответствующей центральному углу с градусной мерой Окружность - определение и вычисление с примерами решения, составляет Окружность - определение и вычисление с примерами решения части длины окружности: Окружность - определение и вычисление с примерами решения

    Длина дуги выражается единицами измерения длины (мм, см, м, и т.д.)

    Окружность - определение и вычисление с примерами решения

    Пример №1

    Длина окружности равна 72 см. Найдите длину дуги, соответствующей центральному углу Окружность - определение и вычисление с примерами решения.

    Решение:

    Так как центральный угол Окружность - определение и вычисление с примерами решения составляет Окружность - определение и вычисление с примерами решения часть полного угла, то длина искомой дуги: Окружность - определение и вычисление с примерами решения

    Пример №2

    Найдите длину дуги, соответствующей центральному углу Окружность - определение и вычисление с примерами решения в окружности радиусом 15 см.

    Решение: подставляя значения Окружность - определение и вычисление с примерами решения в формулу длины дуги находим: Окружность - определение и вычисление с примерами решения

    Окружность и хорда

    Теорема о конгруэнтных хордах

    Теорема 1. Хорды, стягивающие конгруэнтные дуги окружности, конгруэнтны.

    Обратная теорема 1. Дуги, стягиваемые конгруэнтными хордами окружности, конгруэнтны.

    1)Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения

    2)Если Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Доказательство теоремы 1:

    Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Теорема о серединном перпендикуляре хорд

    Теорема 2.

    Диаметр, перпендикулярный хорде, делит хорду и соответствующую дугу пополам.

    Если Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Доказательство теоремы 2.

    Дано: Окружность - определение и вычисление с примерами решения— центральный угол, Окружность - определение и вычисление с примерами решения

    Докажите: Окружность - определение и вычисление с примерами решения

    Начертите радиусы Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения окружности.

    Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Следствие 1. Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и ее дугу пополам.

    Следствие 2. Центр окружности расположен на серединном перпендикуляре хорды. Серединный перпендикуляр хорды проходит через центр окружности.

    Пример: Найдите расстояние от центра до хорды длиной 30 единиц в окружности радиусом 17 единиц. Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения. Из Окружность - определение и вычисление с примерами решения по теореме Пифагора имеем: Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Теорема о хордах, находящихся на одинаковом расстоянии от центра окружности

    Теорема 3.

    Конгруэнтные хорды окружности находятся на одинаковом расстоянии от центра окружности.

    Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения

    Обратная теорема 3. Хорды, находящиеся на одинаковом расстоянии от центра окружности, конгруэнтны.

    Окружность - определение и вычисление с примерами решения

    Доказательство теоремы 3

    Дано: Окружность с центром Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Докажите: Окружность - определение и вычисление с примерами решения

    Доказательство (текстовое): Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и стягивающую ее дугу пополам. Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения — серединные перпендикуляры конгруэнтных хорд Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения. Окружность - определение и вычисление с примерами решения, так как они являются половиной конгруэнтных хорд. Начертим радиусы окружности Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения: Окружность - определение и вычисление с примерами решения. Прямоугольные треугольники, Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения конгруэнтны (по катету и гипотенузе). Так как Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения являются соответствующими сторонами данных треугольников, то они конгруэнтны: Окружность - определение и вычисление с примерами решения. Теорема доказана.

    Задача. Хорды Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения находятся на одинаковом расстоянии от центра окружности. Окружность - определение и вычисление с примерами решения. Если радиус окружности равен 41 единице, то найдите Окружность - определение и вычисление с примерами решения.

    Решение: Так как хорды Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения находятся на одинаковом расстоянии от центра, то они конгруэнтны: Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения Соединим точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения с точкой Окружность - определение и вычисление с примерами решения В прямоугольном треугольнике Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения

    Так как Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Угол, вписанный в окружность

    Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется углом вписанным в окружность. Дуга, соответствующая углу, вписанному в окружность, называется дугой, на которую опирается этот угол.

    Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения является углом вписанным в окружность с центром Окружность - определение и вычисление с примерами решения, а Окружность - определение и вычисление с примерами решения дуга, на которую опирается этот угол. Ниже показаны три разных угла, вписанных в окружность.

    Окружность - определение и вычисление с примерами решения

    Угол, вписанный в окружность:

    Теорема 1. Градусная мера угла, вписанного в окружность, равна половине градусной меры дуги, на которую он опирается. Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Доказательство (текстовое): Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения радиусы окружности и Окружность - определение и вычисление с примерами решения равнобедренный треугольник. Значит, Окружность - определение и вычисление с примерами решения Так как Окружность - определение и вычисление с примерами решения является внешним углом Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения Если примем, что Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения Так как градусные меры центрального угла и опирающейся на него дуги равны, то Окружность - определение и вычисление с примерами решения Следовательно, Окружность - определение и вычисление с примерами решения.

    Окружность - определение и вычисление с примерами решения

    Следствие 1. Угол, вписанный в окружность, равен половине соответствующего центрального угла.

    Следствие 2. Угол, вписанный в окружность и опирающийся на диаметр (полуокружность), является прямым углом.

    Окружность - определение и вычисление с примерами решения

    Конгруэнтные углы, вписанные в окружность

    Следствие 3. Вписанные углы, опирающиеся на одну и ту же дугу, конгруэнтны. Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения.

    Следствие 4. Вписанные углы, опирающиеся на конгруэнтные дуги, конгруэнтны. Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения.

    Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

    Касательная к окружности

    Касательная. Признак касательной

    Прямая, имеющая одну общую точку с окружностью, называется касательной. Теорема 1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

    Окружность - определение и вычисление с примерами решения

    Прямая Окружность - определение и вычисление с примерами решения является касательной к окружности. Значит, Окружность - определение и вычисление с примерами решения Обратная теорема (признак касательной): Прямая, проходящая через точку окружности и перпендикулярная радиусу, проведенному в эту точку, является касательной окружности.

    Прямая, касающаяся обеих окружностей, называется общей касательной этих окружностей. Окружности, касаясь друг друга изнутри или извне, могут иметь общую касательную в одной точке. Также окружности могут касаться одной касательной в разных точках.

    Окружность - определение и вычисление с примерами решения

    Две окружности могут иметь несколько общих касательных или вообще не иметь общих касательных.

    Окружность - определение и вычисление с примерами решения

    Доказательство теоремы 1. Если прямая Окружность - определение и вычисление с примерами решения — касательная к окружности, значит, она имеет единственную общую точку с окружностью. Допустим, что прямая Окружность - определение и вычисление с примерами решения не перпендикулярна радиусу Окружность - определение и вычисление с примерами решения Проведем Окружность - определение и вычисление с примерами решения и на прямой Окружность - определение и вычисление с примерами решения выделим отрезок Окружность - определение и вычисление с примерами решения Тогда Окружность - определение и вычисление с примерами решения так как Окружность - определение и вычисление с примерами решения Значит, точка Окружность - определение и вычисление с примерами решения также находится на окружности. То есть прямая Окружность - определение и вычисление с примерами решения имеет с окружностью две общие точки, что противоречит условию. Значит, Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Свойства касательных, проведенных к окружности из одной точки

    Теорема 2. Отрезки касательных к окружности, проведенных из одной точки, конгруэнтны, и центр окружности находится на биссектрисе угла, образованного касательными.

    Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения касательные, проведенные из точки Окружность - определение и вычисление с примерами решения к окружности с центром Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

    Углы, образованные секущими и касательными

    Прямая, имеющая две общие точки с окружностью, называется секущей окружности.

    Углы между двумя секущими

    Вершина угла находится внутри окружности

    Теорема. Если вершина угла, образованного двумя секущими, находится внутри окружности, то градусная мера угла равна полусумме величин дуг на которые опирается этот угол и угол вертикальный данному. Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

    Углы между касательной и секущей

    Вершина угла находится на окружности

    Теорема. Если вершина угла, образованного касательной и секущей, находится на окружности, то градусная мера угла равна половине градусной меры дуги, на которую он опирается.

    Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Углы, образованные касательной и секущей

    Вершина угла находится вне окружности

    Теорема 1.

    Градусная мера угла, образованного секущей и касательной, двумя касательными, двумя секущими окружности (если вершина угла находится вне окружности), равна половине разности градусных мер дуг, находящихся между сторонами угла.

    Окружность - определение и вычисление с примерами решения

    Отрезки секущих и касательных

    Длина отрезков, секущих окружность

    Теорема 1. При пересечении двух хорд, произведение отрезков одной хорды, полученных точкой пересечения, равно произведению отрезков второй хорды.

    Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

    Теорема 2. Если из точки Окружность - определение и вычисление с примерами решения провести две прямые, пересекающие окружность соответственно в точках Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения то верно равенство Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Теорема 3. Если из точки Окружность - определение и вычисление с примерами решения проведены прямая, которая пересекает окружность в точках Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения и касательная к окружности в точке Окружность - определение и вычисление с примерами решения то верно равенство: Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Уравнение окружности

    Используя формулу расстояния между двумя точками, можно написать уравнение окружности с радиусом Окружность - определение и вычисление с примерами решения и с центром в начале координат. Расстояние между центром окружности Окружность - определение и вычисление с примерами решения и ее любой точкой Окружность - определение и вычисление с примерами решения равно радиусу Окружность - определение и вычисление с примерами решения окружности.

    Окружность - определение и вычисление с примерами решения Расстояние между двумя точками

    Окружность - определение и вычисление с примерами решения Упрощение

    Окружность - определение и вычисление с примерами решения Возведение обеих частей в квадрат

    Окружность - определение и вычисление с примерами решения

    Уравнение окружности с центром в начале координат и радиусом Окружность - определение и вычисление с примерами решения: Окружность - определение и вычисление с примерами решения

    Например, уравнение окружности с центром в начале координат Окружность - определение и вычисление с примерами решения и радиусом 2 имеет вид: Окружность - определение и вычисление с примерами решения

    По формуле расстояния между центром окружности Окружность - определение и вычисление с примерами решения и точки Окружность - определение и вычисление с примерами решения на окружности радиуса Окружность - определение и вычисление с примерами решения имеем Окружность - определение и вычисление с примерами решенияВозведя в квадрат обе части, получаем уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Например, уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом 4 имеет вид: Окружность - определение и вычисление с примерами решения

    Пример №3

    Постройте на координатной плоскости окружность, заданную уравнением Окружность - определение и вычисление с примерами решения

    Решение: Напишем уравнение в виде Окружность - определение и вычисление с примерами решения Как видно, Окружность - определение и вычисление с примерами решения

    Отметим 4 точки, находящиеся на расстоянии 5 единиц от начала координат. Например, Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения Проведем окружность через эти точки.

    Окружность - определение и вычисление с примерами решения

    Пример №4

    Точка Окружность - определение и вычисление с примерами решения находится на окружности, центром которой является начало координат. Напишите уравнение этой окружности.

    Решение: Записав координаты точки Окружность - определение и вычисление с примерами решения в уравнении Окружность - определение и вычисление с примерами решения, получим: Окружность - определение и вычисление с примерами решения Уравнение этой окружности: Окружность - определение и вычисление с примерами решения

    Пример №5

    Найдем центр и радиус окружности, заданной уравнением Окружность - определение и вычисление с примерами решения

    Решение: Окружность - определение и вычисление с примерами решения

    Центр окружности точка Окружность - определение и вычисление с примерами решения Радиус Окружность - определение и вычисление с примерами решения

    Пример №6

    Мобильные телефоны работают с помощью передачи сигналов посредством спутников из одной передающей станции в другую. Компания мобильного оператора старается расположить передающую станцию так, чтобы обслуживать больше пользователей. Представим, что три больших города находятся в точках Окружность - определение и вычисление с примерами решения На координатной плоскости 1 единица равна расстоянию в 100 км. Передающая станция должна быть расположена в точке, находящейся на одинаковом расстоянии от этих городов. Напишите координаты этой точки и уравнение соответствующей окружности.

    Решение: Сначала соединим эти точки и найдем точку пересечения серединных перпендикуляров сторон полученного треугольника. Эта точка Окружность - определение и вычисление с примерами решения Эта точка, являясь центром окружности, показывает месторасположение станции. Расстояние между центром и любой из заданных точек является радиусом окружности, Окружность - определение и вычисление с примерами решения

    Уравнение окружности: Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Заметка. Определив линейные уравнения, соответствующие серединным перпендикулярам, можно найти координаты центра окружности решением системы уравнений.

    Координаты точек, находящихся на окружности, и тригонометрические отношения

    Если точка Окружность - определение и вычисление с примерами решения при повороте радиуса Окружность - определение и вычисление с примерами решения вокруг точки Окружность - определение и вычисление с примерами решения против движения часовой стрелки на угол Окружность - определение и вычисление с примерами решения преобразуется в точку Окружность - определение и вычисление с примерами решения то Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Для координат точки Окружность - определение и вычисление с примерами решения соответствующей углу поворота Окружность - определение и вычисление с примерами решения на окружности, верны формулы Окружность - определение и вычисление с примерами решения В этих формулах Окружность - определение и вычисление с примерами решения — угол, отсчитываемый от положительной оси Окружность - определение и вычисление с примерами решенияпротив движения часовой стрелки. Если точка Окружность - определение и вычисление с примерами решения не находится на оси ординат, то Окружность - определение и вычисление с примерами решения.

    Синусы смежных углов равны, а косинусы взаимно противоположны.

    Окружность - определение и вычисление с примерами решения

    Из этих формул при Окружность - определение и вычисление с примерами решения почленным делением получаем:

    Окружность - определение и вычисление с примерами решения

    С помощью формул, приведенных выше, вычисление синуса, косинуса, тангенса для тупого угла можно свести к вычислению синуса, косинуса, тангенса острого угла, соответственно.

    Сектор и сегмент

    Сектор часть круга, ограниченная центральным углом, образованным двумя радиусами и соответствующей этому углу дугой. Площадь сектора, соответствующего центральному углу, составляет ту часть площади круга, которую составляет центральный угол от полного угла.

    Окружность - определение и вычисление с примерами решения

    Например, часть круга, соответствующая центральному углу Окружность - определение и вычисление с примерами решения, составляет Окружность - определение и вычисление с примерами решения часть всего круга. Так как площадь круга Окружность - определение и вычисление с примерами решения, то площадь этого сектора будет Окружность - определение и вычисление с примерами решения Сегмент часть круга, ограниченная хордой и соответствующей дугой.

    Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    Площадь сектора

    Площадь сектора: Окружность - определение и вычисление с примерами решения

    Площадь сегмента: Окружность - определение и вычисление с примерами решения

    Указание: При нахождении площади сегмента, соответствующего большей дуге, к площади соответствующего сектора прибавляется площадь Окружность - определение и вычисление с примерами решения

    Окружность - определение и вычисление с примерами решения

    • Эллипс
    • Гипербола
    • Парабола
    • Многогранник
    • Сфера в геометрии
    • Шар в геометрии
    • Правильные многогранники в геометрии
    • Многогранники

    Понравилась статья? Поделить с друзьями:
  • Штаны топорщатся спереди как исправить
  • Как исправить ошибки на внешнем hdd
  • Как найти сохраненные страницы сайтов
  • Как скачать игру найди слова бесплатно
  • Как составить выражение к задаче для начинающих