Как найти центр окружности по функции

Если окружность задана уравнением вида

    [{(x - a)^2} + {(y - b)^2} = {R^2},]

найти центр (a;b) и радиус R такой окружности несложно.

Примеры.

Определить по уравнению окружности координаты её центра и радиуса:

    [1){(x - 3)^2} + {(y - 7)^2} = 4;]

    [2){(x + 2)^2} + {(y - 5)^2} = 1;]

    [3){x^2} + {(y + 3)^2} = 9;]

    [4){(x - 6)^2} + {y^2} = 5;]

    [5){x^2} + {y^2} = 11.]

Решение:

    [1){(x - 3)^2} + {(y - 7)^2} = 4;]

a=3, b=7, R²=4.

Таким образом, центр данной окружности — точка (3;7), радиус R=2.

    [2){(x + 2)^2} + {(y - 5)^2} = 1;]

a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.

    [3){x^2} + {(y + 3)^2} = 9;]

a=0, b=-3, R²=9.

Центр окружности — (0;-3), радиус R=3.

    [4){(x - 6)^2} + {y^2} = 5;]

a=6, b=0, R²=5.

Центр — в точке (6;0), радиус R=√5.

    [5){x^2} + {y^2} = 11.]

Это уравнение задаёт окружность с центром в начале координат. Центр — O(0;0), радиус R=√11.

Чтобы найти центр и радиус окружности, заданной уравнением вида

    [{x^2} + {y^2} - 2ax - 2by + c = 0,]

нужно дополнить его до полных квадратов, чтобы привести к привычному виду.

Для этого сначала сгруппируем слагаемые

    [({x^2} - 2ax) + ({y^2} - 2by) + c = 0,]

затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)

    [({x^2} - 2ax + {a^2}) - {a^2} + ({y^2} - 2by + {b^2}) - {b^2} + c = 0.]

Отсюда

    [{(x - a)^2} + {(y - b)^2} + c - {a^2} - {b^2} = 0,]

    [{(x - a)^2} + {(y - b)^2} = {a^2} + {b^2} - c.]

При a²+b²-c>0 это уравнение задаёт окружность с радиусом

    [R = sqrt {{a^2} + {b^2} - c} .]

При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).

При a²+b²-c<0 нет ни одной точки, удовлетворяющей этому уравнению.

Примеры.

Найти координаты центра и радиус окружности:

    [1){x^2} + {y^2} + 10x - 6y - 15 = 0;]

    [2){x^2} + {y^2} - 5x + 4 = 0;]

    [3)3{x^2} + 3{y^2} - 4x - 9y + 4 = 0.]

Решение:

    [1){x^2} + {y^2} + 10x - 6y - 15 = 0]

Группируем слагаемые

    [({x^2} + 10x) + ({y^2} - 6y) - 15 = 0]

Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:

    [{x^2} + 10x = ({x^2} + 2 cdot x cdot 5 + {5^2}) - {5^2}.]

Аналогично

    [{y^2} - 6y = ({y^2} - 2 cdot y cdot 3 + {3^2}) - {3^2}.]

Таким образом,

    [({x^2} + 2 cdot x cdot 5 + {5^2}) - {5^2} + ({y^2} - 2 cdot y cdot 3 + {3^2}) - {3^2} - 15 = 0]

    [{(x + 5)^2} + {(y - 3)^2} - 25 - 9 - 15 = 0]

    [{(x + 5)^2} + {(y - 3)^2} = 49]

Центром этой окружности является точка (-5;3), радиус R=7.

    [2){x^2} + {y^2} - 5x + 4 = 0]

    [({x^2} - 5x) + {y^2} + 4 = 0]

    [({x^2} - 2 cdot x cdot 2,5 + {2,5^2}) - {2,5^2} + {y^2} + 4 = 0]

    [{(x - 2,5)^2} + {y^2} + 4 - 6,25 = 0]

    [{(x - 2,5)^2} + {y^2} = 2,25]

Центр окружности — точка (2,5;0), радиус R=1,5.

    [3)3{x^2} + 3{y^2} - 4x - 9y + 4 = 0]

Разделим обе части уравнения на 3:

    [{x^2} + {y^2} - frac{4}{3}x - 3y + frac{4}{3} = 0]

Далее — аналогично

    [({x^2} - frac{4}{3}x) + ({y^2} - 3y) + frac{4}{3} = 0]

    [({x^2} - 2 cdot x cdot frac{2}{3} + {(frac{2}{3})^2}) - {(frac{2}{3})^2} + ({y^2} - 2 cdot y cdot frac{3}{2} + {(frac{3}{2})^2}) - ]

    [ - {(frac{3}{2})^2} + frac{4}{3} = 0]

    [{(x - frac{2}{3})^2} + {(y - frac{3}{2})^2} - frac{{{4^{backslash 4}}}}{9} - frac{{{9^{backslash 9}}}}{4} + frac{{{4^{backslash 12}}}}{3} = 0]

    [{(x - frac{2}{3})^2} + {(y - frac{3}{2})^2} = frac{{49}}{{36}}]

Центр этой окружности лежит в точке

    [(frac{2}{3};frac{3}{2}),R = frac{7}{6}.]

Как найти координаты центра окружности

Окружность − геометрическое место точек плоскости, равноудаленных от центра на некоторое расстояние, называемое радиусом. Если задана нулевая точка отсчета, единичный отрезок и направление координатных осей, центр окружности будет характеризоваться определенными координатами. Как правило, окружность рассматривают в декартовой прямоугольной системе координат.

Как найти координаты центра окружности

Инструкция

Аналитически окружность задается уравнением вида (x-x0)²+(y-y0)²=R², где x0 и y0 − координаты центра окружности, R − ее радиус. Итак, центр окружности (x0;y0) здесь задан в явном виде.

Пример. Установите центр фигуры, заданной в декартовой системе координат уравнением (x-2)²+(y-5)²=25.Решение. Данное уравнение является уравнением окружности. Ее центр имеет координаты (2;5). Радиус такой окружности равен 5.

Уравнение x²+y²=R² соответствует окружности с центром в начале координат, то есть, в точке (0;0). Уравнение (x-x0)²+y²=R² означает, что центр окружности имеет координаты (x0;0) и лежит на оси абсцисс. Вид уравнения x²+(y-y0)²=R² говорит о расположении центра с координатами (0;y0) на оси ординат.

Общее уравнение окружности в аналитической геометрии запишется как: x²+y²+Ax+By+C=0. Чтобы привести такое уравнение к выше обозначенному виду, надо сгруппировать члены и выделить полные квадраты: [x²+2(A/2)x+(A/2)²]+[y²+2(B/2)y+(B/2)²]+C-(A/2)²-(B/2)²=0. Для выделения полных квадратов, как можно заметить, требуется добавлять дополнительные величины: (A/2)² и (B/2)². Чтобы знак равенства сохранялся, эти же величины надо вычесть. Прибавление и вычитание одного и того же числа не меняет уравнения.

Таким образом, получается: [x+(A/2)]²+[y+(B/2)]²=(A/2)²+(B/2)²-C. Из этого уравнения уже видно, что x0=-A/2, y0=-B/2, R=√[(A/2)²+(B/2)²-C]. Кстати, выражение для радиуса можно упростить. Домножьте обе части равенства R=√[(A/2)²+(B/2)²-C] на 2. Тогда: 2R=√[A²+B²-4C]. Отсюда R=1/2·√[A²+B²-4C].

Окружность не может быть графиком функции в декартовой системе координат, так как, по определению, в функции каждому x соответствует единственное значение y, а для окружности таких «игреков» будет два. Чтобы убедиться в этом, проведите перпендикуляр к оси Ox, пересекающий окружность. Вы увидите, что точек пересечения две.

Но окружность можно представить как объединение двух функций: y=y0±√[R²-(x-x0)²]. Здесь x0 и y0, соответственно, представляют собой искомые координаты центра окружности. При совпадении центра окружности с началом координат объединение функций принимает вид: y=√[R²-x²].

Обратите внимание

Две окружности, имеющие центром точку с одними и теми же координатами, называются концентрическими. Если они заданы уравнениями (x-x0)²+(y-y0)²=R² и (x-x0′)²+(y-y0′)²=R’², тогда x0=x0′, y0=y0′. В общем уравнении для концентрических окружностей A1=A2 и B1=B2.

Полезный совет

Кстати, в физике окружность может рассматриваться как тонкое однородное кольцо. Центр этого кольца будет являться центром масс (или центром инерции) такого тела. Если кольцо имеет массу m и радиус r, а через центр перпендикулярно плоскости кольца провести ось, то момент инерции кольца относительно оси будет равен mr². Момент инерции принципиально важен при рассмотрении вращательного движения тела.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} — twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{»} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • центр:x^2+y^2=1

  • центр:x^2-6x+8y+y^2=0

  • центр:(x-2)^2+(y-3)^2=16

  • центр:x^2+(y+3)^2=16

  • центр:(x-4)^2+(y+2)^2=25

  • Показать больше

Описание

Пошаговое вычисление центра окружности по заданному уравнению

circle-function-center-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • Practice Makes Perfect

    Learning math takes practice, lots of practice. Just like running, it takes practice and dedication. If you want…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Содержание:

    • 1 Шаг 1
          • 1.0.0.1 Этот видеоурок доступен по абонементу
    • 2 1. Тема урока, введение
    • 3 2. График линейного уравнения
    • 4 3. График рационального уравнения
    • 5 4. График уравнения – гипербола
    • 6 5. График уравнения окружности
    • 7 6. Вывод

    Центр окружности имеет координаты О (a; b), радиус равен R.

    Пусть дано следующее уравнение окружности:

    Шаг 1

    Найдем координаты центра окружности.

    Для этого приравняем каждое из слагаемых к нулю:

    Следовательно, центр окружности будет находиться в точке О(3, -1).

    Как построить окружность?

    Окружностью называется фигура которая состоит из всех точек плоскости равноудаленных от данной точки. Эта точка называется центром окружности.

    Радиусом называется любой отрезок соединяющей точку окружности с ее центром.

    Чтобы построить окружность необходимо знать уравнение окружности:

    (х – а) 2 + (у – b) 2 = R 2

    Точка С(а;b) центр окружности, радиус R, х и у – координаты произвольной точки окружности.

    И так, чтобы построить окружность необходимо знать цент окружности и радиус. Рассмотрим пример:

    Пример №1:
    (х – 1) 2 + (у – 2) 2 = 4 2

    Найдем центр окружности:
    х – 1=0
    x=1

    Центр окружности будет находится в точке (1;2)

    Найдем радиус окружности:
    R 2 =4
    R 2 =2 2
    R=2

    Построим окружность. Отметим сначала центр окружности, а потом отложим с четырех сторон (вверх, вниз, влево и право) длину радиуса и отметим эту длину точками. Потом проведем окружность.

    Пример №2:
    х 2 + (у + 1) 2 =1

    Можно представить уравнение окружности ввиде:
    (х-0) 2 + (у + 1) 2 =1 2

    Найдем центр окружности:
    х=0

    Центр окружности будет находится в точке (0;–1)

    Найдем радиус окружности:
    R 2 =1
    R 2 =1 2
    R=1

    Построим окружность.

    Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

    Этот видеоурок доступен по абонементу

    У вас уже есть абонемент? Войти

    Тема: Системы уравнений

    Урок: Графики уравнений

    1. Тема урока, введение

    Мы рассматриваем рациональное уравнение вида 2. График линейного уравнения

    1. Линейное уравнение с двумя переменными

    x, y – в первой степени; a,b,c – конкретные числа.

    Пример:

    Графиком этого уравнения является прямая линия.

    Мы действовали равносильными преобразованиями – y оставили на месте, всё остальное перенесли в другую сторону с противоположными знаками. Исходное и полученное уравнения равносильны, т.е. имеют одно и то же множество решений. График этого уравнения мы умеем строить, и методика его построения такова: находим точки пересечения с координатными осями и по ним строим прямую.

    В данном случае

    Зная график уравнения, мы можем многое сказать о решениях исходного уравнения, а именно: если Если точка имеет абсциссу x, то ордината этой точки

    Значит, решением исходного уравнения является множество пар чисел

    У нас было уравнение, мы построили график, нашли решения. Множество всех пар – сколько их? Бесчисленное множество.

    3. График рационального уравнения

    2.

    Это рациональное уравнение,

    Найдем y, равносильными преобразованиями получаем

    Положим и получаем квадратичную функцию, ее график нам известен.

    Пример: Построить график рационального уравнения.

    Графиком является парабола, ветви направлены вверх.

    Найдем корни уравнения:

    Схематически изобразим график (Рис. 2).

    С помощью графика мы получаем всевозможные сведения и о функции, и о решениях рационального уравнения. Мы определили промежутки знакопостоянства, теперь найдем координаты вершины параболы.

    У уравнения Если мы зададим любое x, то получим точку

    Решением исходного уравнения является множество пар

    4. График уравнения – гипербола

    3. Построить график уравнения

    Необходимо выразить y. Рассмотрим два варианта.

    Графиком функции является гипербола, функция не определена при

    Функция убывающая.

    Если

    Если мы возьмем точку с абсциссой Решением исходного уравнения является множество пар

    Построенную гиперболу можно сдвигать относительно осей координат.

    Например, график функции – тоже гипербола – будет сдвинут на единицу вверх по оси ординат.

    5. График уравнения окружности

    4. Уравнение окружности

    Это рациональное уравнение с двумя переменными. Множеством решений являются точки окружности. Центр в точке радиус равен R (Рис. 4).

    Рассмотрим конкретные примеры.

    a.

    Приведем уравнение к стандартному виду уравнения окружности, для этого выделим полный квадрат суммы:

    Построим график уравнения (Рис. 5).

    b. Построить график уравнения

    Вспомним, что произведение равно нулю тогда и только тогда, когда один из сомножителей равен нулю, а второй существует.

    График заданного уравнения состоит из совокупности графиков первого и второго уравнений, т.е. двух прямых.

    Построим его (Рис. 6).

    Построим график функции Прямая будет проходить через точку (0; -1). Но как она пройдет – будет возрастать или убывать? Определить это нам поможет угловой коэффициент, коэффициент при x, он отрицательный, значит функция убывает. Найдем точку пересечения с осью ox, это точка (-1; 0).

    Аналогично строим график второго уравнения. Прямая проходит через точку (0; 1), но возрастает, т.к. угловой коэффициент положителен.

    Координаты всех точек двух построенных прямых и являются решением уравнения.

    6. Вывод

    Итак, мы проанализировали графики важнейших рациональных уравнений, они будут использоваться и в графическом методе и в иллюстрации других методов решения систем уравнений.

    Список рекомендованной литературы

    1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. – М.: Мнемозина, 2002.-192 с.: ил.

    2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

    3. Макарычев Ю. Н. Алгебра. 9 класс : учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

    4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. — М., 2011. — 287 с.

    5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

    6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

    Рекомендованные ссылки на интернет-ресурсы

    1. Раздел College.ru по математике (Источник).

    2. Интернет-проект «Задачи» (Источник).

    3. Образовательный портал «РЕШУ ЕГЭ» (Источник).

    Рекомендованное домашнее задание

    1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. № 95-102.

    Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

    Найти центр и радиус окружности

    [{(x - a)^2} + {(y - b)^2} = {R^2},]

    найти центр (a;b) и радиус R такой окружности несложно.

    Определить по уравнению окружности координаты её центра и радиуса:

    [1){(x - 3)^2} + {(y - 7)^2} = 4;]

    [2){(x + 2)^2} + {(y - 5)^2} = 1;]

    [3){x^2} + {(y + 3)^2} = 9;]

    [4){(x - 6)^2} + {y^2} = 5;]

    [5){x^2} + {y^2} = 11.]

    [1){(x - 3)^2} + {(y - 7)^2} = 4;]

    Таким образом, центр данной окружности — точка (3;7), радиус R=2.

    [2){(x + 2)^2} + {(y - 5)^2} = 1;]

    a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.

    [3){x^2} + {(y + 3)^2} = 9;]

    Центр окружности — (0;-3), радиус R=3.

    [4){(x - 6)^2} + {y^2} = 5;]

    Центр — в точке (6;0), радиус R=√5.

    [5){x^2} + {y^2} = 11.]

    Чтобы найти центр и радиус окружности, заданной уравнением вида

    [{x^2} + {y^2} - 2ax - 2by + c = 0,]

    нужно дополнить его до полных квадратов, чтобы привести к привычному виду.

    Для этого сначала сгруппируем слагаемые

    [({x^2} - 2ax) + ({y^2} - 2by) + c = 0,]

    затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)

    [({x^2} - 2ax + {a^2}) - {a^2} + ({y^2} - 2by + {b^2}) - {b^2} + c = 0.]

    [{(x - a)^2} + {(y - b)^2} + c - {a^2} - {b^2} = 0,]

    [{(x - a)^2} + {(y - b)^2} = {a^2} + {b^2} - c.]

    При a²+b²-c>0 это уравнение задаёт окружность с радиусом

    [R = sqrt {{a^2} + {b^2} - c} .]

    При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).

    При a²+b²-c<0 нет ни одной точки, удовлетворяющей этому уравнению.

    Найти координаты центра и радиус окружности:

    [1){x^2} + {y^2} + 10x - 6y - 15 = 0;]

    [2){x^2} + {y^2} - 5x + 4 = 0;]

    [3)3{x^2} + 3{y^2} - 4x - 9y + 4 = 0.]

    [1){x^2} + {y^2} + 10x - 6y - 15 = 0]

    [({x^2} + 10x) + ({y^2} - 6y) - 15 = 0]

    Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:

    Как найти радиус и центр окружности

    Окружность на плоскости — это множество точек на плоскости равноудаленных от точки центра. На рисунке данная точка обозначена C.

    Окружность радиуса R с центром в начале координат представляется уравнением:

    уравнение окружности
    Окружность радиуса R с центром в точке C(a;b) представляется уравнением:

    уравнение окружности
    окружность на плоскости
    Расстояние от центра окружности С(a;b) до точки M(x;y) называется радиусом окружности R (на рисунке красная линия ).
    Это уравнение можно записать в виде:

    Если уравнение помножить на любое число A, то получим

    Примечание
    Окружность относится к линии второго порядка, так как представляется уравнением второй степени.

    Необходимые условия для этого:
    1. Отсутствие в уравнение второй степени члена с произведением xy;
    2. Коэффициенты при x 2 и y 2 были равны в уравнение вида:

    3. Если выполняется неравенство

    Как найти радиус и центр окружности

    Уравнение Ax 2 +Bx+Ay 2 +Cy+D=0 если оно удовлетворяет примечаниям (1, 2 и 3), то тогда (a;b) и радиус R окружности можно найти по формулам:

    формулы радиус и центр окружности,

    Пример 1
    Уравнение 5x 2 -10x+5y 2 +20y-20=0
    Здесь
    A=5, B=-10, C=20, D=-20
    Оно удовлетворяет примечаниям 1, 2 и выполняется неравенство


    Решая, получаем что центр есть (1;-2), а радиус R=3

    Анимационный график окружности

    Пример 2
    Уравнение второй степени x 2 +4xy+y 2 =1 не является окружностью, так как в нём есть член 4xy.

    Пример 3
    Уравнение второй степени 4x 2 +9y 2 =36 не представляет окружность, так как в нём коэффициенты при x 2 и y 2 не равны.

    3433

    Уравнение окружности

    Окружностью называется множество точек плоскости, равноудаленных от данной точки, называемой центром.

    Если точка С — центр окружности, R — ее радиус, а М — произвольная точка окружности, то по определению окружности

    Равенство (1) есть уравнение окружности радиуса R с центром в точке С.

    Пусть на плоскости задана прямоугольная декартова система координат (рис. 104) и точка С(а; b) — центр окружности радиуса R. Пусть М(х; у) — произвольная точка этой окружности.

    Так как |СМ| = ( sqrt ), то уравнение (1) можно записать так:

    (x — a) 2 + (у — b) 2 = R 2 (2)

    Уравнение (2) называют общим уравнением окружности или уравнением окружности радиуса R с центром в точке (а; b). Например, уравнение

    (x l) 2 + (y + 3) 2 = 25

    есть уравнение окружности радиуса R = 5 с центром в точке (1; —3).

    Если центр окружности совпадает с началом координат, то уравнение (2) принимает вид

    x 2 + у 2 = R 2 . (3)

    Уравнение (3) называют каноническим уравнением окружности.

    Задача 1. Написать уравнение окружности радиуса R = 7 с центром в начале координат.

    Непосредственной подстановкой значения радиуса в уравнение (3) получим

    x 2 + у 2 = 49.

    Задача 2. Написать уравнение окружности радиуса R = 9 с центром в точке С(3; —6).

    Подставив значение координат точки С и значение радиуса в формулу (2), получим

    (х — 3) 2 + (у — (—6)) 2 = 81 или (х — 3) 2 + (у + 6) 2 = 81.

    Задача 3. Найти центр и радиус окружности

    (х + 3) 2 + (у —5) 2 =100.

    Сравнивая данное уравнение с общим уравнением окружности (2), видим, что а = —3, b = 5, R = 10. Следовательно, С(—3; 5), R = 10.

    Задача 4. Доказать, что уравнение

    x 2 + у 2 + 4х — 2y — 4 = 0

    является уравнением окружности. Найти ее центр и радиус.

    Преобразуем левую часть данного уравнения:

    x 2 + 4х + 4— 4 + у 2 — 2у +1—1—4 = 0

    (х + 2) 2 + (у — 1) 2 = 9.

    Это уравнение представляет собой уравнение окружности с центром в точке (—2; 1); радиус окружности равен 3.

    Задача 5. Написать уравнение окружности с центром в точке С(—1; —1), касающейся прямой АВ, если A (2; —1), B(— 1; 3).

    Напишем уравнение прямой АВ:

    или 4х + 3y —5 = 0.

    Так как окружность касается данной прямой, то радиус, проведенный в точку касания, перпендикулярен этой прямой. Для отыскания радиуса необходимо найти расстояние от точки С(—1; —1) — центра окружности до прямой 4х + 3y —5 = 0:

    Напишем уравнение искомой окружности

    (x +1) 2 + (y +1) 2 = 144 /25

    Пусть в прямоугольной системе координат дана окружность x 2 + у 2 = R 2 . Рассмотрим ее произвольную точку М(х; у) (рис. 105).

    Пусть радиус-вектор OM > точки М образует угол величины t с положительным направлением оси Ох, тогда абсцисса и ордината точки М изменяются в зависимости от t

    (0 2 = 3 cos 2 t, у 2 = 3 sin 2 t. Складывая эти равенства почленно, получаем

    Понравилась статья? Поделить с друзьями:
  • Как найти сумму координат вершины параллелограмма
  • Видео как найти руины
  • Тинькофф виртуальная карта как найти
  • Как найти угол бета в конусе
  • Как найти должника денежных средств