Как найти центр окружности в треугольнике находится


Download Article

Use the midpoint formula, the distance formula, or a compass to find circumcenter


Download Article

  • What is the circumcenter?
  • |

  • Finding Circumcenter with the Midpoint Formula
  • |

  • Finding Circumcenter with the Distance Formula
  • |

  • Drawing the Circumcenter with a Compass

You’ve got a stack of math problems in front of you and they’re all asking the same thing: find the circumcenter of the triangle. You have the triangle and the coordinates of its vertices, but where do you go from here? Well, you’ve come to the right place! In this article, we’ll tell you what formulas you need and how to use them to calculate the circumcenter’s coordinates. To help you visualize the circumcenter of a triangle, we’ll also give you step-by-step instructions on how to draw it with a compass. Read on to learn more!

Things You Should Know

  • Circumcenter is where the perpendicular lines at the midpoints of each triangle’s side intersect. Each vertex of the triangle is an equal distance from circumcenter.
  • Find circumcenter using a triangle’s vertices and the mid-point and slope-intercept formulas.
  • Alternatively, use the distance formula to find circumcenter.
  • Draw the circumcenter on a triangle using a compass. Find the perpendicular, bisecting lines on the triangle’s sides and mark where they intersect.
  1. Image titled Find Circumcenter Step 1

    Circumcenter is where a triangle’s perpendicular, bisecting lines intersect. If you draw a line at the midpoint of each triangle’s side, you’ll have 3 perpendicular lines bisecting each side. These perpendicular lines all meet together at a point; this is the circumcenter. The circumcenter also forms the triangle’s circumcircle. It is the center of a circle, that when drawn, passes through each vertex of the triangle.[1]

    • The main principle behind the circumcenter is that each vertex on the triangle is an equal distance away from the circumcenter.
    • On right triangles, the circumcenter is located at the midpoint of the hypotenuse, or the longest side of the triangle.[2]
    • On obtuse triangles, the circumcenter is located outside of the triangle.
    • On acute triangles, the circumcenter is located inside the triangle.
  2. Advertisement

  1. Image titled Find Circumcenter Step 2

    1

    Find the midpoints of the triangle using the vertices’ coordinates. Most math problems give you the (x, y) coordinates of each of the triangle’s vertices. The circumcenter is at the intersection of the perpendicular lines at the midpoint of the triangle’s sides. Because the distance from the circumcenter to each vertex is the same, you only need to find the midpoints of 2 sides.[3]

    • A triangle’s verticies are A = (-4, 2), B = (2, 4), and C = (4, -4).
      • Use the midpoint formula: [(x1 + x2)/2,( y1 + y2)/2].
      • Plug in the coordinates for line AB: [(-4 + 2)/2, (2 + 4)/2].
      • Plug in the coordinates for line BC: [(2 + 4)/2, (4 + -4)/2].
      • Solve each midpoint: line AB’s midpoint is (-1, 3) and line BC’s is (3, 0).
  2. Image titled Find Circumcenter Step 3

    2

    Calculate the slope of the 2 lines. The perpendicular lines at the triangle’s midpoints intersect to give you the circumcenter. So, calculate the slope of the lines to find out where they intersect. Because these lines are perpendicular, take the opposite reciprocal of the slope to find the perpendicular line’s slope. For example, a slope of 2/1 becomes -½.[4]

    • A triangles vertices are A = (-4, 2), B = (2, 4), and C = (4, -4).
      • Use the slope formula: m = (y2 — y1) / (x2 — x1).
      • Plug in the coordinates for line AB: m = (4 — 2) / (2 — -4).
      • Plug in the coordinates for line BC: m = (-4 — 4) / (4 — 2).
      • Solve each slope: line AB’s slope is m = ⅓ and line BC’s is m = -4.
      • Take the opposite reciprocal of the slope: Flip AB’s slope to 1/(⅓) and change the sign. The perpendicular slope is m = -3. BC’s perpendicular slope is m = ¼.
  3. Image titled Find Circumcenter Step 4

    3

    Solve each line’s point-slope equation to find the y-intercept. With your slopes identified for the perpendicular lines, use the slope-intercept formula of y — y1 = m(x — x1) to find the entire slope equation.[5]

    • Use the point-slope equation: y — y1 = m(x — x1)
      • Plug in the midpoint and slope for line AB: y — 3 = -3(x — -1).
      • Plug in the midpoint and slope for line BC: y — 0 = ¼(x — 3).
      • Solve and simplify each equation: line AB’s is y = -3x. Line BC’s is y = ¼x — ¾ (or 4y = x — 3 if you get rid of the fractions).
  4. Image titled Find Circumcenter Step 5

    4

    Set the equations equal to each other to find circumcenter. Use substitution to find where the 2 perpendicular lines intersect. Insert line AB’s y-value into line BC’s point-slope equation. This gives you an x-value. Then, plug the x-value into either point-slope equation to find the y-coordinate. Put the x and y values together to get the circumcenter’s coordinates![6]

    • Substitute line AB’s point-slope equation into line BC’s equation: (-3x) = ¼x — ¾.
      • Solve for x: x = -3/13.
      • Plug x into either equation: y = -3(-3/13) with y = 9/13. So, the circumcenter is located at (-3/13, 9/13).
  5. Advertisement

  1. Image titled Find Circumcenter Step 6

    1

    Use the distance formula to set 2 vertices equal to each other. Each vertex on the triangle is the same distance away from the circumcenter. If the circumcenter is O and the triangle’s vertices are A, B, and C, the distance between A to O is the same as B to O and C to O. So, set AO and BO equal to each other, as well as BO and CO, using the distance formula.[7]

    • A triangle’s vertices are A = (−2, 3), B = (2, −1), and C = (4, 0).
      • Use a simplified distance formula: (x2 — x1)2 + (y2 — y1)2.
      • Set A and B equal to each other: (-2 — x)2 + (3 — y)2 = (2 — x)2 + (-1 — y)2.
      • Set B and C equal to each other: (2 — x)2 + (-1 — y)2 = (4 — x)2 + (0 — y)2.
  2. Image titled Find Circumcenter Step 7

    2

    Solve the distance equations. Use the FOIL method (First, Outer, Inner, Last) to multiply the squared expressions together (i.e. (-2-x)2 in the example above). Then, simplify the expression by adding or subtracting the x, y, and numerical values together.[8]

    • Use FOIL to solve each equation.
      • For AO = BO: x2 + 4x + 4 + y2 − 6y + 9 = x2 − 4x + 4 + y2 + 2y +1
      • For BO = CO: x2 − 4x + 4 + y2 + 2y + 1= x2 − 8x + 16 + y2
      • Solve and simplify each equation: AO = BO results in y = x + 1. Solving BO = CO results in 4x + 2y = 11.
  3. Image titled Find Circumcenter Step 8

    3

    Substitute 1 equation into the 2nd to get the circumcenter’s x-value. To find the x-coordinate of the circumcenter, insert the first equation’s y-value in the second equation. Then, solve for x.[9]

    • Substitute AO = BO’s equation into BO = CO: 4x + 2(x + 1) = 11.
      • Expand the equation: 4x + 2x +2 = 11.
      • Solve for x: x = 3/2.
  4. Image titled Find Circumcenter Step 9

    4

    Insert the x-value in one of the equations to find the y-coordinate. Now that you know what the circumcenter’s x-coordinate is, solve for its y-coordinate. Just substitute x into one of the equations and solve. Then, put the x and y-values together to get the circumcenter’s coordinates![10]

    • Insert x into one of the equations: y = (3/2) + 1.
      • Solve for y: y = 5/2. So, the circumcenter’s coordinates are (3/2, 5/2).
  5. Advertisement

  1. Image titled Find Circumcenter Step 10

    1

    Use a compass to draw an arc through one of the triangle’s sides. Choose a side of the triangle and place the compass point on one of the line’s vertices; these are the points where 2 lines meet. Open the compass up so it’s a little more than half as long as the line segment. With the point in place, draw one continuous arc spanning below the triangle’s side, through it, and above it.[11]

  2. Image titled Find Circumcenter Step 11

    2

    Place the compass on the line’s other vertex and draw an arc. Using the same triangle side you chose, move the compass point to the line’s other vertex. Follow the same steps as above to draw an arc above and below this side, too.[12]

  3. Image titled Find Circumcenter Step 12

    3

    Use a ruler to draw a line through the points where the arcs intersect. With your 2 arcs drawn, you’ll see 2 points where they meet. Just take out a ruler and draw a straight line through these points, taking the line through the triangle’s side. This gives you the midpoint of this triangle line and the perpendicular, bisecting line.[13]

  4. Image titled Find Circumcenter Step 13

    4

    Follow the same steps for one of the triangle’s other sides. Place the compass point at the vertex of one of the other triangle sides. Adjust the compass so it’s open to about half the size of the line segment. Draw an arc, then move the compass to the side’s other vertex. Make the other arc line, then draw a straight line through the intersecting points.[14]

  5. Image titled Find Circumcenter Step 14

    5

    Find the circumcenter by marking where the 2 lines intersect. With your 2 perpendicular, bisecting lines drawn, simply mark where they intersect. Depending on the type of triangle you have, the circumcenter might be in the triangle, on one of its sides, or outside of the triangle.[15]

    • If you want, find the perpendicular line of the 3rd triangle side, too. You’ll see that its perpendicular, bisecting line also passes through the circumcenter.
  6. Image titled Find Circumcenter Step 15

    6

    Use the compass to draw the circumcircle around the triangle. Place the compass point at the circumcenter. Then, adjust the compass so the pencil reaches one of the triangle’s vertices. Draw the circle. As you go around the triangle, you’ll notice that the edges of the circle just touch each point of the triangle. This is because the triangle’s vertices are equidistant from the circumcenter.[16]

  7. Advertisement

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

References

About This Article

Thanks to all authors for creating a page that has been read 2,929 times.

Did this article help you?

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Фигура Рисунок Свойство
Серединные перпендикуляры
к сторонам треугольника
Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольника Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружности Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружности Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружности Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусов
Площадь треугольника
Радиус описанной окружности
Серединные перпендикуляры к сторонам треугольника

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольника

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружности

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Центр описанной окружности

Где находится центр описанной около треугольника окружности? Что можно сказать о центре окружности, описанной около многоугольника?

Центр описанной около треугольника окружности является точкой пересечения серединных перпендикуляров к сторонам треугольника.

окружность (O;R) — описанная около ∆ ABC.

O — точка пересечения серединных перпендикуляров к сторонам ∆ ABC.

Соединим отрезками точки O и A, O и C.

OA=OC (как радиусы), следовательно, треугольник AOC — равнобедренный с основанием AC (по определению).

По свойству равнобедренного треугольника, высота и медиана, проведенные к основанию AC, совпадают):

Следовательно, центр описанной окружности — точка O — лежит на прямой, перпендикулярной стороне AC и проходящей через ее середину, то есть на серединном перпендикуляре к AC.

Аналогично доказывается, что точка O лежит на серединном перпендикуляре к стороне AB.

Так как серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, то точка O — центр описанной около треугольника ABC окружности.

Что и требовалось доказать.

Аналогичные рассуждения можно применить и для многоугольника, около которого можно описать окружность.

Центр описанной около многоугольника окружности является точкой пересечения серединных перпендикуляров к сторонам этого многоугольника.

2 Comments

на мой взгляд у вас опечатка — «Соединим отрезками точки O и A, O и C.

OA=OB( написано ОВ вместо ОС) (как радиусы), следовательно, треугольник AOB — равнобедренный с основанием AC (по определению).»

Как найти центр окружности в треугольнике

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Свойства описанной около треугольника окружности. Теорема синусов

Фигура Рисунок Свойство
Серединные перпендикуляры
к сторонам треугольника
Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольника Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружности Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружности Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружности Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружности

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Серединные перпендикуляры к сторонам треугольника

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольника

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружности

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Треугольник вписанный в окружность

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = frac ab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

По теореме синусов,

Получаем, что . Угол — тупой. Значит, он равен .

. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

источники:

Центр описанной окружности

http://b4.cooksy.ru/articles/kak-nayti-tsentr-okruzhnosti-v-treugolnike

Как найти центр окружности с помощью линейки?

Ежели «кусок пластмассы» ровный, то его углы прямые, а значит перпендикуляр построить можно, а остальное дело техники.
Будем исходить из того, что:
1 Центр описанной вокруг прямоугольного треугольника окружности лежит на середине его гипотенузы, т. е. гипотенуза равна диаметру
2 Все диаметры пересекаются в центре окружности

Радиус описанной окружности лежит на пересечении медиан треугольника.
Берешь любые три точки на окружности, стоишь по ним треугольник,
далее проводишь медианы треугольника, их пересечение будет центром окружности.

А еще спроси у предыдущих ответчиков: «Как построить перпендикуляр ТОЛЬКО с помощью линейки? «

Как найти центр круга описанного вокруг треугольника?

Центр описанной окружности выпуклого n-угольника лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если около n-угольника описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности).

Как найти центр описанного треугольника?

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника. Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Как найти центр вписанной окружности в треугольник?

Окружность называют вписанной в треугольник, если все стороны треугольника касаются окружности. Её центр равноудалён от всех сторон, то есть должен находиться в точке пересечения биссектрис треугольника.

Как найти радиус окружности описанной около треугольника?

Для того чтобы найти радиус окружности, описанной вокруг произвольного треугольника, необходимо произведение его сторон разделить на четыре квадратных корня из полупериметра, умноженного на его разность с каждой стороной.

Где лежит центр окружности?

Центр описанной окружности Вокруг всякого треугольника можно описать окружность, при том единственным образом. Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.

Где находится центр вписанной в прямоугольный треугольник окружности?

Центр вписанной окружности треугольника (инцентр) — одна из замечательных точек треугольника, точка пересечения биссектрис треугольника.

Где находится центр вписанной и описанной окружности?

Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Как найти радиус вписанной в прямоугольный треугольник окружности?

В любой треугольник можно вписать окружность. Радиус такой окружности будет представлять собой квадратный корень из отношения разности полупериметра с каждой стороной к самому полупериметру.

Как найти радиус вписанной окружности в правильный треугольник?

В любой треугольник можно вписать окружность. Радиус такой окружности будет представлять собой квадратный корень из отношения разности полупериметра с каждой стороной к самому полупериметру.

Как найти длину окружности вписанной в треугольник?

Как найти длину окружности через стороны и площадь вписанного треугольника Перемножьте стороны треугольника. Поделите результат на площадь и на два. Умножьте полученное число на пи.

Как найти стороны треугольника вписанного в окружность?

Сторона треугольника

  1. Сторона треугольника вписанного в окружность, если известны две стороны и косинус угла между ними: [ a = sqrt ]
  2. Сторона треугольника вписанного в окружность, если известна сторона и два угла: [ a = frac]

Чему равен радиус окружности?

Если известен диаметр окружности Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Где находится центр окружности описанной около четырехугольника?

Если вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник — вписанным в эту окружность. Теоремы: Центром описанной окружности является точка пересечения серединных перпендикуляров к сторонам.

Где находится центр вписанной в трапецию окружности?

Центр вписанной окружности лежит на отрезке, соединяющем точки касания сторон треугольника и полувписанной окружности.

Где находится центр вписанной и описанной окружности в треугольнике?

Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Как относятся радиусы вписанной и описанной окружности?

, r — радиус вписанной окружности. То есть радиус вписанной окружности равен отношению площади треугольника к его полупериметру. — гипотенуза. Радиус окружности, описанной около треугольника, равен отношению произведения сторон треугольника к его учетверенной площади.

Когда совпадают центры вписанной и описанной?

а) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника (центры вписанной и описанной окружностей совпадают (рис.

Центр описанной окружности треугольника

Если треугольник вписан в окружность так, что его вершины располагаются на окружности, такая окружность называется описанной, а треугольник считается вписанным в данную окружность.

Центр окружности расположен в точке пересечения серединных перпендикуляров, проведенных к сторонам треугольника. Серединный перпендикуляр — прямая, которая проходит через середину отрезка, перпендикулярно ему.
Вокруг треугольника возможно описать только одну окружность.

Чтобы определить радиус R описанной окружности, необходимо произведение сторон треугольника (a × b × с) разделить на учетверенную S — площадь треугольника:
R = (a × b × с) / 4S.

Если окружность описана около равностороннего треугольника, радиус R равняется:
R = a /√3.

В том случае, когда окружность описана около прямоугольного треугольника, середина его гипотенузы (с ) является центром описанной окружности.
Радиус R составляет ½ гипотенузы: R = с/2.

Радиус окружности R также равняется медиане m, проведенной к гипотенузе: R = m.

Воспользовавшись онлайн калькулятором, вы сможете быстро и правильно определить координаты центра описанной окружности.

Где находится центр описанной около треугольника окружности? Что можно сказать о центре окружности, описанной около многоугольника?

Теорема.

Центр описанной около треугольника окружности является точкой пересечения серединных перпендикуляров к сторонам треугольника.

tsentr okruzhnosti opisannoy okolo treugolnika

Дано: ∆ ABC,

окружность (O;R) — описанная около ∆ ABC.

Доказать:

O — точка пересечения серединных перпендикуляров к сторонам ∆ ABC.

Доказательство:

tsentr opisannoy okruzhnostiСоединим отрезками точки O и A, O и C.

OA=OC (как радиусы), следовательно, треугольник AOC — равнобедренный с основанием AC (по определению).

tsentr opisannoy okruzhnosti dlya treugolnikaПо свойству равнобедренного треугольника, высота и медиана, проведенные к основанию AC, совпадают):

    [OF bot AC,AF = CF.]

Следовательно, центр описанной окружности — точка O — лежит на прямой, перпендикулярной стороне AC и проходящей через ее середину, то есть на серединном перпендикуляре к AC.

tsentr opisannoy okolo treugolnika okruzhnostiАналогично доказывается, что точка O лежит на серединном перпендикуляре к стороне AB.

Так как серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, то точка O — центр описанной около треугольника ABC окружности.

Что и требовалось доказать.

Замечание.

Аналогичные рассуждения можно применить и для многоугольника, около которого можно описать окружность.

Центр описанной около многоугольника окружности является точкой пересечения серединных перпендикуляров к сторонам этого многоугольника.

Как найти центр описанного круга?

Центр описанной окружности выпуклого n-угольника лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если около n-угольника описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности).

Как найти центр описанного треугольника?

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника. Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Как найти центр вписанной окружности в треугольник?

Окружность называют вписанной в треугольник, если все стороны треугольника касаются окружности. Её центр равноудалён от всех сторон, то есть должен находиться в точке пересечения биссектрис треугольника.

Как найти радиус окружности описанной около треугольника?

Для того чтобы найти радиус окружности, описанной вокруг произвольного треугольника, необходимо произведение его сторон разделить на четыре квадратных корня из полупериметра, умноженного на его разность с каждой стороной.

Где лежит центр окружности?

Центр описанной окружности Вокруг всякого треугольника можно описать окружность, при том единственным образом. Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.

Где находится центр вписанной в прямоугольный треугольник окружности?

Центр вписанной окружности треугольника (инцентр) — одна из замечательных точек треугольника, точка пересечения биссектрис треугольника.

Где находится центр вписанной и описанной окружности?

Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Как найти радиус вписанной в прямоугольный треугольник окружности?

В любой треугольник можно вписать окружность. Радиус такой окружности будет представлять собой квадратный корень из отношения разности полупериметра с каждой стороной к самому полупериметру.

Как найти радиус вписанной окружности в правильный треугольник?

В любой треугольник можно вписать окружность. Радиус такой окружности будет представлять собой квадратный корень из отношения разности полупериметра с каждой стороной к самому полупериметру.

Как найти длину окружности вписанной в треугольник?

Как найти длину окружности через стороны и площадь вписанного треугольника Перемножьте стороны треугольника. Поделите результат на площадь и на два. Умножьте полученное число на пи.

Как найти стороны треугольника вписанного в окружность?

Сторона треугольника

  1. Сторона треугольника вписанного в окружность, если известны две стороны и косинус угла между ними: [ a = sqrt{b^2+c^2 -2bc cdot cos alpha} ]
  2. Сторона треугольника вписанного в окружность, если известна сторона и два угла: [ a = frac{b · sin alpha }{sin β} ]

6 мар. 2022 г.

Чему равен радиус окружности?

Если известен диаметр окружности Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Где находится центр окружности описанной около четырехугольника?

Если вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник — вписанным в эту окружность. Теоремы: Центром описанной окружности является точка пересечения серединных перпендикуляров к сторонам.

Где находится центр вписанной в трапецию окружности?

Центр вписанной окружности лежит на отрезке, соединяющем точки касания сторон треугольника и полувписанной окружности.

Где находится центр вписанной и описанной окружности в треугольнике?

Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Как относятся радиусы вписанной и описанной окружности?

, r — радиус вписанной окружности. То есть радиус вписанной окружности равен отношению площади треугольника к его полупериметру. — гипотенуза. Радиус окружности, описанной около треугольника, равен отношению произведения сторон треугольника к его учетверенной площади.

Когда совпадают центры вписанной и описанной?

а) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника (центры вписанной и описанной окружностей совпадают (рис.

Понравилась статья? Поделить с друзьями:
  • Как найти файлы рабочего стола виндовс 10
  • Как найти площадь параллелограмма 8 класс определение
  • Как исправить неудачную форму бровей
  • Как найти контакты на телефоне которые исчезли
  • Как грамотно составить договор с самозанятым