Урок «Сфера. Уравнение сферы»
Краткое описание документа:
ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:
Продолжаем изучение сферы.
На прошлых занятиях вы познакомились с определением сферы и шара.
Вспомним, что сферой называется поверхность, состоящая из всех точек пространства, расположенных на заданном расстоянии от данной точки.
Данная точка — центр сферы.
Заданное расстояние — радиус сферы.
Прежде чем вывести уравнение сферы, познакомимся с понятием уравнения поверхности в пространстве.
Зададим прямоугольную систему координат Оxyz и некоторую поверхность F.
Уравнением поверхности F называется уравнение с тремя переменными x, y, z, если этому уравнению удовлетворяют координаты всех точек поверхности F и не удовлетворяют координаты точки, не принадлежащей этой поверхности.
1.Рассмотрим сферу радиуса R и с центром С(x0; y0; z0).
2.Найдём расстояние от произвольной точки М(x; y; z) до центра С( x0 ; y0 ; z0) по формуле для вычисления расстояния между двумя точками с заданными координатами.
3. Если точка М лежит на сфере, то отрезок МС равен радиусу R, то есть
4.В случае если точка М не принадлежит данной сфере, то R≠МС, значит, координаты точки М не удовлетворяют уравнению R2=(x-x0)2+(y-y0)2+(z-z0)2.
5. Таким образом, в прямоугольной системе координат Оxyz уравнение сферы с центром
С (x0 ; y0 ; z0) и радиусом R имеет вид:
Применим полученные знания при решении задач.
Записать уравнение сферы с центром в точке А, которая проходит через точку N, если А(-2;2;0) и N(5;0;-1).
1.Запишем уравнение сферы с центром
А (x0 ; y0 ; z0) и радиусом R:
2.Подставим соответствующие координаты центра сферы А в данное уравнение:
Уравнение сферы с центром в точке А с координатами (-2;2;0) примет вид:
3.Так как сфера проходит через точку N с координатами (5;0;-1), то её координаты удовлетворяют уравнению сферы, подставим координаты этой точки в полученное уравнение:
Таким образом, уравнение сферы с центром в точке А, которая проходит через точку N имеет вид:
Сфера задана уравнением:
1) Найти координаты центра и радиус сферы;
2) Найти значение m, при котором точки
А (0; m;2) и В (1;1; m-2) принадлежат данной сфере.
1. Уравнение данной сферы имеет вид:
x2+ y2+ z2+2y-4z=4 или x2+ y2+2y + z2-4z=4
Выделим полный квадрат для переменных y и z, для этого прибавим и одновременно вычтем 1 и 4 в левой части уравнения:
x2+ y2+2y+1-1 + z2-4z+4-4=4
Уравнение примет вид:
x2+( y+1)2+( z-2)2-5=4 или
Таким образом, центр сферы имеет координаты:
О (0;-1;2), радиус равен R=√9=3
2.Уравнение сферы с центром в точке О (0;-1;2) и радиусом R=3 имеет вид:
Точки А (0; m;2) и В (1;1; m-2) принадлежат данной сфере, значит их координаты удовлетворяют уравнению сферы. Подставим координаты этих точек в уравнение сферы и решим систему уравнений:
Упростим полученные уравнения, раскрывая скобки и приводя подобные слагаемые:
Таким образом, мы получили 4 значения m:
Несложно проверить, что при m=-4 и m=6 координаты точек А и В не удовлетворяют уравнению сферы. Проверьте самостоятельно.
Итак, при m=2 точки А (0; m;2) и В (1;1; m-2) принадлежат сфере, заданной уравнением
x2+ y2+ z2+2y-4z=4 с центром в точке
О (0;-1;2) и радиусом R=3.
—> —>
Инфоурок |
07.11.2014 |
Геометрия |
Видеоурок |
51611 |
1003 |
АвторДата добавленияРазделПодразделПросмотровНомер материала
© 2022 Проект «Уроки математики»
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено!
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако команда проекта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом на электронную почту службы поддержки сайта.
Сфера, шар, сегмент и сектор. Формулы и свойства сферы
Формула. Объём шара:
V = | 4 | π R 3 = | 1 | π D 3 |
3 | 6 |
S = 4 π R 2 = π D 2
Уравнение сферы
x 2 + y 2 + z 2 = R 2
( x — x 0) 2 + ( y — y 0) 2 + ( z — z 0) 2 = R 2
Основные свойства сферы и шара
Секущая, хорда, секущая плоскость сферы и их свойства
d m между секущей плоскостью и центром сферы всегда меньше радиуса R:
m r такого круга можно найти по формуле:
где R — радиус сферы (шара), m — расстояние от центра шара до секущей плоскости.
Касательная, касательная плоскость к сфере и их свойства
Формула. Объём сегмента сферы с высотой h через радиус сферы R:
S = π R(2 h + √ 2 h R — h 2 )
Формула. Объём сектора V с высотой O1H (h) через радиус шара OH (R):
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Геометрия. 11 класс
Конспект урока
Геометрия, 11 класс
Урок №8. Сфера и шар
Перечень вопросов, рассматриваемых в теме:
- что такое сфера, какие у неё есть элементы (центр, радиус, диаметр сферы);
- что такое шар и его элементы;
- уравнение сферы;
- формула для нахождения площади поверхности сферы;
- взаимное расположение сферы и плоскости;
- теорема о радиусе сферы, который проведён в точку касания и теорему обратную данной.
Глоссарий по теме:
Окружность – множество точек плоскости, равноудалённых от данной точки. Данная точка называется центром окружности, расстояние от центра до любой точки окружности называется радиусом окружности.
Круг – это часть плоскости, ограниченная окружностью.
Сфера – это поверхность, состоящая из всех точек пространства, расположенных на заданном расстоянии от данной точки, которую называют центром.
Тело, ограниченное сферой, называется шаром.
Шар можно описать и иначе. Шаром радиуса R с центром в точке О называется тело, которое содержит все точки пространства, расположенные от точки О на расстоянии, не превышающем R (включая О), и не содержит других точек.
– уравнение сферы радиуса R и центром С(x0; y0; z0).
Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка – точкой касания.
Сегмент шара — это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.
Сектором называется часть шара, ограниченная совокупностью всех лучей, исходящих из центра шара О и образующих круг на его поверхности с радиусом r.
Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия. 10–11 классы : учеб. для общеобразоват. организаций : базовый и углубл. уровни – М. : Просвещение, 2014. – 255, сс. 136-142.
Шарыгин И.Ф., Геометрия. 10–11 кл. : учеб. для общеобразоват. учреждений– М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 77-84.
Открытые электронные ресурсы:
Теоретический материал для самостоятельного изучения
1. Основные теоретические факты
По аналогии с окружностью сферу рассматривают как множество всех точек равноудалённых от заданной точки, но только всех точек не плоскости, а пространства.
Рисунок 1 – Сфера с центром в точке О и радиусом R
Данная точка О называется центром сферы, а заданное расстояние – радиусом сферы (обозначается R). Любой отрезок, соединяющий центр и какую-нибудь точку сферы, также называется радиусом сферы. Отрезок, соединяющий две точки сферы и проходящий через центр, называется диаметром (обозначается D). D=2R.
Сферой называется поверхность, состоящая из всех точек пространства, расположенных на заданном расстоянии от данной точки, которую называют центром.
Тело, ограниченное сферой, называется шаром.
Шар можно описать и иначе. Шаром радиуса R с центром в точке О называется тело, которое содержит все точки пространства, расположенные от точки О на расстоянии, не превышающем R (включая О), и не содержит других точек.
Сферу можно получить ещё одним способом — вращением полуокружности вокруг её диаметра, а шар – вращением полукруга вокруг его диаметра.
2. Уравнение сферы
Прежде чем вывести уравнение сферы введем понятие уравнения поверхности в пространстве. Для этого рассмотрим прямоугольную систему координат Oxyz и некоторую поверхность F. Уравнение с тремя переменными x, y, z называется уравнением поверхности F, если этому уравнению удовлетворяют координаты любой точки поверхности F и не удовлетворяют координаты никакой другой точки.
Пусть сфера имеет центром точку С (x0; y0; z0) и радиус R. Расстояние от любой точки М (x; y; z) до точки С вычисляется по формуле:
МС=
Исходя из понятия уравнения поверхности, следует, что если точка М лежит на данной сфере, то МС=R, или МС 2 =R 2 , то есть координаты точки М удовлетворяют уравнению:
.
Это выражение называют уравнением сферы радиуса R и центром С(x0; y0; z0).
3. Взаимное расположение сферы и плоскости
Взаимное расположение сферы и плоскости зависит от соотношения между радиусом сферы R и расстояния от центра сферы до плоскости d.
1. Пусть dR. Если расстояние от центра сферы до плоскости меньше радиуса сферы, тогда сфера и плоскость пересекаются, и сечение сферы плоскостью есть окружность.
2. Пусть d=R. Если расстояние от центра сферы до плоскости равно радиусу сферы тогда сфера и плоскость имеют только одну общую точку, и в этом случае говорят, что плоскость касается сферы.
3. Пусть dR. Если расстояние от центра сферы до плоскости больше радиуса сферы, то сфера и плоскость не имеют общих точек.
Рассмотрим случай касания более подробно.
Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка – точкой касания.
Теорема (свойство касательной плоскости).
Радиус сферы, проведённый в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.
Теорема (признак касательной плоскости):
Если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащей на сфере, то эта плоскость является касательной к сфере.
4. Основные формулы
Соотношение между радиусом сферы, радиусом сечения и расстоянием от центра сферы до плоскости сечения:
Формула для вычисления площади поверхности сферы и ее элементов:
S=4πR 2 – площадь сферы.
S = 2πRh – площадь поверхности сегмента сферы радиуса R с высотой h.
– площадь поверхности сектора с высотой h.
Примеры и разбор решения заданий тренировочного модуля
1. Площадь сечения шара, проходящего через его центр, равна 9 кв. м. Найдите площадь поверхности шара.
Площадь круга вычисляется по формуле: Sкр=πR 2 .
Площадь поверхности шара вычисляется по формуле: Sсф=4πR 2 . Радиус шара и радиуса сечения, проходящего через центр шара, одинаковые. Поэтому площадь поверхности шара в 4 раза больше площади его диаметрального сечения. То есть площадь поверхности шара равна 36.
2. Вычислите радиус круга, площадь которого равна площади сферы радиуса 5.
Площадь сферы равна Sсф=4πR 2 . То есть Sсф=100π.
По условию площадь круга некоторого радиуса r также равна 100π. Значит, r 2 =100, то есть r=10.
3. Все стороны треугольника АВС касаются сферы радиуса 5. Найти расстояние от центра сферы до плоскости треугольника, если АВ=13, ВС=14, СА=15
Окружность, вписанная в треугольник, является сечением сферы.
Найдем ее радиус.
Площадь треугольника с известными сторонами можно вычислить по формуле Герона:
С другой стороны, S=p·r.
Теперь найдем расстояние от центра шара до секущей плоскости.
4. Вершины прямоугольника лежат на сфере радиуса 10. Найти расстояние от центра сферы до плоскости прямоугольника, если его диагональ равна 16.
Так как вершины прямоугольника лежат на сфере, то окружность, описанная около прямоугольника, является сечением сферы.
Радиус окружности, описанной около прямоугольника, равен половине его диагонали, то есть r=8.
источники:
http://ru.onlinemschool.com/math/formula/sphere/
http://resh.edu.ru/subject/lesson/4034/conspect/
Сферическая поверхность — это геометрическое место точек (т. е. множество всех точек) в пространстве, равноудалённых от одной данной точки, которая называется центром сферической поверхности.
На рисунке все точки равноудалены от точки (C), радиус (CA) соединяет центр с точкой на сфере.
Рис. (1). Сфера.
Все расстояния от центра до любой точки на сфере одинаковы и равны радиусу. Используя формулу расстояния между точками с данными координатами, можно составить уравнение сферы:
AC=x−x02+y−y02+z−z02=R;AC2=x−x02+y−y02+z−z02=R2;
Шар — это тело, ограниченное сферической поверхностью.
Можно получить шар, вращая полукруг (или круг) вокруг диаметра. Все плоские сечения шара — круги. Наибольший круг лежит в сечении, проходящем через центр шара, и называется большим кругом. Его радиус равен радиусу шара.
Любые два больших круга пересекаются по диаметру шара. Этот диаметр является и диаметром пересекающихся больших кругов.
Через две точки сферической поверхности, расположенные на концах одного диаметра, можно провести бесчисленное множество больших кругов.
Например, через полюса Земли можно провести бесконечное число меридианов.
Рис. (2). Глобус.
Всякое сечение шара плоскостью есть круг (или точка, если плоскость касается шара).
При решении заданий удобнее вместо шара чертить один из больших кругов, а плоскость сечения заменить хордой этого круга.
Рис. (3). Шар и его сечение.
Круговое сечение шара делит его на два шаровых сегмента, а сферу — на две сегментные поверхности.
Часть шара, ограниченная двумя параллельными круговыми сечениями и лежащим между ними сферическим поясом (или зоной), называется шаровой зоной.
Радиусы, проведённые от центра шара к точкам сферы, принадлежащим одной сегментной поверхности, или сферическому поясу, образуют шаровой сектор, он может быть ограничен сферическим сегментом, или зоной, и одной или двумя коническими поверхностями.
Высота шаровой или сферической зоны — это расстояние между плоскостями сечений; высота шарового сегмента, или сегментной поверхности, определяется как расстояние от плоскости сечения до параллельной ей плоскости, касательной к этому сегменту. Высоту шарового сектора определяют как высоту соответствующей сегментной поверхности, или сферического пояса.
Рис. (4). Шар, разделённый на сегменты.
(= d) — расстояние между центром шара и плоскостью сечения;
(OA = R) — радиус шара;
(= r) — радиус окружности сечения.
В вычислениях используется теорема Пифагора в прямоугольном треугольнике
AOO1
.
Рис. (5). Шар и секущая плоскость.
Источники:
Рис. 1. Сфера, © ЯКласс.
Рис. 2. Глобус. Указание авторства не требуется, 2021-06-07, бесплатно для коммерческого использования, https://clck.ru/VLuEU.
Рисунки 3-5. Шар и его сечение; шар, разделённый на сегменты, шар и секущая плоскость, © ЯКласс.
Сфера в геометрии — элементы, формулы, свойства с примерами
Сферой называется поверхность, полученная вращением окружности вокруг какого-либо ее диаметра (рис. 180). Центр этой окружности называется центром сферы.
Отрезок, соединяющий центр сферы с любой ее точкой, называется радиусом сферы, отрезок, соединяющий две точки сферы, — хордой сферы, а хорда, которой принадлежит центр сферы, — диаметром сферы (рис. 181).
Из определения сферы следует, что все ее точки равноудалены от центра сферы. Поэтому все радиусы сферы равны друг другу.
Теоремы
Теорема 1.
Сечение сферы плоскостью есть окружность, центр которой совпадает с основанием перпендикуляра, опущенного из центра сферы на секущую плоскость.
Доказательство:
Пусть сфера с центром
Пусть и — произвольные точки линии пересечения сферы с плоскостью . Треугольники и оба прямоугольные, так как отрезок перпендикулярен плоскости , а значит, и отрезкам и лежащим в этой плоскости.
Отрезок является общим катетом, а гипотенузы этих треугольников равны как радиусы сферы. Поэтому треугольники и равны друг другу, а значит, Получили, что любые две точки линии пересечения сферы плоскостью равноудалены от основания перпендикуляра, опущенного из центра сферы на эту плоскость. Значит, эта линия является окружностью с центром .
Следствие. Радиус сечения сферы плоскостью удовлетворяет условию где — радиус сферы.
Сечение имеет наибольший радиус если секущая плоскость проходит через центр сферы, это сечение называют большой окружностью, а ограниченный ею круг — большим кругом.
Плоскость, имеющая со сферой единственную общую точку, называется касательной плоскостью сферы. Общая точка сферы и касательной плоскости называется точкой касания.
Прямая касательной плоскости сферы, проходящая через точку касания, имеет со сферой единственную общую точку. Такая прямая называется касательной прямой сферы.
Теорема 2.
Касательная плоскость сферы перпендикулярна радиусу, проведенному в точку касания.
Доказательство:
Пусть плоскость касается сферы с центром в точке (рис. 183). Пусть — произвольная точка плоскости , отличная от точки . Через точки , , проведем плоскость , она по теореме 1 пересекает сферу по окружности. По отношению к этой окружности прямая является касательной, так как точка — их единственная общая точка. По свойству касательной к окружности радиус перпендикулярен прямой . Таким образом, радиус перпендикулярен любой прямой , проведенной в плоскости а через ее точку . Значит, радиус перпендикулярен плоскости .
Теорема 3.
Если плоскость проходит через точку сферы и перпендикулярна радиусу, проведенному в эту точку, то она является касательной плоскостью сферы.
Доказательство:
Пусть плоскость проходит через точку сферы и перпендикулярна радиусу (рис. 184). Пусть — произвольная точка плоскости , отличная от точки . Треугольник прямоугольный с гипотенузой , и она длиннее катета. Поэтому точка расположена вне сферы. Получается, что любая точка плоскости , кроме точки , не принадлежит сфере. Значит, точка — единственная общая точка плоскости и сферы, а поэтому плоскость является касательной плоскостью сферы.
Теоремы 2 и 3 выражают соответственно свойство и признак касательной плоскости сферы.
Теорема 4.
Две сферы пересекаются по окружности, плоскость которой перпендикулярна прямой, проходящей через центры сфер.
Доказательство:
Пусть имеются две пересекающиеся сферы с центрами и , и — какая-либо их общая точка (рис. 185). Через точку проведем плоскость , перпендикулярную прямой . Пусть эта плоскость пересекает прямую в точке . В соответствии с теоремой 1 плоскость пересекает одну и другую сферы по окружности с центром . Получили, что окружность с центром является общей окружностью данных сфер.
Других общих точек данные окружности не имеют. Допустим, что это не так. Пусть — какая-либо общая точка сфер, не принадлежащая окружности с центром . Через точки , и проведем плоскость, которая пересечет сферы по окружностям с центрами и . Эти окружности пересекаются в двух точках, которые принадлежат окружности с центром , и вместе с этим им обеим принадлежит точка .
Но это противоречит утверждению о том, что две окружности имеют не более двух общих точек.
Прежде чем доказывать утверждение о поверхности сферы, обобщим утверждения о боковых поверхностях конуса, усеченного конуса и цилиндра.
Теорема 5.
Боковая поверхность конуса, усеченного конуса, цилиндра равна боковой поверхности цилиндра с той же высотой и радиусом основания, равным длине перпендикуляра, соединяющего середину образующей с точкой на оси этого тела.
Доказательство:
Пусть есть конус с вершиной , основанием которого является круг с центром . Пусть — осевое сечение конуса (рис. 186). В плоскости к образующей из ее середины возведем перпендикуляр, который пересечет ось в некоторой точке . Прямоугольные треугольники и подобны, так как у них угол при вершине общий. Поэтому или или
Отсюда
С учетом этого для боковой поверхности конуса будем иметь:
Пусть есть усеченный конус, полученный вращением прямоугольной трапеции со средней линией вокруг боковой стороны которая перпендикулярна основаниям и , отрезок — проекция на основание (рис. 187).
В плоскости к образующей усеченного конуса из ее середины возведем перпендикуляр, который пересечет ось в некоторой точке . Прямоугольные треугольники и подобны, так как их стороны попарно перпендикулярны. Поэтому
Отсюда
С учетом этого для боковой поверхности усеченного конуса будем иметь:
Для цилиндра утверждение очевидно (рис. 188).
Теорема 6.
Поверхность сферы равна учетверенной площади большого круга:
Доказательство:
Пусть есть сфера, образованная вращением полуокружности вокруг своего диаметра (рис. 189). Впишем в эту дугу ломаную с равными звеньями и из точек опустим перпендикуляры на диаметр . Пусть — середины звеньев ломаной. Тогда — серединные перпендикуляры к этим звеньям. При вращении вокруг звенья ломаной будут описывать или конусы, или усеченные конусы, или цилиндр. Поэтому, в соответствии с теоремой 5, для образовавшейся поверхности получим
Учтем, что отрезки все равны друг другу:
Пусть радиус сферы равен . Тогда . Будем неограниченно увеличивать количество звеньев ломаной. Тогда отрезок будет стремиться к радиусу сферы, а выражение — к выражению т. е. к выражению Этот предел и принимается в качестве площади поверхности сферы.
Учитывая, что выражает площадь большого круга, получим, что поверхность сферы равна учетверенной площади большого круга.
Уравнение сферы
Определение: Сферой радиуса R называется множество всех точек пространства, расстояние от каждой из которых до данной точки (центра) равно R.
Выведем уравнение сферы. Пусть — центр сферы радиуса — произвольная точка, лежащая на этой сфере (рис. 204). Тогда СМ = R. По формуле расстояния между двумя точками имеем
Приравнивая это выражение R, получим уравнение сферы
Если центр сферы совпадает с началом координат, то х0 = 0, у0 = 0, = 0 и уравнение сферы принимает вид
Пример:
Определить координаты центра и радиус сферы
Решение:
Объединяя члены, содержащие одноименные текущие координаты, и дополняя их до полных квадратов, будем иметь
Следовательно, центр сферы находится в точке и радиус ее
Заметим, что совокупность
уравнений сферы и плоскости определяет окружность, по которой пересекаются плоскость и сфера (если это множество не пусто). В частности, если , то совокупность этих уравнений изображает окружность большого круга.
Уравнение окружности можно также писать в параметрическом виде.
Пример:
Написать параметрические уравнения меридиана сферы
проходящего через полюсы и , если плоскость меридиана образует угол а с координатной плоскостью Охг (рис. 205).
Решение:
За параметр текущей точки меридиана примем угол — широту этой точки, где — проекция точки М на координатную плоскость Оху . Так как , то из рис. 205 имеем
где
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Уравнение сферы
Определение. Сферой называется множество всех точек, расположенных на расстоянии от заданной точки . Точка называется центром сферы, — радиусом сферы.
Если точка — произвольная точка сферы, то по формуле расстояния между двумя точками имеем:
Это уравнение сферы с центром в точке и радиусом .
Если центр сферы находится в начале координат, то уравнение сферы радиуса имеет вид:
Как видно из рисунка, пересечение этой сферы с координатной плоскостью является ее большой окружностью.
Задача пример №47
Запишите уравнение сферы, радиус которой равен , а центр расположен в точке .
Решение:
Задача пример №48
Представьте фигуру, которая получается при пересечении сферы с плоскостью .
Решение:
радиус сферы . Учитывая в уравнении сферы, что получим : ;
Пересечение плоскости и данной сферы является окружность с центром в точке (0; 0; 12) и радиусом .
Плоскость, имеющая со сферой только одну общую точку, называется плоскостью, касательной к сфере.
Например, плоскость касается сферы в точке (0;0;13). Плоскость, касательная к сфере, в точке касания перпендикулярна радиусу сферы.
Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:
Математика: полный курс решений задач в виде лекций
Другие темы которые вам помогут понять математику:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Координаты на сфере
Положение точки на сфере удобнее всего задавать так, как это делается в географии. На данной сфере радиуса R выберем какие-нибудь две диаметрально противоположные точки, одну из них N назовем условно северным полюсом, другую S — южным. Какой-нибудь из «меридианов» (кратчайший путь по сфере из S в N) назовем начальным меридианом; проходящую через центр О сферы и перпендикулярную оси SN плоскость назовем экваториальной, а пересечение ее со сферой — экватором, на экваторе изберем направление, скажем против часовой стрелки, если смотреть из N. Положение любой точки М на сфере определяется двумя координатами, одна из них, назовем ее долготой,—угол φ между плоскостью начального меридиана и плоскостью, проходящей через М и ось SN (угол должен отсчитываться в направлении, соответствующем выбранному на экваторе). Широтой точки М будем называть угол θ между радиусом ОМ и плоскостью экватора ( θ считается положительным для точек северного полушария и отрицательным для южного). Будем писать: М < φ ; θ >, ставя на первое место долготу, на второе — широту.
Пример. Проверьте правильность координатного обозначения точек на рис. 21.
Все точки с одинаковой долготой φ 0 заполняют меридиан, уравнение которого поэтому φ = φ 0. Все точки с одинаковой широтой θ 0 заполняют параллель θ = θ 0. Уравнение, связывающее текущие координаты φ и θ , определяет, как и в плоской геометрии, кривую; неравенство, соответствующее этому уравнению, определяет одну или несколько областей, на которые эта кривая разделяет сферу. Так, неравенство θ < 0 определяет южную полусферу, θ >0—северную; θ =0 есть уравнение экватора. Если сферу отнести к декартовым координатам в пространстве, приняв центр О сферы за начало, ось SN — за ось z, ось х направив через точку <0; 0>, ось у — через<90°; 0>, то декартовы координаты х, y, z любой точки М сферы легко выразить через долготу и широту этой точки. Для этого выразим сначала координаты ее проекции М1на плоскость Оху, где обычным образом расположим полярную систему координат. Из рис. 21 видно, что для М1(х; у; 0) полярный радиус r=Rcos θ , а полярный угол φ совпадает с долготой точки М. Кроме того,
z=Rsin θ . Приняв во внимание формулы (11), получим:
По этим формулам вычисляют декартовы координаты точки М (х; у; z), если известны ее координаты φ и θ на сфере.
На эти же формулы можно взглянуть и с другой точки зрения. Будем считать со и 6 переменными, придавая им всевозможные значения в естественных пределах 0 ≤ φ <360°, -90° ≤ θ≤ +90°; тогда точка М< φ ; θ > будет перемещаться по сфере, занимая всевозможные положения. Это напоминает параметрические уравнения линии, в которых декартовы координаты х, y, z выражены через один переменный параметр t. Разница лишь в том, что теперь х, у, z выражены через два параметра, поэтому получается не линия (одномерное образование), а поверхность (образование двумерное). Подобные уравнения называют параметрическими уравнениями поверхности; переменные параметры чаще всего здесь обозначают буквами и и v. Итак, уравнения сферы запишем в виде:
Если из этих уравнений исключить параметры и, v (для этого проще всего возвести (13) в квадрат и сложить; к сожалению, исключение переменных не всегда так просто), получим обычное ее уравнение x 2 + y 2 +z 2 =R 2 .
Сферой
называется поверхность, образованная
множеством точек пространства, находящихся
на равном расстоянии от данной точки
(рис. 3.23). Сфера может быть образована
вращением окружности вокруг диаметра.
Центр вращающейся окружности служит
центром сферы.
Рис.
3.23
Сфера (рис. 3.24)
проецируется на все плоскости проекций
в виде равных окружностей одинакового
радиуса. Самая большая окружность —
экватор,
который на горизонтальную плоскость
проекций проецируется в виде окружности,
а на фронтальную плоскость проекций —
в виде отрезка прямой линии, параллельной
оси проекций ОХ.
Меридиан
AFBE
проецируется на фронтальную плоскость
проекций в виде окружности, а на
горизонтальную плоскость проекций в
виде прямой линии. Всякое сечение,
параллельное экватору, будет проецироваться
на горизонтальную плоскость проекций
в виде окружности.
Рис.
3.24
3.3.3.1. Сечения сферы
Плоскость
пересекает сферу по
окружности. Если
секущая плоскость является
плоскостью уровня,
то одна из проекций представляет собой
окружность,
а две другие –
отрезки прямых линий,
равные её диаметру. Если секущая плоскость
является
проецирующей,
то две проекции линии сечения являются
эллипсами,
а третья – отрезком
прямой линии.
Задача.
Построить три проекции и натуральную
величину сечения сферы фронтально —
проецирующей плоскостью α
(рис. 3.25).
Анализ
исходных данных:
-
Сечением
является окружность с центром в точке
О (О”)
радиуса R.
Проекция О”
является основанием перпендикуляра,
проведённого из центра сферы к
фронтальному следу заданной плоскости
α”. -
Фронтальной
проекцией окружности является отрезок
А”В”=
2R. -
Горизонтальной
и профильной проекциями окружности
являются эллипсы.
Рис.
3.25
Выполнение
построений:
-
Сначала
находим опорные точки, их шесть и они
находятся на проекциях очерка сферы:
— А
и B
расположены на главном меридиане;
— K
и L
принадлежат экватору;
— F
и E
– на меридиане, параллельном профильной
плоскости проекций.
В первую очередь
необходимо построить проекции именно
этих точек.
В
проекциях линии сечения, как на
горизонтальной, так и на профильной
плоскостях проекций изображаются в
виде эллипсов, если секущая плоскость
не параллельна ни одной из плоскостей
проекций.
2.
Для построения горизонтальной проекции
большой оси эллипса делим фронтальную
проекцию А”B”
пополам получаем проекцию О”
и фронтальную проекцию C”D”
большой оси эллипса.
3.
Для нахождения горизонтальной и
профильной проекций большой оси эллипса
заключаем точки С
и D
в параллель в плоскости П2.
4.
Строим дополнительное сечение (параллель),
которое на горизонтальной плоскости
проекций изобразится в виде окружности,
а на профильной плоскости — в виде прямой.
5.
Затем с помощью линий связи проецируем
точки С
и D
на П1 ,
получая горизонтальную проекцию
большой
оси эллипса.
6.
Третья проекция находится обычным
путём.
Малой
осью эллипса является отрезок АВ.
Натуральная
величина сечения, которая выразится
в виде окружности, находится способом
замены плоскостей проекций. Таким же
путём можно найти сколько угодно
дополнительных точек, принадлежащих
сечению сферы.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
§ 19. Шар и сфера
19.1. Определения шара, сферы и их элементов
С шаром и сферой мы уже знакомы. Напомним их определения.
Определение. Шаром называется множество всех точек пространства, находящихся от данной точки на расстоянии, не большем данного R (R > 0). Данная точка называется центром шара, а данное расстояние R — радиусом шара.
Определение. Сферой называется множество всех точек пространства, находящихся от данной точки на расстоянии, равном данному R. Данные точка и расстояние R называются соответственно центром и радиусом сферы.
Рис. 193
На рисунке 193 изображён шар с центром О и радиусом R = OА.
Из определений шара и сферы следует, что шар с центром О и радиусом R является объединением двух множеств точек: 1) множества точек M пространства, для которых OM < R (они называются внутренними точками шара и образуют его внутренность); 2) множества всех М, для которых ОМ = R (эти точки являются граничными точками шара, а их объединение составляет границу шара, которая называется шаровой поверхностью и является сферой c центром О и радиусом R).
Радиусом шара называют также всякий отрезок, соединяющий центр шара с точкой шаровой поверхности. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром шара. Концы любого диаметра шара называются диаметрально nротивоположными точками шара. Отрезок, соединяющий две любые точки шаровой поверхности и не являющийся диаметром шара, называют хордой шара (сферы). На рисунке 193 отрезки ОА, ОВ, ON, OS — радиусы шара; отрезки АВ, NS — диаметры шара; A и B — диаметрально противоположные точки шара. Из определения диаметра шара следует, что он равен удвоенному радиусу шара.
Рис. 194
Покажем, что шар — тело вращения. Для этого рассмотрим полукруг F с центром О и радиусом R (рис. 194, а). При вращении полукруга F вокруг прямой, содержащей его диаметр NS, образуется некоторое тело F1 (рис. 194, б). Так как вращение вокруг прямой — движение и точка О принадлежит оси l вращения, то каждая точка тела F1 удалена от точки O на расстояние, не большее R (движение сохраняет расстояния между точками). Это означает, что тело F1 есть шар с центром О и радиусом R. Кроме того, при вращении границы полукруга — полуокружности — вокруг прямой l образуется сфера. Прямая, содержащая любой диаметр шара, может быть рассмотрена как ось вращения. Следовательно, сечением шара плоскостью, перпендикулярной его оси вращения l и пересекающей шар, является круг, а сечением сферы такой плоскостью — окружность этого круга; центр круга (окружности) есть точка пересечения секущей плоскости с осью l.
Плоскость, проходящая через центр шара (сферы), называется диаметральной плоскостью шара (сферы). Сечением шара диаметральной плоскостью является круг, радиус которого равен радиусу шара. Такой круг называется большим кругом, а его окружность — большой окружностью; большая окружность является пересечением сферы и её диаметральной плоскости.
19.2. Изображение сферы
Рис. 195
Рассмотрим сферу, диаметр NS которой проведён вертикально (рис. 195, а). Большая окружность, по которой сферу пересекает диаметральная плоскость, перпендикулярная диаметру (оси) NS, называется экватором, а точки N и S — полюсами сферы. Окружность, ограничивающая круг — изображение сферы, — называется абрисом или очерковой линией.
Типичная ошибка (!) при изображении сферы (рис. 195, б) в том, что, изображая её экватор эллипсом, полюсы изображают расположенными на абрисе.
Для верного и наглядного изображения сферы вспомним, как в курсе черчения изображают фигуру на комплексном двухкартинном чертеже (эпюре) посредством ортогонального её проектирования на две взаимно перпендикулярные плоскости, одну из которых называют фронтальной (обозначают V), а другую — профильной (обозначают W) плоскостями проекций.
Сферу расположим так, чтобы её ось N′S′ была параллельна профильной (W), но не параллельна фронтальной (V) плоскостям проекций. Тогда ортогональные проекции сферы на плоскости V и W имеют вид, изображённый на рисунке 196. На нём: равные круги — проекции сферы на плоскости V и W; отрезки A1B1 и N1S1 — профильные проекции соответственно экватора и оси сферы; точки N, S — фронтальные проекции полюсов (строятся с помощью линий связи); точки А, В — фронтальные проекции концов диаметра экватора, параллельного фронтальной плоскости (строятся с помощью линий связи); отрезок CD — фронтальная проекция диаметра C′D′ сферы, перпендикулярного профильной плоскости; эллипс с осями АВ и CD — фронтальная проекция экватора. При таком расположении относительно плоскостей проекций сфера изображается так, как показано на рисунках 195, a; 196, a.
Рис. 196
Рис. 197
Обратите внимание! Полюсы N и S не лежат на абрисе, и экватор изображается эллипсом. При этом положение полюсов N и S и положение вершин А и В эллипса-экватора взаимосвязаны.
Действительно, из равенства △ ОBF = △ ЕNО (см. рис. 196, а) следует: OВ = EN, BF = NO. Это означает: а) если изображены полюсы N и S сферы, то вершины А и В эллипса — изображения экватора определяются из равенств OВ = ОА = NE, где NE || OD; б) если изображён экватор (т. е. дана малая ось AB эллипса-экватора), то положение полюсов N и S определяется из равенств ON = OS = BF, где BF || OD.
На рисунке 197, а — верное и наглядное изображение сферы, на рисунке 197, б — изображение сферы верное (почему?), но не наглядное; на рисунке 197, в — неверное изображение (почему?).
ЗАДАЧА (3.106). Найти в пространстве множество вершин всех прямых углов, опирающихся на данный отрезок АВ.
Решение. Если ∠ АМВ = 90°, то точка М принадлежит окружности с диаметром АВ (рис. 198, a).
Рис. 198
Проведём произвольную плоскость α, содержащую отрезок АВ. В этой плоскости множество всех точек М, из которых отрезок AB виден под прямым углом, есть окружность, для которой отрезок AB — диаметр. Точки А и В этому множеству точек не принадлежат. (Почему?) Таким образом, искомое множество вершин прямых углов, опирающихся на отрезок AB, есть сфера с диаметром AB. Точки А и В этому множеству точек-вершин не принадлежат.
19.3. Уравнение сферы
Составим уравнение сферы с центром А (a; b; с) и радиусом R в декартовой прямоугольной системе координат Oxyz.
Пусть М(x; у; z) — любая точка этой сферы (рис. 199). Тогда MA = R или MA2 = R2. Учитывая, что MA2 = (x – a)2 + (у – b)2 + (z – c)2, получаем искомое уравнение cферы
(x – a)2 + (у – b)2 + (z – c)2 = R2.
Если начало системы координат совпадает с центром A сферы, то a = b = c = 0, а сфера в такой системе координат имеет уравнение
x2 + y2 + z2 = R2.
Из полученных уравнений следует, что сфера — поверхность второго порядка.
Так как для любой точки М(х; у; z) шара с центром А (a; b; с) и радиусом R выполняется МА ⩽ R, то этот шар может быть задан неравенством
(x – a)2 + (у – b)2 + (z – c)2 ⩽ R2.
При этом для всех внутренних точек М шара выполняется условие МА2 < R2, т. е.
Рис. 199
(х – a)2 + (у – b)2 + (z – c)2 < R2,
для точек М шаровой поверхности — условие
МА = R,
т. е. (х – a)2 + (у – b)2 + (z – c)2 = R2,
для точек М вне шара — условие
МА > R,
т. е. (х – a)2 + (у – b)2 + (z – c)2 > R2.
19.4. Пересечение шара и сферы с плоскостью
Рассмотрим подробнее вопрос о пересечении шара и сферы с плоскостью. Имеет место следующая теорема.
Теорема 30 (о пересечении шара и сферы с плоскостью). 1) Если расстояние от центра шара до данной плоскости меньше радиуса шара, то пересечением шара с плоскостью является круг. Центром этого круга является основание перпендикуляра, проведённого из центра шара на плоскость, или сам центр шара, если плоскость проходит через этот центр. Пересечением сферы с плоскостью является окружность указанного круга. Радиус r сечения в этом случае равен r = , где R — радиус шара, a d — расстояние от центра шара до плоскости сечения. 2) Если расстояние от центра шара до данной плоскости равно радиусу шара, то плоскость имеет с шаром и ограничивающей его сферой только одну общую точку. 3) Если расстояние от центра шара до данной плоскости больше радиуса, то плоскость не имеет с шаром общих точек.
Доказательство. Пусть точка О — центр шара, R — его радиус; α — данная плоскость, точка A — основание перпендикуляра, проведённого из центра O на плоскость α. Обозначим ρ(О; α) = | ОА | = d — расстояние от центра шара до плоскости α.
Рассмотрим каждый из случаев взаимного расположения шара и данной плоскости α.
Рис. 200
1) ρ(O; α) = d < R и плоскость α не проходит через центр О шара (рис. 200). Докажем, что пересечение шара и плоскости есть круг с центром А и радиусом r = . Для этого достаточно убедиться, что любая точка пересечения шара и плоскости α есть точка круга с центром А и радиусом r = и, обратно, любая точка этого круга есть точка указанного пересечения.
Действительно, пусть М — произвольная точка шара, принадлежащая плоскости α (см. рис. 200). В прямоугольном треугольнике AOM по теореме Пифагора ОM2 = ОА2 + АМ2, откуда AM = . Так как точка М принадлежит шару, то ОМ ⩽ R, тогда OM2 – OA2 ⩽ R2 – d2, поэтому АМ ⩽ . Это означает, что точка М сечения шара плоскостью α находится от точки А на расстоянии, не большем , следовательно, она принадлежит кругу с центром А и радиусом .
Обратно, пусть М — произвольная точка плоскости α, принадлежащая кругу с центром А и радиусом r = . В прямоугольном треугольнике AOM по теореме Пифагора OM2 = ОA2 + AM2. Так как AM ⩽ r, то OM2 ⩽ OA2 + r2 = d2 + R2 – d2 = R2, откуда OM ⩽ R. Значит, точка М принадлежит данному шару. Учитывая, что точка М принадлежит и плоскости α, приходим к выводу: точка M принадлежит пересечению данного шара и плоскости α.
Если неравенства, которые использовались в предыдущем доказательстве, заменить равенствами, то, рассуждая аналогично, можно доказать, что при d < R пересечением сферы и плоскости является окружность с центром А и радиусом r = . Проделайте это самостоятельно.
Рис. 201
Если плоскость α проходит через центр O шара, то d = 0, значит, r = R, т. е. сечением шара такой плоскостью является большой круг, а сечением сферы — большая окружность (см. рис. 200).
2) ρ(O; α) = d = OA = R (рис. 201).
Так как ОА = ρ(O; α) = R, то точка А, являющаяся основанием перпендикуляра из центра О шара на плоскость α, принадлежит шаровой поверхности, ограничивающей данный шар.
Рис. 202
Пусть M — произвольная точка плоскости α, отличная от точки A (см. рис. 201). Тогда длины наклонной ОМ и перпендикуляра OA, проведённых из точки О к плоскости α, удовлетворяют неравенству OM > ОА = R. Значит, точка М не принадлежит шару. Следовательно, плоскость α имеет только одну общую точку с шаром — точку А.
3) ρ(О; α) = ОА = d > R (рис. 202). Для любой точки М плоскости α выполняется (почему?) ОМ ⩾ d > R. Это означает, что на плоскости α нет точек шара. Теорема доказана. ▼
ЗАДАЧА (3.161). Через середину радиуса шара проведена перпендикулярная к нему плоскость. Радиус шара равен R. Найти: а) площадь получившегося сечения; б) площади боковой и полной поверхностей конуса, основанием которого служит получившееся сечение шара, а вершиной — центр шара; в) площади боковой и полной поверхностей правильной треугольной пирамиды, вписанной в этот конус.
Решение. а) Пусть точка O — центр шара, OD — его радиус, точка С — середина радиуса OD; α — секущая плоскость, проходящая через точку С перпендикулярно OD.
Рассмотрим сечение шара диаметральной плоскостью, проходящей через его радиус OD. Этим сечением является большой круг с центром О и радиусом R (рис. 203); АВ — диаметр круга — сечения данного шара плоскостью α.
Так как АВ ⟂ OD и точка С — середина радиуса OD, то отрезок AB равен стороне правильного треугольника, вписанного в окружность радиуса R, значит, АВ = R, откуда
Рис. 203
АС = r = , где r — радиус сечения шара плоскостью α. Тогда площадь этого сечения равна πr2 = .
б) Найдём площадь поверхности конуса с вершиной О и радиусом основания r = .
Рис. 204
Образующая ОЕ конуса (рис. 204) равна радиусу R данного шара. Поэтому площадь боковой поверхности этого конуса равна
πr•R = π••R = ,
а площадь его полной поверхности — + = πR2•(2 + ).
в) Найдём площадь поверхности правильной треугольной пирамиды OEFK, вписанной в конус, радиус основания которого СK = r = , боковое ребро OE пирамиды равно радиусу R данного шара (см. рис. 204).
Так как △ ЕFK — правильный, вписанный в окружность радиуса r = , то сторона этого треугольника равна r , т. е. EF = . Тогда S△ EFK = = .
Площадь боковой поверхности пирамиды равна 3S△ EOF = EF•ОН, где OH — апофема пирамиды. В прямоугольном треугольнике OHF находим
ОН = = = .
Тогда EF•OH = — площадь боковой поверхности пирамиды.
Следовательно, площадь полной поверхности пирамиды равна
+ = R2( + ).
Ответ: a) ; б) π R2 (2 +); в) ; R2( +).
19.5. Плоскость, касательная к сфере и шару
Из теоремы 30 следует, что плоскость может иметь со сферой (с шаром) только одну общую точку.
Определение. Плоскость, имеющая только одну общую точку со сферой (с шаром), называется касательной плоскостью к сфере (шару), а их единственная общая точка называется точкой касания (рис. 205).
Рис. 205
Также говорят, что плоскость касается сферы (шара).
Любая прямая, лежащая в касательной плоскости к сфере и проходящая через точку их касания, называется касательной прямой к сфере; эта прямая имеет со сферой единственную общую точку — точку касания, и радиус сферы, проведённый в точку касания, перпендикулярен касательной прямой.
Заметим, что если прямая a касается сферы в точке М, то эта прямая касается в точке М той окружности большого круга, которая является сечением сферы и диаметральной плоскости, проходящей через прямую a.
Справедливо и обратное: если прямая a касается окружности большого круга сферы в точке М, то эта прямая касается в точке М самой сферы.
Более того, так как прямая a, касающаяся сферы в точке М, имеет со сферой лишь одну общую точку — точку М, то эта прямая касается любой окружности, по которой пересекаются данная сфера и любая (не только диаметральная) плоскость, проходящая через прямую a. А поскольку радиус, проведённый в точку касания прямой и окружности, перпендикулярен касательной прямой, то центры всех этих окружностей — полученных сечений сферы — лежат в плоскости, проходящей через точку М перпендикулярно касательной прямой a. При этом, если точка О — центр данной сферы радиуса R, точка А — центр окружности радиуса r, по которой пересекает сферу одна (любая) из плоскостей, проходящих через касательную в точке М прямую к данной сфере, ϕ — величина угла между этой секущей плоскостью и проходящей через точку М диаметральной плоскостью данной сферы, то справедливо равенство r = R•cos ϕ (△ ОАМ — прямоугольный, так как отрезок ОА перпендикулярен секущей плоскости (почему?)).
Для плоскости, касательной к сфере, справедливы теоремы, аналогичные теоремам о прямой, касательной к окружности на плоскости.
Теорема 31. Если плоскость касается сферы, то она перпендикулярна радиусу, проведённому в точку касания.
Доказательство. Пусть дана сфера с центром O и радиусом R. Рассмотрим плоскость α, касающуюся данной сферы в точке M (см. рис. 205) и докажем, что ОM ⟂ α.
Предположим, что радиус ОM — не перпендикуляр, а наклонная к плоскости α. Значит, расстояние от центра сферы до плоскости α, равное длине перпендикуляра, проведённого из центра О на плоскость α, меньше радиуса. Тогда по теореме 30 плоскость α пересекает сферу по окружности. Но по условию теоремы плоскость α касается сферы и имеет с ней единственную общую точку M. Пришли к противоречию, которое и доказывает, что OM ⟂ α. Теорема доказана. ▼
Справедлива обратная теорема.
Теорема 32. Если плоскость проходит через точку сферы и перпендикулярна радиусу, проведённому в эту точку, то она касается сферы.
Доказательство. Пусть плоскость α проходит через точку M сферы и перпендикулярна радиусу ОM (см. рис. 205). Значит, расстояние от центра сферы до плоскости равно радиусу ОM. Тогда по теореме 30 плоскость α и сфера имеют единственную общую точку M, следовательно, плоскость α касается сферы (в точке M). Теорема доказана.▼
Так как сечение шара плоскостью есть круг, то можно доказать, что для шара выполняются следующие метрические соотношения:
—диаметр шара, делящий его хорду пополам, перпендикулярен этой хорде;
—отрезки всех касательных прямых, проведённых к шару из одной расположенной вне шара точки, равны между собой (они образуют поверхность конуса с вершиной в данной точке, а точки касания этих прямых — окружность основания этого конуса);
—произведение длин отрезков хорд шара, проходящих через одну и ту же внутреннюю точку шара, есть величина постоянная (равная R2 – a2, где R — радиус шара, a — расстояние от центра шара до данной точки);
—если из одной и той же точки вне шара проведены к нему секущая и касательная, то произведение длины отрезка всей секущей на длину отрезка её внешней части равно квадрату длины отрезка касательной (и равно a2 – R2, где R — радиус шара, a — расстояние от центра шара до данной точки).
19.6. Вписанные и описанные шары и сферы
Определение. Шар называется вписанным в цилиндр, если основания и каждая образующая цилиндра касаются шара (рис. 206).
Рис. 206
Рис. 207
Цилиндр в таком случае называется описанным около шара. В цилиндр можно вписать шар тогда и только тогда, когда он равносторонний.
Определение. Шар называется описанным около цилиндра, если основания цилиндра служат сечениями шара (рис. 207).
Цилиндр при этом называют вписанным в шар. Около любого цилиндра можно описать шар. Центром шара служит середина оси цилиндра, а радиус шара равен радиусу круга, описанного около осевого сечения цилиндра.
Рис. 208
Рис. 209
Определение. Шар называется описанным около конуса, если основание конуса — сечение шара, а вершина конуса принадлежит поверхности шара (рис. 208).
Конус при этом называют вписанным в шар.
Центр шара, описанного около конуса, совпадает с центром круга, описанного около осевого сечения конуса, а радиус шара равен радиусу этого круга.
Определение. Шар называется вписанным в конус, если основание и все образующие конуса касаются шара.
Конус при этом называют описанным около шара (рис. 209). Центр вписанного в конус шара совпадает с центром круга, вписанного в осевое сечение конуса, а радиус шара равен радиусу этого круга.
Определение. Шар называется вписанным в многогранник, если он касается всех граней многогранника.
Многогранник в таком случае называют описанным около шара (рис. 210).
Не во всякий многогранник можно вписать шар. Например, вписать шар можно в любую треугольную или правильную пирамиду. А в прямую призму, в основании которой лежит прямоугольник, не являющийся квадратом, шар вписать нельзя.
Рис. 210
При нахождении радиуса r вписанного в многогранник шара (если таковой существует) удобно пользоваться соотношением
Vмногогр = •r•Sполн. поверх.
Шар называется вписанным в двугранный угол, если он касается его граней. Центр вписанного в двугранный угол шара лежит на биссекторной плоскости этого двугранного угла. При этом для радиуса r шара, вписанного в двугранный угол, величины α этого угла и расстояния m от центра шара до ребра двугранного угла справедлива формула: r = m•sin . Этой формулой часто пользуются при решении задач.
Шар называется вписанным в многогранный угол, если он касается всех граней многогранного угла. При решении задач, в которых рассматриваются вписанные в многогранный угол шары, удобно пользоваться соотношением: r = m•sin , где r — радиус шара, вписанного в многогранный угол, m — расстояние от центра шара до ребра многогранного угла, α — величина двугранного угла при этом ребре.
Если все плоские углы трёхгранного угла равны по 60°, то расстояние от вершины угла до центра вписанного в этот угол шара радиуса r равно 3r; если все плоские углы трёхгранного угла прямые, то расстояние от вершины угла до центра вписанного в этот угол шара радиуса r равно r. Эти соотношения часто используют при решении задач, в которых рассматриваются те или иные комбинации шаров с правильными тетраэдрами или прямоугольными параллелепипедами.
Определение. Шар называется описанным около многогранника, если все вершины многогранника принадлежат поверхности шара (рис. 211). Многогранник при этом называют вписанным в шар.
Рис. 211
Не около всякого многогранника можно описать шар. Например, около любой правильной или любой треугольной пирамиды шар описать можно, а около четырёхугольной пирамиды, в основании которой лежит ромб, не являющийся квадратом, шар описать нельзя (около ромба нельзя описать окружность). Более того, нельзя описать шар около любой наклонной призмы.
Вообще, для того чтобы около многогранника можно было описать шар, необходимо, чтобы около любой его грани можно было описать круг. При этом центр описанного шара может лежать как внутри многогранника, так и вне его или на его поверхности (даже на ребре многогранника), и проектируется в центр описанного около любой грани круга. Кроме того, перпендикуляр, опущенный из центра описанного около многогранника шара на ребро многогранника, делит это ребро (как хорду шара) пополам.
Мы уже говорили о пирамидах, все рёбра которых одинаково наклонены к основанию. Около таких пирамид всегда можно описать шар, центр которого лежит на луче, содержащем высоту пирамиды.
Высота h пирамиды, радиус Rк описанного около основания пирамиды круга и радиус R описанного около этой пирамиды шара связаны соотношением:
(R – h)2 + = R2.
Приведём формулы для вычисления радиусов вписанных и описанных шаров для правильных многогранников с ребром a.
В задачах иногда ещё рассматривают шары, касающиеся всех рёбер данного многогранника. Для куба, например, такой шар существует и его радиус равен , где a — ребро куба.
19.7. Площади поверхностей шара и его частей
Часть шара, заключённая между секущей плоскостью и одной из двух частей его сферической поверхности, называется шаровым сегментом (рис. 212 и 214). Поверхность шарового сегмента называется сегментной поверхностью: она представляет собой часть шаровой поверхности, отсекаемую какой-нибудь плоскостью. Круг АВ, по которому плоскость пересекает шар, называется основанием шарового сегмента, а окружность этого круга — основанием сегментной поверхности. Отрезок ОС радиуса, перпендикулярного секущей плоскости, называется высотой шарового сегмента (сегментной поверхности).
Рис. 212
Часть шара, заключённая между двумя параллельными секущими плоскостями, называется шаровым слоем (см. рис. 212, 214). Поверхность шарового слоя называется шаровым поясом. Шаровой пояс — часть шаровой поверхности, заключённая между двумя параллельными секущими плоскостями. Перпендикуляр, проведённый из точки одного основания к плоскости другого, называется высотой шарового слоя (шарового пояса).
Сегментную поверхность и шаровой пояс можно рассматривать как поверхности вращения: в то время, как при вращении полуокружности CAA1D (см. рис. 212) вокруг диаметра CD образуется шаровая поверхность (сфера), при вращении дуги СА этой полуокружности вокруг того же диаметра образуется сегментная поверхность, а при вращении дуги AA1 — шаровой пояс.
Тело, образованное при вращении кругового сектора с углом ϕ (ϕ < 180°) вокруг прямой, которая содержит диаметр круга, не имеющий с круговым сектором общих внутренних точек, называется шаровым сектором.
Рис. 213
Из этого определения следует, что поверхность шарового сектора состоит из сегментной поверхности и боковой поверхности конуса (рис. 213, а, б) или из поверхности шарового пояса и боковых поверхностей двух конусов (рис. 213, в, г).
На рисунке 214 изображены различные элементы шара и сферы (шаровой сектор имеет простейший вид).
Рассмотрим вопрос о вычислении площадей сферы, сегментной поверхности, шарового пояса и шарового сектора.
Рис. 214
Рис. 215
а) Площадь сферы. Пусть ABCDEF — правильная ломаная линия, вписанная в данную полуокружность; a — длина её апофемы (рис. 215). При вращении полуокружности вокруг её диаметра AF образуется сфера, а при вращении ломаной ABCDEF вокруг этого же диаметра AF образуется некоторая поверхность Ф.
За площадь сферы, образованной вращением полуокружности вокруг её диаметра, принимают предел, к которому стремится площадь поверхности Ф, образованной вращением вокруг того же диаметра правильной n-звенной ломаной линии, вписанной в полуокружность, при n → +∞ (число сторон неограниченно возрастает).
Поверхность Ф является объединением поверхностей, образованных вращением звеньев ломаной линии, вписанной в полуокружность, вокруг её диаметра. Этими поверхностями являются боковые поверхности либо конуса (для первого и последнего звеньев ломаной), либо цилиндра (для звеньев, параллельных оси вращения; их может и не быть), либо усечённого конуса (для всех остальных звеньев ломаной).
При вычислении площадей получившихся поверхностей воспользуемся следствиями из теорем 26, 27, 29. Площадь Si (i = 1, 2, …, n) поверхности, образованной вращением любого звена, равна произведению 2π, расстояния bi от середины звена до центра сферы и длины mi проекции этого звена на ось вращения, т. е. Si вращ = 2π•bi•mi.
Так как ломаная — правильная, то все bi равны апофеме an данной n-звенной ломаной, а m1 + m2 + m3 + … + mn = 2R и S1 + S2 + S3 + … + Sn = 4π•an•R. Причём an = , где pn — периметр данной ломаной. Поскольку ограниченная переменная величина при n → +∞ становится бесконечно малой, то при n → ∞ апофема an стремится к радиусу R полуокружности.
Следовательно, предел площади поверхности Ф при n → ∞ равен 4πR•R = 4πR2. Этот предел и принимается за величину площади сферы радиуса R:
Sсферы = 4πR2.
б) Площади сегментной поверхности и шарового пояса. Если правильная ломаная вписана не в полуокружность, а в некоторую её часть, например в дугу AD (см. рис. 215), при вращении которой образуется сегментная поверхность, то рассуждения, аналогичные предыдущим, приводят к выводу:
Sсегм. поверх = 2πRh,
где h — высота сферического сегмента.
Если же ломаная вписана в дугу ВЕ (см. рис. 215), при вращении которой образуется шаровой пояс, то получим:
Sшар. пояса = 2πRh,
где h — высота шарового пояса.
Проделайте эти рассуждения самостоятельно.
в) Площадь поверхности шарового сектора. Эта площадь может быть получена как сумма площадей поверхности сферического сегмента и боковой поверхности одного конуса (см. рис. 213, а, б) или как сумма площадей поверхности сферического слоя и боковых поверхностей двух конусов (см. рис. 213, в, г).
Рассмотрим частный случай (см. рис. 213, а, б). Если R — радиус сферы, h — высота шарового сегмента, то площадь боковой поверхности конуса с вершиной в центре сферы, образующей R, и радиусом основания (докажите это) равна πR , а площадь сегментной поверхности равна 2πRh. Значит, для площади шарового сектора справедлива формула
Sшар. сект = πR(2h + ).
ЗАДАЧА (3.418). Основанием треугольной пирамиды SABC является равносторонний треугольник АВС, сторона которого равна 4. Известно также, что AS = BS = , a SC = 3. Найти площадь сферы, описанной около этой пирамиды.
Рис. 216
Решение. Решим эту задачу двумя методами.
Первый метод (геометрический). Пусть точка О — центр сферы, описанной около данной пирамиды; D — точка пересечения медиан правильного △ АВС; точка Е — середина отрезка АВ (рис. 216).
Центр О сферы равноудалён от всех вершин △ АBС, поэтому принадлежит прямой, проходящей через точку D перпендикулярно плоскости АВС.
Так как точка Е — середина отрезка АВ, то SE ⟂ АВ (AS = BS) и СЕ ⟂ АВ (△ АВС — правильный). Значит, по признаку перпендикулярности прямой и плоскости AB ⟂ (CSE), поэтому (CSE) ⟂ (ABC) (по признаку перпендикулярности двух плоскостей). Это означает, что прямая OD, а следовательно, и точка О — центр сферы — лежат в плоскости CSE.
Точка D является центром окружности, описанной около △ АВС. (По этой окружности плоскость АВС пересекает сферу, описанную около данной пирамиды.) Если L — точка пересечения прямой СЕ и упомянутой окружности, то CL — её диаметр. Найдём длину диаметра CL.
В правильном △ AВС имеем: CE = = 2; CD = СЕ = . Тогда CL = 2CD = .
Далее △ BSE (∠ BES = 90°): SE2 = SB2 – BE2 = 19 – 4 = 15 (по теореме Пифагора); △ SEC (по теореме косинусов):
cos C = = = ;
△ SLC (по теореме косинусов):
SL2 = SC2 + CL2 – 2SC•CL•cos C = ⇒ SL = .
Плоскость CSL проходит через центр О сферы, следовательно, пересекает сферу по большой окружности, которая описана около △ CSL. Значит, радиус R этой окружности равен радиусу сферы, описанной около данной пирамиды. Найдём длину радиуса R.
В треугольнике CSL имеем = 2R. Так как в этом треугольнике cos C = , то sin C = = . Тогда R = = : = .
Находим площадь Q сферы:
Q = 4πR2 = 4π• = π.
Второй метод (координатный). Введём в пространстве декартову прямоугольную систему координат так, чтобы её начало совпадало с вершиной А данной пирамиды, направление оси абсцисс — с направлением луча АС, ось аппликат была перпендикулярна плоскости основания АВС пирамиды (рис. 217).
В этой системе координат вершины основания пирамиды имеют координаты: А(0; 0; 0), B(2; 2 ; 0), C(4; 0; 0).
Обозначив через х, у, z координаты вершины S пирамиды, найдём их из условий: AS = BS = , CS = 3.
Имеем
AS2 = x2 + y2 + z2 = 19,
ВS2 = (x – 2)2 + (y – 2 )2 + z2 = 19,
CS2 = (x – 4)2 + y2 + z2 = 9.
Решая систему уравнений
x2 + y2 + z2 = 19,(x – 2)2 + (y – 2 )2 + z2 = 19,(x – 4)2 + y2 + z2 = 9,
находим: х = , у = , z = .
Рис. 217
Таким образом, вершина S имеет следующие координаты:
S .
Пусть центр O сферы имеет координаты a, b, с, а её радиус равен R. Так как сфера описана около пирамиды SABC, то OA2 = OB2 = OC2 = OS2 = R2. Это соотношение в координатном виде равносильно системе уравнений
a2 + b2 + c2 = R2,(a – 2)2 + (b – 2)2 + c2 = R2, + + = R2,(a – 4)2 + b2 + c2 = R2.
Вычитая из первого уравнения четвёртое, получаем a = 2, после чего, вычитая из первого уравнения второе, получаем b = .
После вычитания третьего уравнения системы из первого её уравнения получаем:
= 0.
Подставив в это уравнение вместо a и b найденные их значения, получаем с = . Отсюда: R2 = a2 + b2 + c2 = 4 + + = . Тогда искомая площадь Q сферы равна:
Q = 4πR2 = π.
Ответ: π (кв. ед.).
19.8. Объёмы шара и его частей
Рис. 218
Рассмотрим фигуру, образованную вращением равнобедренного прямоугольного треугольника с гипотенузой 2R вокруг прямой, проходящей через вершину прямого угла параллельно гипотенузе (рис. 218, а). Объём этой фигуры равен разности объёма цилиндра с высотой 2R, радиусом основания R и удвоенного объёма конуса высоты R, радиуса основания R:
V = π•R2•2R – 2•π•R2•R = π•R3.(*)
Шар радиуса R (рис. 218, б) и образованную выше фигуру вращения расположим между двумя параллельными плоскостями, расстояние между которыми равно 2R. Шар при этом будет касаться каждой из данных плоскостей, а фигуру вращения расположим так, чтобы её ось вращения была перпендикулярна этим плоскостям (см. рис. 218). (Плоскость, которая содержит верхнее основание цилиндра и касается сферы в точке N, на рисунке не изображена.)
Будем пересекать наши фигуры плоскостями, параллельными данным плоскостям и удалёнными от центра шара на расстояние x (0 ⩽ x ⩽ R).
При х = 0 площади сечений обеих фигур равны π•R2; при х = R площади сечений равны нулю. В остальных случаях площадь сечения шара равна π•()2 = π•(R2 – x2), а площадь сечения другой фигуры (ею является кольцо) равна π•R2 – π•x2. Следовательно, площади равноудалённых от центра шара сечений рассматриваемых фигур равны (относятся, как 1 : 1). Поэтому на основании принципа Кавальери равны и объёмы этих тел. Тогда на основании (*):
Vшара = •π•R3,
гдe R — радиус шара.
Рис. 219
Для получения объёма шарового сегмента высоты h рассмотрим предыдущую ситуацию для R – h ⩽ x ⩽ R (при h < R) (рис. 218, 219). Применяя принцип Кавальери, получим: объём шарового сегмента равен разности объёма цилиндра высоты h и радиуса основания R и объёма усечённого конуса высоты h и радиусов оснований R и R – h, т. е.
V = π•h•R2 – π•h•(R2 + R•(R – h) + (R – h)2) =
= π•h2•(3R – h).
При h > R объём шарового сегмента можно найти как разность объёма шара и объёма шарового сегмента высоты 2R – h (рис. 220): V = π•R3 – •π•(2R – h)2•(3R – (2R – h)) = π•h2(3R – h), т. е. получаем ту же самую формулу. Подставляя в эту формулу h = R, получим V = π•R2(3R – R) = π•R3, что соответствует объёму полушара.
Рис. 220
Мы показали, что в шаре радиуса R объём любого шарового сегмента высоты h может быть вычислен по формуле:
Vшар. сегм = π•h2•(3R – h),
или в другом виде
Vшар. сегм = π•h2•.
Рис. 221
Рис. 222
Рис. 223
Выведем теперь формулу для вычисления объёма шарового сектора.
Сначала рассмотрим шаровой сектор, состоящий из шарового сегмента высоты h и конуса высоты (R – h) с вершиной в центре шара радиуса R (рис. 221). Для него имеем:
Vшар. сект = Vсегм + Vкон = π•h2•(3R – h) +
+ π•(R – h•R2 – (R – h)2) = •π•R2•h.
Докажите самостоятельно, что и для других шаровых секторов (рис. 222, 223) их объём вычисляется по формуле:
Vшар. сект = π•R2•h.
Отметим, что объём шарового слоя с радиусами оснований r1 и r2 и высотой Н вычисляется по формуле
Vшар. слоя = (3 + 3 + H2).
ЗАДАЧА (3.457). Четыре шара радиуса R и четыре шара радиуса r расположены так, что каждый касается трёх шаров одного радиуса и трёх шаров другого радиуса. Найти отношение объёма шара радиуса R к объёму шара радиуса r (R > r).
Решение. Обозначим V1, V2 — объёмы шаров с радиусами соответственно R и r. Тогда V1 = πR3, V2 = πr 3, значит, = .
Пусть А, В, С, Р — центры шаров радиуса R; A1, B1, С1, P1 — центры шаров радиуса r. Тогда:
1) AB = BC = CA = AP = BP = CP = 2R ⇒ РАВС — правильный тетраэдр с ребром 2R;
2) A1B1 = B1C1 = C1A1 = A1P1 = B1P1 = C1P1 = 2r ⇒ Р1А1В1С1 — правильный тетраэдр с ребром 2r.
Рис. 224
Обозначим точки A2, B2, C2, P2 — центры граней тетраэдра РАВС (рис. 224) и докажем, что все четыре высоты АA2, BB2, CC2, PP2 пересекаются в одной точке и делятся этой точкой в отношении 3 : 1, считая от вершин.
В самом деле, если М = AА2 ∩ PP2, то из подобия треугольников НАР и НР2А2 следует HP : НA2 = AP : A2P2 = 3 : 1, тогда из подобия треугольников APM и A2P2M следует, что AP : A2P2 = PM : MP2 = AM : MA2 = 3 : 1, т. е. PM = PP2.
Аналогично доказывается, что высоты BB2 и CC2 делятся точкой M в отношении BM : MB2 = CM : MC2 = 3 : 1 и, таким образом, точки A2, B2, C2, P2 равноудалены от точки М.
Далее, так как шар с центром P1 и радиусом r касается шаров с центрами А, В, C и радиусами R, то P1А = P1B = P1С = R + r, т. е. точка P1 равноудалена от вершин А, В и С правильного тетраэдра РАВС. Так как (R + r) < 2R, то P1 принадлежит высоте РP2 этого тетраэдра: P1 ∈ PP2. Аналогично доказывается, что A1 ∈ АA2, B1 ∈ ВB2, C1 ∈ СC2.
Найдём дважды длину высоты РP2 тетраэдра РАВС: с одной стороны, как длину катета прямоугольного треугольника АPP2, с другой стороны, как сумму длин отрезков РМ, МР1 и P1P2.
В правильном △ AВС со стороной 2R имеем:
AP2 = AH = • = .
Тогда в прямоугольном △ AРP2 :
РР2 = = = .
Найдём длину отрезка PP2 иначе. В прямоугольном △ AP1P2 имеем:
Аналогично можно убедиться, что A1A2 = B1B2 = C1C2 = P1P2 = . Тогда, учитывая, что МА2 = МB2 = МC2 = MP2, приходим к выводу: MA1 = MB1 = MC1 = MP1. Это означает, что точка M — общий центр правильных тетраэдров РАВС и Р1А1B1C1 и РP2 = РM + МP1 + P1P2.
Так как в правильном тетраэдре РАВС с ребром 2R для расстояния РМ от вершины Р до центра М этого тетраэдра выполняется РМ = РР2 = • = , то в правильном тетраэдре P1A1B1C1 с ребром 2r для расстояния P1M от вершины P1 до его центра М выполняется Р1M = .
Подставляя в равенство PP2 = РM + MP1 + P1P2 найденные значения длин отрезков РР2, РM, МP1 и P1P2, получаем:
= + + ,
или после элементарных преобразований:
R2 – 6Rr + r2 = 0.
Разделив это уравнение на r2 и введя новую переменную t = , получаем уравнение t2 – 6t + 1 = 0, корнями которого являются t1 = 3 – 2 , t2 = 3 + 2 . Так как t1 < 0, то условию задачи удовлетворяет лишь значение t2 = 3 + 2 . Это означает, что = 3 + 2 . Тогда = = (3 + 2 )3.
Ответ: (3 + 2 )3.
Задания для работы с интернет-ресурсами
1. Посмотрите в Интернете и отберите рисунки по темам: «Тело вращения», «Поверхность вращения». Они помогут вам при построении рисунков к решению задач.
2. Сравните материалы Интернета и учебника по темам: «Цилиндр», «Конус», «Цилиндрическая и коническая поверхности вращения», «Касательная плоскость к цилиндру и конусу», «Формулы для вычисления площадей боковой и полной поверхностей цилиндра и конуса», «Формулы для вычисления объёма цилиндра и конуса», «Развёртки цилиндра и конуса», «Модели цилиндра и конуса». Что нового вы узнали из Интернета?
3. Вы узнаете много нового и интересного о замечательных кривых, сделав запрос в Интернете по темам: «Сечения цилиндра и конуса плоскостью», «Кривые второго порядка», «Конические сечения».
4. Найдите рисунки по темам: «Призма, вписанная в цилиндр и описанная около цилиндра», «Пирамиды, вписанные в конус и описанные около конуса». Удачные рисунки скопируйте в «Избранное» или в «Картотеку», чтобы можно было ими пользоваться при решении задач.
5. Найдите в Интернете теоремы о параллельных сечениях конуса. Посмотрите рисунки усечённых конусов. Найдите формулы для вычисления площадей боковой и полной поверхностей усечённого конуса и его объёма.
6. В Интернете посмотрите материал по темам: «Сфера», «Шар», «Изображение сферы», «Уравнение сферы», «Взаимное расположение сферы и плоскости», «Пересечение шара и сферы с плоскостью», «Плоскость, касательная к сфере и шару», «Шаровой сегмент, его основание и высота; сегментная поверхность», «Шаровой слой, его основания и высота», «Шаровой пояс», «Шаровой сектор и его поверхность».
7. Найдите в Интернете формулы для вычисления площадей сферы, сегментной поверхности, шарового пояса, поверхности шарового сектора, объёмов шара, шарового сегмента, шарового сектора, шарового слоя.
8. Обратите особое внимание на материал: «Шары и сферы, вписанные в двугранный угол и многогранный угол», «Шары и сферы, вписанные в многогранники (особенно в правильные многогранники) и описанные около них», «Шары и сферы, вписанные в цилиндр, конус и описанные около них».
9. Посмотрите рисунки и материалы по темам: «Комбинации геометрических тел», «Комбинации геометрических фигур в окружающем нас мире, в архитектуре». Тем, кто интересуется черчением и графикой, предлагаем найти статьи: «Техническое черчение: цилиндр и конус», «Пересечение двух цилиндров с перпендикулярными осями», «Резьбы и резьбовые соединения», «Цилиндрическая винтовая линия».
Вопросы для самооценки
1. Оцените результаты изучения этой главы. Довольны ли вы ими?
2.Что нового вы узнали в этой главе?
3.Как могут пригодиться вам эти знания в повседневной жизни?
4.Какие задания в этой главе были для вас самыми трудными? Почему?
5.Использовали ли вы при выполнении заданий дополнительные источники: справочники, пособия, интернет-ресурсы?
6.Обращались ли вы за помощью к одноклассникам, родителям, учителю?