Как найти центр шара вписанного в конус

Рассмотрим некоторые соотношения, которые полезны при решении задач на шар, вписанный в конус.

шар в конусе

В любой конус можно вписать шар. Вписанный в конус шар (или сфера, вписанная в конус) касается основания конуса в его центре, а боковой поверхности — по окружности. Центр шара (сферы) лежит на оси конуса.

При решении задач на шар, вписанный в конус, удобнее всего рассмотреть сечение комбинации тел плоскостью, проходящей через ось конуса и центр шара.

осевое сечение комбинации "шар в конусе"Это сечение  представляет собой равнобедренный треугольник, боковые стороны которого — образующие конуса, а основание — диаметр конуса. Вписанный в этот треугольник круг — большой круг шара (то есть круг, радиус которого равен радиусу шара).

Для данного рисунка образующие SA=SB=l, высота конуса SO=H, радиус вписанного шара OO1=O1F=R. Так как центр вписанного круга — точка пересечения биссектрис треугольника, то ∠OBO1=∠FBO1, OB=r — радиус конуса.

Рассмотрим прямоугольный треугольник SOB. По свойству биссектрисы треугольника:

    [frac{{SB}}{{S{O_1}}} = frac{{OB}}{{O{O_1}}}, Rightarrow frac{l}{{H - R}} = frac{r}{R}]

    [lR = (H - R)r,lR = Hr - Rr,]

    [lR + Rr = Hr,R(l + r) = Hr,]

    [R = frac{{Hr}}{{I + r}}.]

По теореме Пифагора

    [SB = sqrt {S{O^2} + O{B^2}} , Rightarrow l = sqrt {{H^2} + {r^2}} ]

Отсюда

    [frac{{sqrt {{H^2} + {r^2}} }}{{H - R}} = frac{r}{R}.]

Рассмотрим прямоугольный треугольник OO1B.

    [O{O_1} = OB cdot tgangle OB{O_1}]

Если ∠OBS=α, то ∠OBO1=α/2. Отсюда

    [R = r cdot tgfrac{alpha }{2}.]

Если сначала выразить радиус конуса через его высоту из прямоугольного треугольника SOB

    [OB = SO cdot ctgalpha , Rightarrow r = H cdot ctgalpha ,]

то из треугольника OO1B выражаем радиус шара через высоту конуса:

    [r = H cdot ctgalpha  cdot tgfrac{alpha }{2}.]

Шар является описанным около куба, если все вершины куба находятся на поверхности шара.

Lode_kubs1.png   Lode_kubs11.png

Центр шара (O) — точка пересечения диагоналей куба.

Около любого куба можно описать шар.

Общие точки шара и куба — восемь вершин куба.

Чертится диагональное сечение. 

AC1

 и

CA1

 — диагонали куба.

Радиус шара равен половине диагонали куба.

Шар является вписанным в куб, если он касается всех его граней.

Lode_kubs2.png   Lode_kubs21.png

Центр шара (O) находится в точке пересечения диагоналей куба.
В любой куб можно вписать шар.
Общие точки шара и куба — центры шести граней куба (точки касания шара и куба).

Чертится сечение плоскостью, которая параллельна грани куба и проходит через центр шара.

Радиус шара — половина стороны куба.

Шар является описанным около цилиндра, если окружности оснований цилиндра лежат на поверхности шара.

Lode_cilindrs1.png   Lode_cilindrs11.png

Центр шара (O) находится в середине высоты цилиндра.

Общие элементы — две окружности.

Около любого цилиндра можно описать шар.

Чертится осевое сечение.

Радиус шара — половина диагонали осевого сечения цилиндра.

Шар является вписанным в цилиндр, если касается оснований цилиндра и всех его образующих.

Центр шара (O) — середина высоты цилиндра. 

Осевое сечение — квадрат с вписанной в него окружностью.

Радиус шара равен радиусу цилиндра и половине высоты цилиндра.

Узнать ещё

Знание — сила. Познавательная информация

Шар, вписанный в конус

Рассмотрим некоторые соотношения, которые полезны при решении задач на шар, вписанный в конус.

В любой конус можно вписать шар. Вписанный в конус шар (или сфера, вписанная в конус) касается основания конуса в его центре, а боковой поверхности — по окружности. Центр шара (сферы) лежит на оси конуса.

При решении задач на шар, вписанный в конус, удобнее всего рассмотреть сечение комбинации тел плоскостью, проходящей через ось конуса и центр шара.

Это сечение представляет собой равнобедренный треугольник, боковые стороны которого — образующие конуса, а основание — диаметр конуса. Вписанный в этот треугольник круг — большой круг шара (то есть круг, радиус которого равен радиусу шара).

Для данного рисунка образующие SA=SB=l, высота конуса SO=H, радиус вписанного шара OO1=O1F=R. Так как центр вписанного круга — точка пересечения биссектрис треугольника, то ∠OBO1=∠FBO1, OB=r — радиус конуса.

Рассмотрим прямоугольный треугольник SOB. По свойству биссектрисы треугольника:

По теореме Пифагора

Рассмотрим прямоугольный треугольник OO1B.

Если ∠OBS=α, то ∠OBO1=α/2. Отсюда

Если сначала выразить радиус конуса через его высоту из прямоугольного треугольника SOB

то из треугольника OO1B выражаем радиус шара через высоту конуса:

Нахождение радиуса/площади/объема вписанного в конус шара (сферы)

В данной публикации мы рассмотрим, как найти радиус вписанного в конус шара (сферы), а также площадь его поверхности и объем.

Нахождение радиуса шара/сферы

В любой конус можно вписать шар (сферу). Другими словами, вокруг любого шара можно описать конус.

Чтобы найти радиус шара (сферы), вписанного в конус, чертим осевое сечение конуса. Таким образом, мы получаем равнобедренный треугольник (в нашем случае – ABC), в который вписана окружность радиусом r.

Радиус основания конуса (R) равняется половине основания данного треугольника (AC), а образующие ( l ) являются его боковыми сторонами (AB и BC).

Радиус окружности, вписанной в равнобедренный треугольник ABC, в том числе, является радиусом шара, вписанного в конус. Он находится по формуле:

Формулы площади и объема шара/сферы

Зная радиус (r) можно найти площадь поверхности (S) сферы и объем (V) шара, ограниченного этой сферой:

Примечание: π округленно равняется 3,14.

Презентация » Вписанные и описанные конусы»

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

Дистанционные курсы для педагогов

Описание презентации по отдельным слайдам:

Пирамида, вписанная в конус Пирамида называется вписанной в конус, если ее основание вписано в основание конуса, а вершина совпадает с вершиной конуса. При этом конус называется описанным около пирамиды. Около пирамиды можно описать конус тогда и только тогда, когда около ее основания можно описать окружность.

Упражнение 1 Найдите сторону основания правильной треугольной пирамиды, вписанной в конус, радиус основания которого равен 1.

Упражнение 2 Найдите сторону основания правильной четырехугольной пирамиды, вписанной в конус, радиус основания которого равен 1.

Упражнение 3 Найдите сторону основания правильной шестиугольной пирамиды, вписанной в конус, радиус основания которого равен 1. Ответ: 1.

Пирамида, описанная около конуса Пирамида называется описанной около конуса, если ее основание описано около основания конуса, а вершина совпадает с вершиной конуса. При этом конус называется вписанным в пирамиду. В пирамиду можно вписать конус тогда и только тогда, когда в ее основание можно вписать окружность.

Упражнение 1 Найдите сторону основания правильной треугольной пирамиды, описанной около конуса, радиус основания которого равен 1.

Упражнение 2 Найдите сторону основания правильной четырехугольной пирамиды, описанной около конуса, радиус основания которого равен 1. Ответ: 2.

Упражнение 3 Найдите сторону основания правильной шестиугольной пирамиды, описанной около конуса, радиус основания которого равен 1.

Сфера, вписанная в конус Сфера называется вписанной в конус, если она касается его основания и боковой поверхности (касается каждой образующей). При этом конус называется описанным около сферы. В любой конус (прямой, круговой) можно вписать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, вписанной в треугольник, являющийся осевым сечением конуса. Напомним, что радиус r окружности, вписанный в треугольник, находится по формуле где S – площадь, p – полупериметр треугольника.

Упражнение 1 В конус, радиус основания которого равен 1, а образующая равна 2, вписана сфера. Найдите ее радиус.

Упражнение 2 В конус, радиус основания которого равен 2, вписана сфера радиуса 1. Найдите высоту конуса.

Упражнение 3 Радиус основания конуса равен 1. Образующая наклонена к плоскости основания под углом 45о. Найдите радиус вписанной сферы.

Упражнение 4 Высота конуса равна 8, образующая 10. Найдите радиус вписанной сферы.

Упражнение 5 Можно ли вписать сферу в наклонный конус? Ответ: Нет.

Сфера, вписанная в усеченный конус Сфера называется вписанной в усеченный конус, если она касается его оснований и боковой поверхности (касается каждой образующей). При этом усеченный конус называется описанным около сферы. В усеченный конус можно вписать сферу, если в его осевое сечение можно вписать окружность. Радиус этой окружности будет равен радиусу вписанной сферы.

Упражнение 1 В усеченный конус, радиусы оснований которого равны 2 и 1, вписана сфера. Найдите радиус сферы и высоту усеченного конуса.

Упражнение 2 В усеченный конус, радиус одного основания которого равен 2, вписана сфера радиуса 1. Найдите радиус второго основания. Решение. Пусть A1O1= 2. Обозначим r = A2O2. Имеем: A1A2 = 2+r, A1C = 2 – r. По теореме Пифагора, имеет место равенство из которого следует, что выполняется равенство Решая полученное уравнение относительно r, находим

Упражнение 3 В усеченном конусе радиус большего основания равен 2, образующая наклонена к плоскости основания под углом 60о. Найдите радиус вписанной сферы.

Упражнение 4 Образующая усеченного конуса равна 2, площадь осевого сечения 3. Найдите радиус вписанной сферы.

Упражнение 5 Можно ли вписать сферу в усеченный наклонный конус. Ответ: Нет.

Сфера, описанная около конуса Сфера называется описанной около конуса, если вершина и окружность основания конуса лежат на сфере. При этом конус называется вписанным в сферу. Около любого конуса (прямого, кругового) можно описать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, описанной около треугольника, являющимся осевым сечением конуса. Напомним, что радиус R окружности, описанной около треугольника, находится по формуле где S – площадь, a, b, c – стороны треугольника.

Упражнение 1 Около конуса, радиус основания которого равен 1, а образующая равна 2, описана сфера. Найдите ее радиус.

Упражнение 2 Около конуса, радиус основания которого равен 4, описана сфера радиуса 5. Найдите высоту h конуса.

Упражнение 3 Радиус основания конуса равен 1. Образующая наклонена к плоскости основания под углом 45о. Найдите радиус описанной сферы.

Упражнение 4 Высота конуса равна 8, образующая 10. Найдите радиус описанной сферы.

Упражнение 5 Можно ли описать сферу около наклонного конуса?

Сфера, описанная около усеченного конуса Сфера называется описанной около усеченного конуса, если окружности оснований усеченного конуса лежат на сфере. При этом усеченный конус называется вписанным в сферу. Около усеченного конуса можно описать сферу, если около его осевого сечения можно описать окружность. Радиус этой окружности будет равен радиусу описанной сферы.

Упражнение 1 Около усеченного конуса, радиусы оснований которого равны 2 и 1, а образующая равна 2, описана сфера. Найдите ее радиус.

Упражнение 2 Радиус меньшего основания усеченного конуса равен 1, образующая равна 2 и составляет угол 45о с плоскостью другого основания. Найдите радиус описанной сферы.

Упражнение 3 Радиус одного основания усеченного конуса равен 4, высота 7, радиус описанной сферы 5. Найдите радиус второго основания усеченного конуса.

Упражнение 4 Найдите радиус сферы, описанной около усеченного конуса, радиусы оснований которого равны 2 и 4, а высота равна 5.

Упражнение 5 Можно ли описать сферу около усеченного наклонного конуса. Ответ: Нет.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 932 человека из 80 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 318 человек из 70 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 700 человек из 75 регионов

Ищем педагогов в команду «Инфоурок»

Презентация не является моей авторской разработкой,я нашла ее в своих архивах. Хочу поделиться с вами этим материалом, т.к он хорошо подходит для отработки № 8 ЕГЭ. Презентация содержит набор задач с решениями ( каждая следующая сложнее предыдущей), хорошо сделанные рисунки ( что помогает учителю, за урок разобрать большее количество задач)

  • Иванченко Ирина АлексеевнаНаписать 3119 08.02.2019

Номер материала: ДБ-429916

    08.02.2019 107
    08.02.2019 71
    08.02.2019 52
    08.02.2019 69
    08.02.2019 557
    07.02.2019 101
    07.02.2019 150
    07.02.2019 105

Не нашли то, что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

530 курсов от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Утвержден список федеральных инновационных площадок в образовании на 2022 год

Время чтения: 1 минута

В Роспотребнадзоре заявили о широком распространении COVID-19 среди детей

Время чтения: 1 минута

В России утвердили новые правила аккредитации образовательных учреждений

Время чтения: 1 минута

Стартовал региональный этап Всероссийской олимпиады школьников

Время чтения: 2 минуты

В местах сдачи ЕГЭ будут применены антиковидные меры

Время чтения: 1 минута

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

источники:

В данной публикации мы рассмотрим, как найти радиус вписанного в конус шара (сферы), а также площадь его поверхности и объем.

  • Нахождение радиуса шара/сферы

  • Формулы площади и объема шара/сферы

Нахождение радиуса шара/сферы

В любой конус можно вписать шар (сферу). Другими словами, вокруг любого шара можно описать конус.

Вписанный в конус шар (сфера)

Чтобы найти радиус шара (сферы), вписанного в конус, чертим осевое сечение конуса. Таким образом, мы получаем равнобедренный треугольник (в нашем случае – ABC), в который вписана окружность радиусом r.

Равнобедренный треугольник со вписанной окружностью

Радиус основания конуса (R) равняется половине основания данного треугольника (AC), а образующие (l) являются его боковыми сторонами (AB и BC).

Радиус окружности, вписанной в равнобедренный треугольник ABC, в том числе, является радиусом шара, вписанного в конус. Он находится по формуле:

Формула для нахождения радиуса шара (сферы) вписанного в конус

Формулы площади и объема шара/сферы

Зная радиус (r) можно найти площадь поверхности (S) сферы и объем (V) шара, ограниченного этой сферой:

Формула для нахождения площади поверхности вписанного в конус шара (сферы )

Формула для нахождения объема вписанного в конус шара (сферы)

Примечание: π округленно равняется 3,14.

Тема “Разные задачи на многогранники, цилиндр,
конус и шар” является одной из самых сложных в
курсе геометрии 11 класса. Перед тем, как решать
геометрические задачи, обычно изучают
соответствующие разделы теории, на которые
ссылаются при решении задач. В учебнике
С.Атанасяна и др. по данной теме (стр. 138) можно
найти только определения многогранника,
описанного около сферы, многогранника,
вписанного в сферу, сферы, вписанной в
многогранник, и сферы, описанной около
многогранника. В методических рекомендациях к
этому учебнику (см. книгу “Изучение геометрии в
10–11-х классах” С.М.Саакяна и В.Ф.Бутузова, стр.159)
сказано, какие комбинации тел рассматриваются
при решении задач № 629–646, и обращается внимание
на то, что “при решении той или иной задачи
прежде всего нужно добиться того, чтобы учащиеся
хорошо представляли взаимное расположение
указанных в условии тел”. Далее приводится
решение задач №638(а) и №640.

Учитывая все выше сказанное, и то, что наиболее
трудными для учащихся являются задачи на
комбинацию шара с другими телами, необходимо
систематизировать соответствующие
теоретические положения и сообщить их учащимся.

Определения.

1. Шар называется вписанным в многогранник, а
многогранник описанным около шара, если
поверхность шара касается всех граней
многогранника.

2. Шар называется описанным около
многогранника, а многогранник вписанным в шар,
если поверхность шара проходит через все вершины
многогранника.

3. Шар называется вписанным в цилиндр, усеченный
конус (конус), а цилиндр, усеченный конус (конус) –
описанным около шара, если поверхность шара
касается оснований (основания) и всех образующих
цилиндра, усеченного конуса (конуса).

(Из этого определения следует, что в любое
осевое сечение этих тел может быть вписана
окружность большого круга шара).

4. Шар называется описанным около цилиндра,
усеченного конуса (конуса), если окружности
оснований (окружность основания и вершина)
принадлежат поверхности шара.

(Из этого определения следует, что около
любого осевого сечения этих тел может быть
описана окружность большего круга шара).

Общие замечания о положении центра
шара.

1. Центр шара, вписанного в многогранник, лежит в
точке пересечения биссекторных плоскостей всех
двугранных углов многогранника. Он расположен
только внутри многогранника.

2. Центр шара, описанного около многогранника,
лежит в точке пересечения плоскостей,
перпендикулярных ко всем ребрам многогранника и
проходящих через их середины. Он может быть
расположен внутри, на поверхности и вне
многогранника.

Комбинация шара с призмой.

1. Шар, вписанный в прямую призму.

Теорема 1. Шар можно вписать в прямую
призму в том и только в том случае, если в
основание призмы можно вписать окружность, а
высота призмы равна диаметру этой окружности.

Следствие 1. Центр шара, вписанного в прямую
призму, лежит в середине высоты призмы,
проходящей через центр окружности, вписанной в
основание.

Следствие 2. Шар, в частности, можно вписать
в прямые: треугольную, правильную,
четырехугольную (у которой суммы
противоположных сторон основания равны между
собой) при условии Н = 2r, где Н – высота призмы, r –
радиус круга, вписанного в основание.

2. Шар, описанный около призмы.

Теорема 2. Шар можно описать около
призмы в том и только в том случае, если призма
прямая и около ее основания можно описать
окружность.

Следствие 1. Центр шара, описанного около
прямой призмы, лежит на середине высоты призмы,
проведенной через центр круга, описанного около
основания.

Следствие 2. Шар, в частности, можно описать:
около прямой треугольной призмы, около
правильной призмы, около прямоугольного
параллелепипеда, около прямой четырехугольной
призмы, у которой сумма противоположных углов
основания равна 180 градусов.

Из учебника Л.С.Атанасяна на комбинацию шара с
призмой можно предложить задачи № 632, 633, 634, 637(а),
639(а,б).

Комбинация шара с пирамидой.

1. Шар, описанный около пирамиды.

Теорема 3. Около пирамиды можно описать
шар в том и только в том случае, если около ее
основания можно описать окружность.

Следствие 1. Центр шара, описанного около
пирамиды лежит в точке пересечения прямой,
перпендикулярной основанию пирамиды, проходящей
через центр окружности, описанной около этого
основания, и плоскости, перпендикулярной любому
боковому ребру, проведенной через сере дину
этого ребра.

Следствие 2. Если боковые ребра пирамиды
равны между собой (или равно наклонены к
плоскости основания), то около такой пирамиды
можно описать шар.Центр этого шара в этом случае
лежит в точке пересечения высоты пирамиды (или ее
продолжения) с осью симметрии бокового ребра,
лежащей в плоскости бокового ребра и высоты.

Следствие 3. Шар, в частности, можно описать:
около треугольной пирамиды, около правильной
пирамиды, около четырехугольной пирамиды, у
которой сумма противоположных углов равна 180
градусов.

2. Шар, вписанный в пирамиду.

Теорема 4. Если боковые грани пирамиды
одинаково наклонены к основанию, то в такую
пирамиду можно вписать шар.

Следствие 1. Центр шара, вписанного в
пирамиду, у которой боковые грани одинаково
наклонены к основанию, лежит в точке пересечения
высоты пирамиды с биссектрисой линейного угла
любого двугранного угла при основании пирамиды,
стороной которого служит высота боковой грани,
проведенная из вершины пирамиды.

Следствие 2. В правильную пирамиду можно
вписать шар.

Из учебника Л.С.Атанасяна на комбинацию шара с
пирамидой можно предложить задачи № 635, 637(б), 638,
639(в),640, 641.

Комбинация шара с усеченной
пирамидой.

1. Шар, описанный около правильной усеченной
пирамиды.

Теорема 5. Около любой правильной
усеченной пирамиды можно описать шар. (Это
условие является достаточным, но не является
необходимым)

2. Шар, вписанный в правильную усеченную
пирамиду.

Теорема 6. В правильную усеченную
пирамиду можно вписать шар в том и только в том
случае, если апофема пирамиды равна сумме апофем
оснований.

На комбинацию шара с усеченной пирамидой в
учебнике Л.С.Атанасяна есть всего лишь одна
задача (№ 636).

Комбинация шара с круглыми телами.

Теорема 7. Около цилиндра, усеченного
конуса (прямых круговых), конуса можно описать
шар.

Теорема 8. В цилиндр (прямой круговой)
можно вписать шар в том и только в том случае,
если цилиндр равносторонний.

Теорема 9. В любой конус (прямой
круговой) можно вписать шар.

Теорема 10. В усеченный конус (прямой
круговой) можно вписать шар в том и только в том
случае, если его образующая равна сумме радиусов
оснований.

Из учебника Л.С.Атанасяна на комбинацию шара с
круглыми телами можно предложить задачи № 642, 643,
644, 645, 646.

Для более успешного изучения материала данной
темы необходимо включать в ход уроков устные
задачи:

1. Ребро куба равно а. Найти радиусы шаров:
вписанного в куб и описанного около него. (r = a/2, R =
a3).

2. Можно ли описать сферу (шар) около: а) куба; б)
прямоугольного параллелепипеда; в) наклонного
параллелепипеда, в основании которого лежит
прямоугольник; г) прямого параллелепипеда; д)
наклонного параллелепипеда? (а) да; б) да; в) нет;
г) нет; д) нет)

3. Справедливо ли утверждение, что около любой
треугольной пирамиды можно описать сферу? (Да)

4. Можно ли описать сферу около любой
четырехугольной пирамиды? (Нет, не около любой
четырёхугольной пирамиды)

5. Какими свойствами должна обладать пирамида,
чтобы около нее можно было описать сферу? (В её
основании должен лежать многоугольник, около
которого можно описать окружность)

6. В сферу вписана пирамида, боковое ребро
которой перпендикулярно основанию. Как найти
центр сферы? (Центр сферы – точка пересечения
двух геометрических мест точек в пространстве.
Первое – перпендикуляр, проведённый к плоскости
основания пирамиды, через центр окружности,
описанной около него. Второе – плоскость
перпендикулярная данному боковому ребру и
проведённая через его середину)

7. При каких условиях можно описать сферу около
призмы, в основании которой – трапеция? (Во-первых,
призма должна быть прямой, и, во-вторых, трапеция
должна быть равнобедренной, чтобы около неё
можно было описать окружность)

8. Каким условиям должна удовлетворять призма,
чтобы около нее можно было описать сферу?
(Призма должна быть прямой, и её основанием
должен являться многоугольник, около которого
можно описать окружность)

9. Около треугольной призмы описана сфера, центр
которой лежит вне призмы. Какой треугольник
является основанием призмы? (Тупоугольный
треугольник)

10. Можно ли описать сферу около наклонной
призмы? (Нет, нельзя)

11. При каком условии центр сферы, описанной
около прямой треугольной призмы, будет находится
на одной из боковых граней призмы? (В основании
лежит прямоугольный треугольник)

12. Основание пирамиды – равнобедренная
трапеция .Ортогональная проекция вершины
пирамиды на плоскость основания – точка,
расположенная вне трапеции. Можно ли около такой
трапеции описать сферу? (Да, можно. То что
ортогональная проекция вершины пирамиды
расположена вне её основания, не имеет значения.
Важно, что в основании пирамиды лежит
равнобедренная трапеция – многоугольник, около
которого можно описать окружность)

13. Около правильной пирамиды описана сфера. Как
расположен ее центр относительно элементов
пирамиды? (Центр сферы находится на
перпендикуляре, проведенном к плоскости
основания через его центр)

14. При каком условии центр сферы, описанной
около прямой треугольной призмы, лежит: а) внутри
призмы; б) вне призмы? (В основании призмы: а)
остроугольный треугольник; б) тупоугольный
треугольник)

15. Около прямоугольного параллелепипеда, ребра
которого равны 1 дм, 2 дм и 2 дм, описана сфера.
Вычислите радиус сферы. (1,5 дм)

16. В какой усеченный конус можно вписать сферу?
усечённый конус, в осевое сечение которого можно
вписать окружность. Осевым сечением конуса
является равнобедренная трапеция, сумма её
оснований должна равняться сумме её боковых
сторон. Другими словами, у конуса сумма радиусов
оснований должна равняться образующей)

17. В усеченный конус вписана сфера. Под каким
углом образующая конуса видна из центра сферы? (90
градусов)

18. Каким свойством должна обладать прямая
призма, чтобы в нее можно было вписать сферу? (Во-первых,
в основании прямой призмы должен лежать
многоугольник, в который можно вписать
окружность, и, во-вторых, высота призмы должна
равняться диаметру вписанной в основание
окружности)

19. Приведите пример пирамиды, в которую нельзя
вписать сферу? (Например, четырёхугольная
пирамида, в основании которой лежит
прямоугольник или параллелограмм)

20. В основании прямой призмы лежит ромб. Можно
ли в эту призму вписать сферу? (Нет, нельзя, так
как около ромба в общем случае нельзя описать
окружность)

21. При каком условии в прямую треугольную
призму можно вписать сферу? (Если высота призмы
в два раза больше радиуса окружности, вписанной в
основание)

22. При каком условии в правильную
четырехугольную усеченную пирамиду можно
вписать сферу? (Если сечением данной пирамиды
плоскостью, проходящей через середину стороны
основания перпендикулярно ей, является
равнобедренная трапеция, в которую можно вписать
окружность)

23. В треугольную усеченную пирамиду вписана
сфера. Какая точка пирамиды является центром
сферы? (Центр вписанной в данную пирамиду сферы
находится на пересечении трёх биссектральных
плоскостей углов, образованных боковыми гранями
пирамиды с основанием)

24. Можно ли описать сферу около цилиндра
(прямого кругового)? (Да, можно)

25. Можно ли описать сферу около конуса,
усеченного конуса (прямых круговых)? (Да, можно,
в обоих случаях)

26. Во всякий ли цилиндр можно вписать сферу?
Какими свойствами должен обладать цилиндр, чтобы
в него можно было вписать сферу? (Нет, не во
всякий: осевое сечение цилиндра должно быть
квадратом)

27. Во всякий ли конус можно вписать сферу? Как
определить положение центра сферы, вписанной в
конус? (Да, во всякий. Центр вписанной сферы
находится на пересечении высоты конуса и
биссектрисы угла наклона образующей к плоскости
основания)

Автор считает, что из трех уроков, которые
отводятся по планированию на тему “Разные
задачи на многогранники, цилиндр, конус и шар”,
два урока целесообразно отвести на решение задач
на комбинацию шара с другими телами. Теоремы,
приведенные выше, из-за недостаточного
количества времени на уроках доказывать не
рекомендуется. Можно предложить учащимся,
которые владеют достаточными для этого навыками,
доказать их, указав (по усморению учителя) ход или
план доказательства.

Автор надеется, что материал этой статьи
поможет молодым коллегам при подготовке к урокам
по данной теме.

Понравилась статья? Поделить с друзьями:
  • Как найти папку centos
  • Чистая квинта как найти
  • Как составить график сотрудников в экселе по таблице
  • Как найти связанные аккаунты фейсбук
  • Как найти порядковый номер элемента в питоне