Как найти центр тяжести прямого треугольника


Загрузить PDF


Загрузить PDF

Центр тяжести треугольника (центроид) – это точка центра масс. Представьте себе треугольную линейку, положенную на кончик карандаша. Линейка будет балансировать, если кончик карандаша будет находиться в ее центре тяжести. Расположение центроида, которое легко находится с помощью геометрии, необходимо знать при работе над дизайнерским или инженерным проектом.

  1. Изображение с названием Calculate the Center of Gravity of a Triangle Step 1

    1

    Найдите середину одной стороны треугольника. Для этого измерьте сторону и разделите ее длину пополам. Середину отметьте точкой A.

    • Например, если сторона треугольника равна 10 см, то середина находится на расстоянии 5 см (10/2=5) от вершины треугольника.
  2. Изображение с названием Calculate the Center of Gravity of a Triangle Step 2

    2

    Найдите середину второй стороны треугольника. Для этого измерьте сторону и разделите ее длину пополам. Середину отметьте точкой В.

    • Например, если вторая сторона треугольника равна 12 см, то середина находится на расстоянии 6 см (12/2=6) от вершины треугольника.
  3. Изображение с названием Calculate the Center of Gravity of a Triangle Step 3

    3

    Соедините середины сторон с противолежащими вершинами. Вы получите две медианы.[1]

    • Вершина – это точка, в которой сходятся две стороны треугольника.
  4. Изображение с названием Calculate the Center of Gravity of a Triangle Step 4

    4

    Отметьте точку пересечения двух медиан. Эта точка является центром тяжести треугольника.[2]
    [3]

    • Центр тяжести находится на пересечении трех медиан, но так как медианы всегда пересекаются в одной точке, можно работать только с двумя медианами.

    Реклама

  1. Изображение с названием Calculate the Center of Gravity of a Triangle Step 5

    1

    Проведите медиану. Медиана – это отрезок, который соединяет вершину треугольника с серединой противолежащей стороны. Можно работать с любой медианой.

  2. Изображение с названием Calculate the Center of Gravity of a Triangle Step 6

    2

    Измерьте длину медианы. Сделайте это аккуратно и точно.

    • Например, медиана равна 3,6 см.
  3. Изображение с названием Calculate the Center of Gravity of a Triangle Step 7

    3

    Найдите третью часть (треть) медианы. Для этого разделите длину медианы на три. Сделайте это аккуратно и точно. Округлив полученное значение, вы не найдете центроид.

    • В нашем примере медиана равна 3,6 см. Поэтому разделите 3,6 на 3:
      3,6/3=1,2. Таким образом, треть медианы равна 1,2 см.
  4. Изображение с названием Calculate the Center of Gravity of a Triangle Step 8

    4

    Треть медианы отметьте точкой. Эта точка является центроидом, потому что он всегда делит медиану треугольника в отношении 2:1. То есть центр тяжести находится на расстоянии, которое равно ⅓ длины медианы, от середины стороны, или на расстоянии, которое равно ⅔ длины медианы, от вершины треугольника.[4]

    • Например, если медиана равна 3,6 см, то центроид находится на расстоянии 1,2 см от середины стороны.

    Реклама

  1. Изображение с названием Calculate the Center of Gravity of a Triangle Step 9

    1

    Определите координаты трех вершин треугольника. Координаты могут быть даны; в противном случае будет дан треугольник, построенный на координатной плоскости. Координаты представляются в виде (x,y).

    • Например, дан треугольник PQR, вершины которого имеют следующие координаты: P (3,5), Q (4,1), R (1,0).
  2. Изображение с названием Calculate the Center of Gravity of a Triangle Step 10

    2

    Сложите значения координат «х». Не забудьте сложить все три значения. Вы не найдете центр тяжести, если будете работать только с двумя значениями.

    • Например, если координаты «х» равны 3, 4 и 1, сложите эти значения: 3+4+1=8.
  3. Изображение с названием Calculate the Center of Gravity of a Triangle Step 11

    3

    Сложите значения координат «у». Не забудьте сложить все три значения.

    • Например, если координаты «у» равны 5, 1 и 0, сложите эти значения: 5+1+0=6.
  4. Изображение с названием Calculate the Center of Gravity of a Triangle Step 12

    4

    Найдите средние значения сумм координат «х» и «у». Полученные значения будут соответствовать центру тяжести треугольника.[5]
    Чтобы найти среднее значение, разделите каждую сумму на 3.

  5. Изображение с названием Calculate the Center of Gravity of a Triangle Step 13

    5

    Нанесите точку центра тяжести на треугольник. Центр тяжести находится в точке, координаты которой равны средним значениям сумм координат «х» и «у».

    • В нашем примере центр тяжести – это точка с координатами (8/3,2).

    Реклама

Советы

  • Не имеет значения, с какой стороной треугольника вы работаете – центр тяжести будет находится в одной и той же точке. Если построить медианы для всех трех сторон, они пересекутся в одной точке.

Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 145 472 раза.

Была ли эта статья полезной?


Download Article


Download Article

The center of gravity, or centroid, is the point at which a triangle’s mass will balance. To help visualize this, imagine you have a triangular tile suspended over the tip of a pencil. The tile will balance if the pencil tip is placed at its center of gravity. Finding the centroid might be necessary in various design and engineering applications, and can be found by using simple geometry.

  1. Image titled Calculate the Center of Gravity of a Triangle Step 1

    1

    Find the midpoint of one side of the triangle. To find the midpoint, measure the side, and divide the length in half. Label the midpoint A.

    • For example, if one side of the triangle is 10 cm long, the midpoint will be at 5 cm, since 10/2=5.
  2. Image titled Calculate the Center of Gravity of a Triangle Step 2

    2

    Find the midpoint of a second side of the triangle. Measure the length of the side, and divide the length in half. Label the midpoint B.[1]

    • For example, if the side of the triangle is 12 cm long, the midpoint will be at 6 cm, since 12/2=6.

    Advertisement

  3. Image titled Calculate the Center of Gravity of a Triangle Step 3

    3

    Draw a line from the midpoint of each side to its opposite vertex. These two lines are the median of each side.[2]

    • A vertex is the point at which two sides of a triangle meet.
  4. Image titled Calculate the Center of Gravity of a Triangle Step 4

    4

    Draw a point where the two medians intersect. This point is the triangle’s center of gravity, also called the centroid, or center of mass.[3]

    • The center of gravity is where the three medians intersect, but since the medians only intersect in one point, you can use a shortcut and find the center of gravity by only finding the intersection of two medians.
  5. Advertisement

  1. Image titled Calculate the Center of Gravity of a Triangle Step 5

    1

    Draw a median of your triangle. Remember, the median is a line drawn from the midpoint of a side to the opposite vertex. You can use any median in the triangle.

  2. Image titled Calculate the Center of Gravity of a Triangle Step 6

    2

    Measure the length of the median. Make sure the measurement is exact.

    • For example, you might have a median that is 3.6 cm long.
  3. Image titled Calculate the Center of Gravity of a Triangle Step 7

    3

    Divide the length of the median into thirds. To do this, divide the length by three. Again, make an exact calculation. If you round, you will not find the center of gravity.

    • For example, if your median is 3.6 cm long, you would divide 3.6 by 3:
      3.6cm/3=1.2cm, so ⅓ of the median is 1.2 cm.
  4. Image titled Calculate the Center of Gravity of a Triangle Step 8

    4

    Mark a point on the median ⅓ from the midpoint. This point is the triangle’s centroid, which will always divide a median into a 2:1 ratio; that is, the centroid is ⅓ the median’s distance from the midpoint, and ⅔ the median’s distance from the vertex.[4]

    • For example, on a median that is 3.6 cm long, the centroid will be 1.2 cm up from the midpoint.
  5. Advertisement

  1. Image titled Calculate the Center of Gravity of a Triangle Step 9

    1

    Determine the coordinates of the three vertices of the triangle. This method only works if you are working with a coordinate plane. The coordinates may already be given, or you may have a triangle drawn on a graph without the coordinates labeled. Remember that coordinates should be listed (x,y).[5]

    • For example, you might be given triangle PQR, and you need to find and label point P (3, 5), point Q (4, 1), and R (1, 0).
  2. Image titled Calculate the Center of Gravity of a Triangle Step 10

    2

    Add the value of the x-coordinates. Remember to add all three coordinates. You will not calculate the correct center of gravity if you only use two coordinates.[6]

    • For example, if your three x-coordinates are 3, 4, and 1, add these three values together: 3+4+1=8.
  3. Image titled Calculate the Center of Gravity of a Triangle Step 11

    3

    Add the value of the y-coordinates. Remember to add all three coordinates.[7]

    • For example, if your three y-coordinates are 5, 1, and 0, add these three values together: 5+1+0=6.
  4. Image titled Calculate the Center of Gravity of a Triangle Step 12

    4

    Find the average of the x- and y-coordinates. These coordinates will correspond to the triangle’s center of gravity, also known as the centroid or center of mass.[8]
    To find the average, divide the sum of the coordinates by 3.

  5. Image titled Calculate the Center of Gravity of a Triangle Step 13

    5

    Plot the center of gravity on the triangle. The center of gravity, or centroid, is the average of the x- and y-coordinates.[9]

    • In the example problem, the center of gravity is the point (8/3,2).
  6. Advertisement

Add New Question

  • Question

    The length of a rectangle is x units and the width is x-5. How do I find an equation for the perimeter and area of the rectangle?

    Donagan

    For the perimeter, add the four sides together and simplify. For the area, multiply the length by the width.

  • Question

    Is the center of gravity of triangular cardboard outside or on the body?

    Donagan

    The center of gravity is always inside the triangle.

  • Question

    How can I determine the center of gravity of an Isoceles triangle without knowing the mass?

    Community Answer

    The horizontal coordinate will be half of the base, and the vertical will be one third of the height.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • It does not matter which side you select, the center of gravity will be at the same point. If you perform this process on all three sides, the lines will cross at a single point.

Thanks for submitting a tip for review!

Advertisement

References

About This Article

Article SummaryX

To calculate the center of gravity of a triangle, start by drawing a line from the midpoint of any 1 of the sides to the opposite vertex to create a median. Next, measure the median and divide it into thirds. For example, if the median is 3.6 cm long, mark the spots that are 1.2 cm and 2.4 cm along the median, starting from the midpoint. The spot that’s 1.2 inches from the midpoint is the centroid, or the center of gravity of the triangle. To learn more, like how to find the center of gravity of a triangle using intersecting medians, scroll down.

Did this summary help you?

Thanks to all authors for creating a page that has been read 274,377 times.

Did this article help you?

В этой статье и разберу как нарисовать центр тяжести треугольника и найти его координаты.

1) Рисуем треугольник ABC
2) Ставим точку M — середина BC
3) Ставим точку H — середина AC
4) Пересечение BH и AM — и есть центр тяжести треугольника ABC
5) Найдем его координаты (координаты точки O

(x_(o), y_(o), z_(o))

)

[x_{0}=frac{x_{1}+x_{2}+x_{3}}{3}, y_{0}=frac{y_{1}+y_{2}+y_{3}}{3}, z_{0}=frac{z_{1}+z_{2}+z_{3}}{3}]

Пример: Найти координаты центра тяжести треугольника с вершинами A(2;3;4), B(3;1;2) и C(4;-1;3). Решение.

Просмотры: 42790 |
Статью добавил: slava191 |
Категория: аналитическая_геометрия

Содержание:

Центр тяжести:

При рассмотрении движения тел, особенно таких, как самолеты, ракеты, космические корабли, важное значение имеет понятие центра тяжести.

Определения и формулы для вычисления центров тяжести

Для введения понятия центра тяжести разобьем мысленно рассматриваемое тело на достаточно большое число малых по сравнению с телом или элементарных его частей произвольной формы. Силу тяжести элементарной частицы тела с индексом Центр тяжести в теоретической механике

Радиус-вектор центра тяжести тела Центр тяжести в теоретической механике вычисляем как радиус-вектор центра параллельных сил (рис. 88) по формуле

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — радиус-вектор точки приложения силы тяжести элементарной части тела, принятой за точку; Центр тяжести в теоретической механике— сила тяжести элементарной частицы; Центр тяжести в теоретической механике — сила тяжести всего тела; Центр тяжести в теоретической механике — число частей, на которое мысленно разбито все тело. Центр тяжести является точкой приложения равнодействующей силы тяжести, если силы тяжести отдельных его частей считать системой параллельных сил.

Центр тяжести в теоретической механике

Рис. 88

Если в (1) перейти к пределу, увеличивая число элементарных частей Центр тяжести в теоретической механике до бесконечности, то после замены Центр тяжести в теоретической механике дифференциалом Центр тяжести в теоретической механике, а суммы — интегралом получим

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — радиус-вектор элементарной части тела, принятой за точку. В проекциях на оси координат из (1) и (1′) получаем:

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике— координаты центра тяжести; Центр тяжести в теоретической механике — координаты точки приложения силы тяжести Центр тяжести в теоретической механике.

Используя понятие центра тяжести тела, введем понятие его центра масс. Силы тяжести элементарных частей тела и всего тела можно выразить через их массы Центр тяжести в теоретической механике и Центр тяжести в теоретической механике и ускорение силы тяжести Центр тяжести в теоретической механике с помощью формул

Центр тяжести в теоретической механике

Подставляя эти значения сил тяжести в (1) и (1′) после сокращения на Центр тяжести в теоретической механике, которое принимаем одинаковым для всех частей тела, имеем

Центр тяжести в теоретической механике

и соответственно

Центр тяжести в теоретической механике

По формулам (2) и (2′) определяют радиус-вектор центра масс тела. Центр масс обычно определяют независимо от центра тяжести как геометрическую точку, радиус-вектор, которой вычисляется по формулам (2) или (2′). В проекциях на оси координат из (2) и (2′) получаем:

Центр тяжести в теоретической механике

и

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — координаты центра масс тела.

Для однородного тела силу тяжести элементарной частицы тела и ее массу можно вычислить по формулам

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — объем элементарной частицы тела; Центр тяжести в теоретической механике и Центр тяжести в теоретической механике — соответственно удельный вес и плотность тела. Сила тяжести и масса всего тела

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — объем тела. Подставляя эти значения в (2) и (2′), после сокращения на Центр тяжести в теоретической механике и Центр тяжести в теоретической механике соответственно получим формулы

Центр тяжести в теоретической механике

по которым определяют центр тяжести объема тела.

Если тело имеет форму поверхности, т. е. один из размеров мал по сравнению с двумя другими, как, например, у тонкого листа железа, то имеем

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — удельный вес; Центр тяжести в теоретической механике — площадь элементарной частицы поверхности; Центр тяжести в теоретической механике — площадь всей поверхности. После сокращения на Центр тяжести в теоретической механике для однородной поверхности получим следующие формулы для определения центра тяжести ее площади:

Центр тяжести в теоретической механике

Для однородных тел типа проволоки, у которых два размера малы по сравнению с третьим, можно определить радиус-вектор центра тяжести длины линии по формулам

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — длина элемента линии; Центр тяжести в теоретической механике—общая длина линии, центр тяжести которой определяется.

Методы определения центров тяжести (Центров масс)

Метод симметрии

При определении центров тяжести широко используется симметрия тел. Докажем, что для однородного тела, имеющего плоскость симметрии, центр тяжести находится в плоскости симметрии. Для доказательства выберем начало координат в плоскости симметрии тела и одну из осей координат, ось Центр тяжести в теоретической механике направим перпендикулярно плоскости симметрии, а две других оси расположатся в плоскости симметрии (рис. 89). Каждая частица массой Центр тяжести в теоретической механике, находясь по одну сторону плоскости симметрии, имеет симметричную частицу такой же массы по другую сторону этой плоскости. Координаты Центр тяжести в теоретической механике у симметричных частиц одинаковы при сделанном выборе осей координат, а координаты по оси Центр тяжести в теоретической механике отличаются только знаком. Для координаты центра масс Центр тяжести в теоретической механике имеем следующее выражение:

Центр тяжести в теоретической механике

Разбивая сумму в числителе на две по симметричным частям тела, получаем, что

Центр тяжести в теоретической механике

так как симметричные части тела 1 и 2 одинаковы.

Таким образом, центр масс расположен в плоскости симметрии и для его определения достаточно вычислить только две его координаты Центр тяжести в теоретической механике и Центр тяжести в теоретической механике в этой плоскости.

Аналогично доказывается, что для однородного тела, имеющего ось или центр симметрии, центр масс находится соответственно на оси симметрии или в центре симметрии.

Центр тяжести в теоретической механике

Рис. 89

Метод разбиения на части (метод группировки)

Некоторые тела сложной формы можно разбить на части, центры тяжести которых известны или предварительно могут быть определены. В таких случаях центры тяжести сложных тел вычисляются по общим формулам, определяющим центр тяжести, только вместо элементарных частиц тела берутся его конечные части, на которые оно разбито. Покажем это на частном примере плоской фигуры, изображенной на рис. 90. Плоскую фигуру можно разбить на три части, центры тяжести которых Центр тяжести в теоретической механике, Центр тяжести в теоретической механике и Центр тяжести в теоретической механике известны. Они находятся на пересечении диагоналей прямоугольников. Их радиусы-векторы обозначим Центр тяжести в теоретической механике и площади Центр тяжести в теоретической механике. Общая площадь сложной фигуры будет Центр тяжести в теоретической механике.

Используя определение центра тяжести и производя группировку слагаемых под знаком суммы по частям фигуры, на которые она разбита, получим

Центр тяжести в теоретической механике

Радиусы-векторы центров тяжести частей тела выразятся в такой форме:

Центр тяжести в теоретической механике

или

Центр тяжести в теоретической механике

Используя эти формулы для радиуса-вектора всей фигуры, имеем

Центр тяжести в теоретической механике

Полученная формула имеет ту же структуру, что и формула, определяющая радиус-вектор центра тяжести тела при разбиении его на элементарные частицы, только в нее входят величины для конечных частей тела.

Центр тяжести в теоретической механике

Рис. 90

Метод отрицательных масс

Видоизменением метода разбиения на части является метод отрицательных масс. Проиллюстрируем его тоже на примере плоской фигуры (рис. 91). Для определения центра тяжести этой фигуры ее можно разбить на три части. Можно поступить по-другому. Для этого дополним нашу фигуру до прямоугольника и примем, что этот прямоугольник с площадью Центр тяжести в теоретической механике и центром масс Центр тяжести в теоретической механике полностью заполнен массой (имеет положительную площадь). На той части фигуры, которую добавили, следует распределить отрицательную массу (отрицательную площадь) той же плотности. Площадь этой фигуры с отрицательной массой обозначим Центр тяжести в теоретической механике, а ее центр масс — Центр тяжести в теоретической механике. Применяя метод разбиения на части, радиус-вектор заданной фигуры определим по формуле

Центр тяжести в теоретической механике

В отличие от обычного метода разбиения на части в формуле (4) массы и, следовательно, площади входят со знаком минус.

Метод отрицательных масс особенно удобен при вычислении положения центров тяжести тел, имеющих отверстия.
 

Центр тяжести в теоретической механике

 Рис. 91

Центры тяжести простейших тел

Для определения центров тяжести тел сложной формы методом разбиения на части или методом отрицательных масс необходимо уметь вычислять центры тяжести простейших тел, на которые разбивается тело сложной формы. Рассмотрим некоторые из тел, для определения центров тяжести которых известны простые способы их нахождения или вычисления по формулам.

Прямолинейный отрезок

Центр тяжести прямолинейного однородного отрезка располагается на его середине, а неоднородного— на самом отрезке и не может находиться вне отрезка.

Площадь треугольника

Для определения центра тяжести площади треугольника разобьем его прямыми линиями, параллельными одной из его сторон Центр тяжести в теоретической механике, на полоски, которые в пределе можно принять за прямолинейные отрезки (рис. 92). Центры тяжести отрезков и, следовательно, полосок находятся посередине полоски. Все они расположатся на медиане Центр тяжести в теоретической механике. В пределе центры тяжести полосок непрерывно покроют медиану, но не равномерно, так как площади полосок разные. В каждом центре масс полоски следует считать сосредоточенной массу или площадь этой полоски, пропорциональную длине полоски, если ширину полосок выбирать одинаковой.

Затем разобьем треугольник на полоски прямыми линиями, параллельными другой стороне Центр тяжести в теоретической механике треугольника. Центры их тяжести в пределе покроют неравномерно медиану Центр тяжести в теоретической механике. Центры тяжести неоднородных прямолинейных отрезков Центр тяжести в теоретической механике и Центр тяжести в теоретической механике должны располагаться на этих отрезках, а следовательно, в точке их пересечения Центр тяжести в теоретической механике, являющейся точкой пересечения медиан треугольника. Эта точка делит медианы в отношении 1 к 2, т. е. если длина медианы Центр тяжести в теоретической механике равна Центр тяжести в теоретической механике, то Центр тяжести в теоретической механике, Центр тяжести в теоретической механике.

Центр тяжести в теоретической механике

Рис. 92

Дуга окружности

Дуга окружности Центр тяжести в теоретической механике определяется радиусом Центр тяжести в теоретической механике и стягиваемым ею центральным углом Центр тяжести в теоретической механике(рис. 93). Она имеет ось симметрии, делящую угол пополам. Центр тяжести находится на оси симметрии дуги, которую примем за ось координат Центр тяжести в теоретической механике. Координату центра тяжести дуги Центр тяжести в теоретической механике вычисляем по формуле

Центр тяжести в теоретической механике

Центр тяжести в теоретической механике

Рис. 93

В рассматриваемом случае

Центр тяжести в теоретической механике

Подставляя эти значения в формулу для Центр тяжести в теоретической механике, получим

Центр тяжести в теоретической механике

Таким образом,

Центр тяжести в теоретической механике

Для полуокружности Центр тяжести в теоретической механике. Приняв Центр тяжести в теоретической механике,  получим:

Центр тяжести в теоретической механике

Площадь кругового сектора

Центр тяжести площади кругового сектора с радиусом Центр тяжести в теоретической механике и центральным углом Центр тяжести в теоретической механике находится на оси симметрии, принимаемой за ось Центр тяжести в теоретической механике(рис. 94). Разобьем сектор на элементарные треугольники одинаковой величины. Центры тяжести треугольников в пределе при увеличении их числа до бесконечности равномерно покроют дугу окружности радиусом Центр тяжести в теоретической механике.

Центр тяжести в теоретической механике

Рис. 94

Используя формулу для центра тяжести дуги окружности, получим

Центр тяжести в теоретической механике

или

Центр тяжести в теоретической механике

Для площади полукруга Центр тяжести в теоретической механике, Центр тяжести в теоретической механике. При Центр тяжести в теоретической механике получим

Центр тяжести в теоретической механике

Объем пирамиды и конуса

Определим положение центра тяжести объема конуса (рис. 95). Для простоты рассмотрим прямой конус, у которого высота является осью симметрии. Высотой конуса является отрезок, соединяющий его вершину Центр тяжести в теоретической механике с центром тяжести площади основания Центр тяжести в теоретической механике. Выберем начало координат в вершине конуса, а ось Центр тяжести в теоретической механике направим по оси симметрии конуса. Тогда центр тяжести объема конуса расположится на оси Центр тяжести в теоретической механике.

Разобьем конус плоскостями, перпендикулярными оси Центр тяжести в теоретической механике, на элементарные тонкие диски толщиной Центр тяжести в теоретической механике и площадью Центр тяжести в теоретической механике. Все полученные сечения (диски) конуса подобны его основанию. Координату Центр тяжести в теоретической механике центра тяжести объема конуса вычислим по формуле

Центр тяжести в теоретической механике

Отношения линейных размеров сечений к соответствующим размерам основания конуса пропорциональны их расстояниям до вершины конуса. Отношения площадей пропорциональны квадратам расстояний. Приняв Центр тяжести в теоретической механике, получим

Центр тяжести в теоретической механике

Учитывая, что

Центр тяжести в теоретической механике

имеем

Центр тяжести в теоретической механике

или

Центр тяжести в теоретической механике

Таким образом, центр тяжести прямого конуса находится на расстоянии Центр тяжести в теоретической механике от вершины или Центр тяжести в теоретической механике от основания.

Центр тяжести в теоретической механике

Рис. 95

Это справедливо для объема любого конуса и любой пирамиды, как прямых, так и наклонных, т. е. центр тяжести объема пирамиды или конуса находится на расстоянии Центр тяжести в теоретической механике расстояния от центра тяжести площади основания до вершины.

Объем полушара

Полушар имеет ось симметрии, которую примем за координатную ось Центр тяжести в теоретической механике (рис. 96). Разобьем объем полушара на элементарные диски толщиной dx и радиусом у, который является координатой точки окружности, которая получилась от пересечения полушара с координатной плоскостью Центр тяжести в теоретической механике. Уравнение этой окружности

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике— радиус полушара. Для координаты центра тяжести объема полушара имеем

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — координата центра тяжести элементарного диска. Объем полушара

Центр тяжести в теоретической механике

Объем элементарного диска

Центр тяжести в теоретической механике

так как радиус диска Центр тяжести в теоретической механике. Выполняя интегрирование в пределах от Центр тяжести в теоретической механике до Центр тяжести в теоретической механике, получим

Центр тяжести в теоретической механике

Таким образом, центр тяжести объема полушара находится от его центра на расстоянии

Центр тяжести в теоретической механике

Это расстояние меньше половины радиуса полушара.

Центр тяжести в теоретической механике

Рис. 96

Задача №1

Определить координаты центра тяжести площади плоской фигуры, имеющей размеры, указанные на рис. 97.

Центр тяжести в теоретической механике

Рис.97

Центр тяжести в теоретической механике

Рис. 98

Решение. Присоединим к заданной фигуре дополнительно полукруг 3 и разобьем полученную фигуру на прямоугольник 1 и треугольник 2. Получили три фигуры, две из которых имеют положительные площади (прямоугольник 1 и треугольник 2) и одна — отрицательную (полукруг 3). В выбранной системе координат для координат центра тяжести заданной фигуры имеем

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — координаты центров тяжести отдельных фигур; Центр тяжести в теоретической механике — площади этих фигур.

Вычислим площади и координаты центров тяжести отдельных фигур, учитывая рис. 98 Имеем:

Центр тяжести в теоретической механике

так как Центр тяжести в теоретической механике.

Подставляя полученные значения в (а), получим:

Центр тяжести в теоретической механике

Центр тяжести плоской фигуры

постановка задачи. Найти площадь и координаты центра тяжести плоской фигуры.

План решения:

1.    Разбиваем фигуру на простые отдельные части, положение центров тяжести которых известны.

2.    Выбираем систему координат. Вычисляем площади и координаты Центр тяжести в теоретической механикецентров тяжести отдельных частей. Площади вырезанных частей берем со знаком минус.

3.    Находим общую площадь фигуры по формуле Центр тяжести в теоретической механике

4.    Определяем координаты центра тяжести фигуры:

Центр тяжести в теоретической механике

Задача №2

Найти площадь и координаты центра тяжести плоской фигуры. Криволинейный участок контура является половиной окружности с центром на оси Ох (рис. 74). Размеры на рисунке даны Центр тяжести в теоретической механике

Решение

1. Разбиваем фигуру на простые отдельные части, положение центров тяжести которых известны.

Центр тяжести прямоугольника находится в его геометрическом центре, положение центра тяжести других фигур, встречающихся в задачах, изображено на рис. 75Центр тяжести в теоретической механике

Представляем фигуру в виде двух треугольников 1,2, прямоугольника 3 и выреза 4 в виде полукруга (рис. 76).

2. Вычисляем площадь (в Центр тяжести в теоретической механике) и координаты центра тяжести (в м) каждого элемента:Центр тяжести в теоретической механике

Площадь выреза берем со знаком минус.

3.Площадь фигуры Центр тяжести в теоретической механике

4. Находим координаты центра тяжести всей фигуры:

Центр тяжести в теоретической механике

Вычисления удобно свести в таблицу:Центр тяжести в теоретической механике

Сначала заполняем столбцы Центр тяжести в теоретической механике затем вычисляем статические моменты Центр тяжести в теоретической механике Внизу записываем суммы столбцов, необходимые для вычисления координат центра тяжести. Таким образом

Центр тяжести в теоретической механике

Замечание 1. Большинство задач на определение центра тяжести допускает несколько способов разбиения фигуры. Это можно использовать для проверки решения. Второй вариант разбиения фигуры в данном примере состоит из прямоугольника 3 с размерами Центр тяжести в теоретической механике и вырезанных из него полукруга 4 и двух треугольников 1 и 2 (рис. 77).

Замечание 2. Решение задачи в системе Maple V методом контурного интегрирования.

  • Заказать решение задач по теоретической механике

Пространственная стержневая система

Постановка Задачи. Найти координаты центра тяжести пространственной фигуры, состоящей из N однородных стержней.

План решения:

1. Разбиваем фигуру на отдельные стержни.

2. Выбираем систему координат. Вычисляем длины и координаты Центр тяжести в теоретической механике центров тяжести отдельных стержней. Координаты центра прямолинейного однородного стержня вычисляем как полусумму координат его концов.

3. Находим суммарную длину стержней системы Центр тяжести в теоретической механике

4. Определяем координаты центра тяжести тела по формулам

Центр тяжести в теоретической механике

Задача №3

Найти координаты центра тяжести пространственной фигуры, состоящей из шести однородных стержней (рис. 78). Даны размеры:Центр тяжести в теоретической механике

Решение

1. Разбиваем фигуру на шесть стержней.

2. Выбираем систему координат (рис. 78). Вычисляем длины и координаты Центр тяжести в теоретической механикецентров тяжести отдельных стержней.
Центр тяжести в теоретической механике
3. Находим суммарную длину стержней системы:

Центр тяжести в теоретической механике

Промежуточные результаты удобно занести в таблицу:
Центр тяжести в теоретической механике
4. Определяем координаты центра тяжести тела по формулам

Центр тяжести в теоретической механике

Постановка задачи. Найти координаты центра тяжести однородного объемного тела.

План решения:

1. Разбиваем тело на простые части, положение центров тяжести которых известно.

2. Выбираем систему координат. Вычисляем объемы Центр тяжести в теоретической механике и координаты Центр тяжести в теоретической механикецентров тяжести отдельных частей. Объемы вырезанных частей берем со знаком минус.

3. Находим общий объем тела по формуле Центр тяжести в теоретической механике

4. Определяем координаты центра тяжести тела:

Центр тяжести в теоретической механике

Задача №4

Найти координаты центра тяжести однородного объемного тела (рис.79);Центр тяжести в теоретической механике

Центр тяжести в теоретической механике

Решение

1. Разбиваем тело на пирамиду 1, параллелепипед 2 и половину цилиндра 3 (рис. 80).

2. Выбираем систему координат. Вычисляем объемы Центр тяжести в теоретической механике и координаты Центр тяжести в теоретической механике центров тяжестей отдельных частей. Центр тяжести пирамиды 1 лежит в точке Центр тяжести в теоретической механике

Центр тяжести в теоретической механике

Центр тяжести параллелепипеда 2 совпадает с его геометрическим центром:

Центр тяжести в теоретической механике

Объем половины цилиндра 3 берем со знаком минус:

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — расстояние по оси у от оси цилиндра до его центра тяжести Центр тяжести в теоретической механике.
Центр тяжести в теоретической механике
3. Находим общий объем тела: 

Центр тяжести в теоретической механике

Центр тяжести в теоретической механикеВ общем случае объем тела, лежащего в области Центр тяжести в теоретической механике можно найти, вычисляя тройной интеграл по области Центр тяжести в теоретической механике а координаты центра тяжести, например, Центр тяжести в теоретической механике однородного тела можно определить по формуле Центр тяжести в теоретической механикесм.

4. Определяем координаты центра тяжести тела:
Центр тяжести в теоретической механике

Центр тяжести

Центр тяжести — точка, через которую проходит линия действия равнодействующей элементарных сил тяжести. Он обладает свойством центра параллельных сил. Поэтому формулы для определения положения центра тяжести различных тел имеют вид:
Центр тяжести в теоретической механике
Если тело, центр тяжести которого нужно определить, можно отождествить с фигурой, составленной из линий (например, замкнутый или незамкнутый контур, изготовленный из проволоки, как на рис. 173), то вес Центр тяжести в теоретической механике каждого отрезка Центр тяжести в теоретической механикеможно представить в виде произведения

где d — постоянный для всей фигуры вес единицы длины материала.
После подстановки в формулы (1) вместо Центр тяжести в теоретической механике их значений Центр тяжести в теоретической механике постоянный множитель d в каждом слагаемом числителя и знаменателя можно вынести за скобки (за знак суммы) и сократить. Таким образом, формулы для определения координат центра тяжести фигуры, составленной из отрезков линий, примут вид:

Центр тяжести в теоретической механике

Если тело имеет вид фигуры, составленной из расположенных различным образом плоскостей или кривых поверхностей (рис. 174),
Центр тяжести в теоретической механике

то вес каждой плоскости (поверхности) можно представить так:

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — площади каждой поверхности, ар — вес единицы площади фигуры.

После подстановки этого значенияЦентр тяжести в теоретической механике в формулы (1) получаем формулы координат центра тяжести фигуры, составленной из площадей:

Центр тяжести в теоретической механике
Если же однородное тело можно разделить на простые части определенной геометрической формы (рис. 175), то вес каждой части

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике— объем каждой части, а у — вес единицы объема тела.

После подстановки значений Центр тяжести в теоретической механикев формулы (I) получаем формулы для определения координат центра тяжести тела, составленного из однородных объемов;
Центр тяжести в теоретической механике
При решении некоторых задач на определение положения центра тяжести тел иногда необходимо знать, где расположен центр тяжести дуги окружности, кругового сектора или треугольника.

Если известен радиус дуги г и центральный угол 2а, стягиваемый дугой и выраженный в радианах, то положение центра тяжести С (рис. 176, а) относительно центра дуги О определится формулой

Центр тяжести в теоретической механикеЦентр тяжести в теоретической механике

Центр тяжести в теоретической механике

Центр тяжести в теоретической механике

Если же задана хорда Центр тяжести в теоретической механике дуги, то в формуле (5) можно произвести замену

Центр тяжести в теоретической механике

и тогда

Центр тяжести в теоретической механике

В частном случае для полуокружности обе формулы примут вид (рис. 176, б)Центр тяжести в теоретической механике

Положение центра тяжести кругового сектора, если задан его радиус r (рис. 176, в), определяется при помощи формулы
Центр тяжести в теоретической механике
Если же задана хорда сектора, то
Центр тяжести в теоретической механике
В частном случае для полукруга обе последние формулы примут вид (рис. 176, г)
Центр тяжести в теоретической механике
Центр тяжести площади любого треугольника расположен от любой стороны на расстоянии, равном одной трети соответствующей высоты.

У прямоугольного треугольника центр тяжести находится на пересечении перпендикуляров, восставленных к катетам из точек, расположенных на расстоянии одной трети длины катетов, считая от вершины прямого угла (рис. 177).

Центр тяжести в теоретической механике

При решении задач на определение положения центра тяжести любого однородного тела, й составленного либо из тонких стержней (линий), либо из пластинок (площадей), либо из объемов, целесообразно придерживаться следующего порядка:

  1. выполнить рисунок тела, положение центра тяжести которого нужно определить. Так как все размеры тела обычно известны, при этом следует соблюдать масштаб;
  2. разбить тело на составные части (отрезки линий или площади, или объемы), положение центров тяжести которых определяется исходя из размеров тела;
  3. определить или длины, или площади, или объемы составных частей;
  4. выбрать расположение осей координат;
  5. определить координаты центров тяжести составных частей;
  6. найденные значения длин или площадей, или объемов отдельных частей, а также координат их центров тяжести подставить в соответствующие формулы и вычислить координаты центра тяжести всего тела;
  7. по найденным координатам указать на рисунке положение центра тяжести тела.
  • Кинематика точки
  • Плоское движение твердого тела
  • Мгновенный центр скоростей
  • Мгновенный центр ускорений
  • Условия равновесия системы сил
  • Плоская система сил
  • Трение
  • Пространственная система сил

Как найти центр тяжести треугольника

Треугольник – одна из основных геометрических фигур. И только он имеет «замечательные» точки. К ним относится, например, центр тяжести – точка, на которую приходится вес всей фигуры. Где же находится эта «замечательная» точка и как ее найти?

Как найти центр тяжести треугольника

Вам понадобится

  • карандаш, линейка

Инструкция

Начертите сам треугольник. Для этого возьмите линейку и проведите карандашом отрезок. Потом начертите ещё один отрезок, начиная от одного из концов предыдущего. Замкните фигуру, соединив две оставшиеся свободные точки отрезков. Получился треугольник. Именно его центр тяжести предстоит искать.

Возьмите линейку и измерьте длину одной из сторон. Найдите середину этой стороны и отметьте её карандашом. Проведите отрезок из противоположной вершины к намеченной точке. Получившийся отрезок называется медианой.

Приступите ко второй стороне. Измерьте её длину, поделите на две равные части и проведите медиану из лежащей напротив вершины.

То же самое проделайте с третьей стороной. Обратите внимание на то, что, если вы все сделали правильно, то медианы пересекутся в одной точке. Это и будет центр тяжести или, как его ещё называют, центр масс треугольника.

Если перед вами стоит задача, найти центр тяжести равностороннего треугольника, то проведите высоту из каждой вершины фигуры. Для этого возьмите линейку с прямым углом и одной из сторон, прислоните к основанию треугольника, а вторую направьте к противолежащей вершине. То же самое проделайте с остальными сторонами. Точка пересечения будет являться центром тяжести. Особенность равносторонних треугольников заключается в том, что одни и те же отрезки являются и медианами, и высотами, и биссектрисами.

Центр тяжести любого треугольника делит медианы на два отрезка. Их соотношение составляет 2:1, если смотреть от вершины. Если треугольник поместить на булавку таким образом, что центроид окажется на её острие, то он не упадет, а будет находиться в равновесии. Также центр тяжести является той точкой, на которую приходится вся масса, размещенная на вершинах треугольника. Проделайте этот опыт и убедитесь в том, что эта точка неспроста называется «замечательной».

Обратите внимание

В заданиях может быть указано, что необходимо найти центр тяжести, центр масс или центроид. Все три названия обозначают одно и то же.

Источники:

  • Вся элементарная математика
  • центр тяжести у прямоугольного треугольника

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Понравилась статья? Поделить с друзьями:
  • Повышенная чувствительность головки как исправить
  • Как найти пуск панель управления
  • Как найти не защищенную сеть
  • Как найти свой диван
  • Как найти учетную запись в домене