Как найти центр вписанной окружности в четырехугольнике

Определение.

Описанный четырехугольник — это четырехугольник, все стороны которого касаются окружности. При этом окружность называется вписанной в четырехугольник.

Какими свойствами обладает вписанная в четырехугольник окружность? Когда в четырехугольник можно вписать окружность? Где находится центр вписанной окружности?

Теорема 1.

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противолежащих сторон равны.

vpisannaya-v-chetyrekhugolnik-okruzhnostВ четырехугольник ABCD можно вписать окружность, если

AB+CD=BC+AD.

И обратно, если суммы противоположных сторон четырехугольника равны:

AB+CD=BC+AD,

то в четырехугольник ABCD можно вписать окружность.

Теорема 2.

Центр вписанной в четырехугольник окружности — точка пересечения его биссектрис.

centr-vpisannoj-v-chetyrekhugolnik-okruzhnostiO — точка пересечения биссектрис четырехугольника ABCD.

AO, BO, CO, DO — биссектрисы углов четырехугольника ABCD,

то есть ∠BAO=∠DAO, ∠ABO=∠CBO и т.д.

3. Точки касания вписанной окружности, лежащие на сторонах, выходящих из одной вершины, равноудалены от этой вершины.

tochki-kasaniya-vpisannoj-v-chetyrekhugolnik-okruzhnostiAM=AN,

BM=BK,

CK=CF,

DF=DN

(как отрезки касательных, проведенных из одной точки).

4.

radius-vpisannoj-v-chetyrekhugolnik-okruzhnosti

    [OM bot AB,]

    [OK bot BC,]

    [OF bot CD,]

    [ON bot AD]

(как радиусы, проведенные в точки касания).

5. Площадь четырехугольника связана с радиусом вписанной в него  окружности формулой

    [S = p cdot r,]

где p — полупериметр четырехугольника.

Так как суммы противолежащих сторон описанного четырехугольника равны, полупериметр равен любой из пар сумм противолежащих сторон.

Например, для четырехугольника ABCD p=AD+BC или p=AB+CD и

    [{S_{ABCD}} = (AD + BC) cdot r,]

или

    [{S_{ABCD}} = (AB + CD) cdot r.]

Соответственно, радиус вписанной в четырехугольник окружности равен

    [r = frac{S}{p}]

Для описанного четырехугольника ABCD

    [r = frac{{{S_{ABCD}}}}{{AD + BC}}]

или

    [r = frac{{{S_{ABCD}}}}{{AB + CD}}.]

Please wait.

We are checking your browser. mathvox.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6c6dc5f8beab16c7 • Your IP : 178.45.231.185 • Performance & security by Cloudflare

Вписанная в четырехугольник окружность

Описанный четырехугольник — это четырехугольник, все стороны которого касаются окружности. При этом окружность называется вписанной в четырехугольник.

Какими свойствами обладает вписанная в четырехугольник окружность? Когда в четырехугольник можно вписать окружность? Где находится центр вписанной окружности?

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противолежащих сторон равны.

В четырехугольник ABCD можно вписать окружность, если

И обратно, если суммы противоположных сторон четырехугольника равны:

то в четырехугольник ABCD можно вписать окружность.

Центр вписанной в четырехугольник окружности — точка пересечения его биссектрис.

O — точка пересечения биссектрис четырехугольника ABCD.

AO, BO, CO, DO — биссектрисы углов четырехугольника ABCD,

то есть ∠BAO=∠DAO, ∠ABO=∠CBO и т.д.

3. Точки касания вписанной окружности, лежащие на сторонах, выходящих из одной вершины, равноудалены от этой вершины.

AM=AN,

5. Площадь четырехугольника связана с радиусом вписанной в него окружности формулой

где p — полупериметр четырехугольника.

Так как суммы противолежащих сторон описанного четырехугольника равны, полупериметр равен любой из пар сумм противолежащих сторон.

Например, для четырехугольника ABCD p=AD+BC или p=AB+CD и

Соответственно, радиус вписанной в четырехугольник окружности равен

Вписанная окружность

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac<1><2>(a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac<1><2>(a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    источники:

    «Описанная и вписанная окружности четырехугольника»

    Конспект урока по теме: описанная и вписанная окружности четырехугольника, вписанный четырехугольник, описанный четырехугольник, описанная окружность четырехугольника и ее свойства, вписанная окружность четырехугольника и ее свойства.



    Описанная окружность четырехугольника.
    Вписанный четырехугольник 

    Описанная и вписанная окружности. Вписанный четырехугольник

    Вписанный четырехугольник — четырехугольник, все вершины которого принадлежат данной окружности. Окружность называют описанной. Центр окружности, описанной около четырехугольника, — точка пересечения серединных перпендикуляров, проведенных ко всем его сторонам.

    Свойства и признаки вписанного четырехугольника

    Вписанный четырехугольник свойства и признак

    Свойства описанной окружности четырехугольника:
    1. Если четырехугольник вписан в окружность, то сумма его противолежащих углов равна 180°.
    2. Теорема Птолемея. Произведение диагоналей вписанного четырехугольника равно сумме произведений его противолежащих сторон.

    Признак вписанного четырехугольника:
    Если сумма противолежащих углов четырехугольника равна 180°, то около него можно описать окружность.


    Вписанная окружность четырехугольника.
    Описанный четырехугольник

    описанный четырехугольник определение

    Описанный четырехугольник — четырехугольник, каждая сторона которого касается данной окружности. Окружность называют вписанной. Центр окружности, вписанной в четырехугольник,— точка пересечения биссектрис всех его углов.

    Свойства и признаки описанного четырехугольника

    описанный четырехугольник свойства и признак

    Свойства вписанной окружности четырехугольника:
    1. Если четырехугольник описан около окружности, то сумма двух его противолежащих сторон равна сумме двух других его сторон.
    2. Точка пересечения диагоналей описанного с четырехугольника совпадает с точкой пересечения диагоналей четырехугольника, вершинами которого служат точки касания сторон данного четырехугольника со вписанной окружностью.

    Признак описанного четырехугольника:
    Если в четырехугольнике сумма двух его противолежащих сторон равна сумме двух других его сторон, то в четырехугольник можно вписать окружность.


    Это конспект по теме «Описанная и вписанная окружности четырехугольника». Выберите дальнейшие действия:

    • Перейти к следующему конспекту: 
    • Вернуться к Списку конспектов по геометрии

    Окружность, вписанная в четырехугольник

    Определение 1. Окружность называют вписанным в четырехугольник, если окружность касается всех сторон четырехугольника.

    На рисунке 1 окружность вписан в четырехугольник ABCD. В этом случае говорят также, что четырехугольник описан около окружности.

    Теорема 1. Если окружность вписан в четырехугольник, то сумма противолежащих сторон четырехугольника равны.

    Доказательство. Пусть окружность ABCD вписан в четырехугольник (Рис.2). Докажем, что ( small AB+CD=AD+BC ).

    Точки M, N, Q, P − точки касания окружности со сторонами четырехугольника. Так как отрезки касательных, проведенных к окружности через одну точку, равны (статья Касательная к окружности теорема 2), то

    Тогда

    Из равенств (1) и (2), следует:

    Теорема 2. Если в выпуклом четырехугольнике сумма противолежащих сторон равны, то в него можно вписать окружность.

    Доказательство. Пусть задан выпуклый четырехугольник ABCD и пусть ( small AB+CD=AD+BC. ) (Рис.3). Докажем, что в него можно вписать окружность.

    Проведем биссектрисы углов A и B четырехугольника ABCD. Точку их пересечения обозначим буквой O. Тогда точка O равноудалена от сторон AB, BC, AD. Следовательно существует окружность с центром в точке O, которая касается этих трех сторон.

    Пусть эта окружность не касается стороны CD. Тогда возможны два случая.

    Случай 1. Сторона CD не имеет общих точек с построенной окружностью.

    Проведем касательную C1D1 к окружности, параллельно стороне CD четырехугольника.

    Тогда окружность с центром O вписан в четырехугольник ABC1D1. Следовательно, по теореме 1, имеем:

    Но по условию данной теоремы:

    Вычтем из равенства (4) равенство (3):

    или

    Откуда:

    Получили, что в четырехугольнике CC1D1D длина одной стороны равна сумме длин трех остальных сторон, что невозможно (см. задачу 1 статьи Четырехугольник).

    Таким образом сторона CD должна иметь общие точки с рассматриваемой окружностью.

    Случай 2. Сторона CD имеет две общие точки с построенной окружностью (Рис.4).

    Аналогичными рассуждениями можно показать, что сторона CD не может иметь две общие точки с построенной окружностью.

    Следовательно, предполагая, что построенная окружность не касается стороны CD, мы пришли к противоречию. Таким образом, если в выпуклом четырехугольнике сумма противолежащих сторон равны, то в него можно вписать окружность.

    Если в четырехугольник вписан окружность, то существует точка, равноудаленная от всех сторон четырехугольника. Эта точка является центром вписанной в четырехугольник окружности. Для нахождения этой точки достаточно найти точку пересечениия биссектрис двух соседних углов данного четырехугольника.

    Вписанная окружность — это окружность, которая вписана
    в геометрическую фигуру и касается всех его сторон.

    Окружность, точно можно вписать в такие геометрические фигуры, как:

    • Треугольник
    • Выпуклый, правильный многоугольник
    • Квадрат
    • Равнобедренная трапеция
    • Ромб

    В четырехугольник, можно вписать окружность,
    только при условии, что суммы длин
    противоположных сторон равны.

    Во все вышеперечисленные фигуры
    окружность, может быть вписана, только один раз.

    Окружность невозможно вписать в прямоугольник
    и параллелограмм, так как окружность не будет
    соприкасаться со всеми сторонам этих фигур.

    Геометрические фигуры, в которые вписана окружность,
    называются описанными около окружности.

    Описанный треугольник — это треугольник, который описан
    около окружности и все три его стороны соприкасаются с окружностью.

    Описанный четырехугольник — это четырехугольник, который описан
    около окружности и все четыре его стороны соприкасаются с окружностью.


    Содержание

    1. Свойства вписанной окружности
    2. В треугольник
    3. В четырехугольник
    4. Примеры вписанной окружности
    5. Верные и неверные утверждения
    6. Окружность вписанная в угол

    Свойства вписанной окружности

    В треугольник

    1.  В любой треугольник может быть вписана окружность, причем только один раз.
    2.  Центр вписанной окружности — точка пересечения биссектрис треугольника.
    3.  Вписанная окружность касается всех сторон треугольника.
    4.  Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

      [ S = frac{1}{2}(a+b+c) cdot r = pr ]

      p —  полупериметр четырехугольника.
      r — радиус вписанной окружности четырехугольника.

    5.  Центр окружности вписанной в треугольник равноудален от всех сторон.
    6.  Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон треугольника.
    7.  От центра вписанной окружности можно провести
      перпендикуляры к любой точке касания.
    8.  Вписанная в треугольник окружность делит стороны
      треугольника на 3 пары равных отрезков.
    9.  Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
      Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

      [ с = sqrt{R^2 — 2Rr} ]

      с — расстояние между центрами вписанной и описанной окружностей треугольника.
      R — радиус описанной около треугольника.
      r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

      [ S = frac{1}{2}(a+b+c+d)cdot r = pr ]

      p —  полупериметр четырехугольника.
      r — радиус вписанной окружности четырехугольника.

    7. Точка касания вписанной окружности, которая лежит на любой из сторон,
      равноудалены от этой конца и начала этой стороны, то есть от его вершин.

    Примеры вписанной окружности

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромбквадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.


    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.


    Центральный угол вписанной окружности – это угол, вершина
    которого лежит в центре вписанной окружности.

    Вписанный угол вписанной окружности – это угол,
    вершина которого лежит на вписанной окружности.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    Так-же читайте статью про треугольник вписанный в окружность.

    Понравилась статья? Поделить с друзьями:
  • Как исправить кривой нос упражнениями
  • Как найти положение точки в пространстве
  • Как найти модуль поверхности бетона
  • Как найти скорость оборота наличных денег
  • Формула как найти объем квадрата формула