Как найти центр вписанной окружности в треугольник

Где лежит центр вписанной в треугольник окружности? Что можно сказать о центре окружности, вписанной в многоугольник?

Теорема.

Центр вписанной в треугольник окружности является точкой пересечения биссектрис этого треугольника.

центр вписанной окружности в треугольнике

O — точка пересечения биссектрис треугольника ABC.

tsentr vpisannoy v treugolnik okruzhnosti

Дано: ∆ ABC,

окр. (O; r) — вписанная.

Доказать:

O — точка пересечения биссектрис ∆ ABC.

Доказательство:

Обозначим точки касания вписанной в треугольник окружности со сторонами AC, BC и AB соответственно M, K. F.

tsentr vpisannoy okruzhnostiСоединим отрезками центр окружности с точками A, M и F.

    [OF bot AB,]

    [OM bot AC]

(как радиусы, проведенные в точки касания). Следовательно, треугольники AOF и AOM — прямоугольные.

У них общая гипотенуза AO, катеты OF=OM (как радиусы).

Следовательно, треугольники AOF и AOM равны (по катету и гипотенузе).

Из равенства треугольников следует равенство соответствующих углов: ∠OAF=∠OAM.

Значит, точка O лежит на биссектрисе треугольника, проведенной из вершины A.

Аналогично из равенства треугольников BOF и BOK, COM и COK доказывается, что точка O лежит на биссектрисах треугольника ABC, проведенных из вершин B и C.

Следовательно, центр вписанной в треугольник окружности лежит в точке пересечении биссектрис этого треугольника.

Что и требовалось доказать.

Замечание.

Доказательство теоремы можно основать непосредственно на свойстве биссектрисы угла.

1) OM=OF=OK (как радиусы),

2) OM⊥AC, OM⊥AB, OK⊥BC (как радиусы, проведённые в точку касания).

Значит точка O равноудалена от сторон углов BAC, ABC и ACB.

Так как любая точка, лежащая внутри неразвёрнутого угла и равноудалённая от сторон этого угла, лежит на его биссектрисе, то AO, BO и CO — биссектрисы треугольника ABC, O — точка их пересечения.

Аналогично, центр вписанной в многоугольник окружности (если в него можно вписать окружность) лежит в точке пересечения биссектрис этого многоугольника.

Окружность, описанная около треугольника

Окружность называют описанной около треугольника, если все вершины треугольника расположены на окружности.

Её центр равноудалён от всех вершин, то есть должен находиться в точке пересечения серединных перпендикуляров к сторонам треугольника.

Следовательно, около любого треугольника можно описать окружность, так как серединные перпендикуляры к сторонам пересекаются в одной точке.

Trijst_vidusp_01.png

Для остроугольного треугольника центр окружности находится в треугольнике.

Другая ситуация с прямоугольным и тупоугольным треугольниками.

Trijst_vidusp21.png              Trijst_vidusp11.png

Окружность, вписанная в треугольник

Окружность называют вписанной в треугольник, если все стороны треугольника касаются окружности.

Её центр равноудалён от всех сторон, то есть должен находиться в точке пересечения биссектрис треугольника.

Следовательно, в любой треугольник можно вписать окружность, так как биссектрисы треугольника пересекаются в одной точке.

Trijst_bisektrises_01.png

Так как биссектрисы углов треугольника всегда пересекаются внутри треугольника, то для всех треугольников центр вписанной окружности находится в треугольниках.

Равносторонний треугольник

Обрати внимание!

У равностороннего треугольника совпадают биссектрисы, медианы и высоты, то есть, эти отрезки являются также серединными перпендикулярами. Это значит, что центры описанной и вписанной окружности совпадают.

Радиус описанной окружности

Радиус вписанной окружности

r=13h

, где (h) — высота треугольника.

Если дана сторона треугольника (a), то

h=a32

.

Поэтому

r=a36

.

Прямоугольный треугольник

Радиус описанной окружности

R=12c

, где (c) — гипотенуза.

Радиус вписанной окружности

r=SΔp

, где (p) — полупериметр.

Произвольный треугольник

Радиус описанной окружности

R=a2sinα

, где

α

 — угол, противолежащий стороне (a);

еслиSΔ=abc4R,тоR=abc4SΔ;еслиSΔ=p⋅r,тоr=SΔp

.

Радиус вписанной окружности

r=SΔp

, где (p) — полупериметр.

Центр и радиус вписанной окружности в треугольник

Центр вписанной в треугольник окружности является точкой пересечения биссектрис этого треугольника. Радиус окружности, вписанной в любой треугольник, равняется удвоенной площади треугольника, деленной на его периметр.

Центр и радиус вписанной окружности в треугольник через координаты его вершин

Известны координаты вершин треугольника и известный координаты точки. Нужно установить принадлежность точки треугольнику.
Существует несколько способов определения. лежит-ли точка внутри треугольника или снаружи:

1. Метод сравнения площадей — по формуле Герона находятся площади 3-х треугольников которые образует точка с каждой стороной треугольника, далее находится площадь самого треугольника и сравнивается с суммой 3ех предыдущих треугольников, если суммы равны то значит точка принадлежит треугольнику.

2. Метод относительности — выбирается ориентация движения по вершинам треугольника, например по часовой стрелке. По данной ориентации проходим все стороны треугольника, рассматривая их как прямые, и рассчитываем по какую сторону от текущей прямой лежит наша точка. Если точка для всех прямых, лежит с правой стороны, то значит точка принадлежит треугольнику, если хоть для какой-то прямой она лежит с левой стороны, то значит условие принадлежности не выполняется.

3. Метод геометрического луча — из точки пускается луч по какой-либо оси в каком-либо направлении. Вычисляется количество пересечений со сторонами, если кол-во нечётное, то значит точка лежит внутри многоугольника.

Окружность в треугольнике

В каждый треугольник можно вписать окружность, притом только одну.
Центр вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.

Пример

В приведенном ниже примере, O является центров окружности.

Метод расчета центра окружности вписанного в треугольник

Даны точки вершин треугольника A(5,7), B(6,6) и C(2,-2). Итак, нам известны координаты точек вершин треугольника x1,y1, x2,y2 и x3,y3.
Для нахождения точки центра вписанной окружности необходимо найти уравнение биссектрисы.

Шаг 1 :

Давайте рассчитаем средние точки всех сторон треугольника AB, BC и CA заданных координатами x и y

  • Средняя точка стороны = x1+x2/2, y1+y2/2
  • Средняя точка AB = 5+6/2, 7+6/2 = (11/2, 13/2)
  • Средняя точка BC = 6+2/2, 6-2/2 = (4, 2)
  • Средняя точка CA = 2+5/2, -2+7/2 = (7/2, 5/2)

Шаг 2 :

Далее, найдем углы сторон AB, BC и CA используя формулу y2-y1/x2-x1. Пожалуйста, обратите внимание, что угол обозначается буквой ‘m’.

  • Угол AB (m) = 6-7/6-5 = -1.
  • Угол BC (m) = -2-6/2-6 = 2.
  • Угол CA (m) = 7+2/5-2 = 3.

Шаг 3 :

Теперь, давайте вычислить угол биссектрисы сторон AB, BC и CA.

  • Угол биссектрисы = -1/угол линии (стороны).
  • Угол биссектрисы стороны AB = -1/-1 = 1
  • Угол биссектрисы стороны BC = -1/2
  • Угол биссектрисы стороны CA = -1/3

Шаг 4 :

После того, как мы находим угол перпендикулярных линий, мы должны найти уравнение перпендикуляра, биссектрис с углом и серединой. Уравнение перпендикуляра АВ с серединами (11/2, 13/2) и углом 1.

Уравнение центра окружности y-y1 = m(x-x1)

Упростив, мы получим уравнение -x + y = 1

Кроме того, мы должны найти уравнение перпендикуляра, биссектрис линий BE и CF.

Для BC с средней точкой (4,2) и углом -1/2 y-2 = -1/2(x-4)

Упростив, мы получим уравнение x + 2y = 8

Для CA с средней точкой (7/2,5/2) и углом -1/3 y-5/2 = -1/3(x-7/2)

Упростив, мы получим уравнение x + 3y = 11

Шаг 5 :

Найдем значения x и y решив любые 2 из указанных 3 уравнений.

В этом примере, значение x и y равны (2,3) которые являются координатами центра (o) вписанной окружности в треугольник.

Точка пересечения биссектрис

Как найти точку пересечения биссектрис треугольника по координатам его вершин?

Как найти радиус вписанной в треугольник окружности по координатам его вершин?

Точка пересечения биссектрис треугольника является центром вписанной в этот треугольник окружности.

Эта точка равноудалена от сторон треугольника. Расстояние от точки пересечения биссектрис до сторон треугольника равно радиусу вписанной окружности.

Следовательно, все три задачи сводятся к нахождению точки пересечения биссектрис треугольника.

Для этого надо сначала составить уравнения биссектрис треугольника и найти точку их пересечения.

Дан треугольник ABC с вершинами в точках A(0;-3), B(12;-12) и C(3,36;-0,48).

1) Найти точку пересечения биссектрис треугольника ABC.

2) Найти радиус вписанной в треугольник ABC окружности.

3) Составить уравнение вписанной в треугольник ABC окружности.

1) Составим уравнения прямых, содержащих стороны треугольника.

Уравнение прямой AC:

Уравнение прямой BC:

Составим уравнение биссектрисы треугольника ABC, исходящей из угла B. Она образована прямыми AB и BC:

откуда уравнения биссектрис угла B: x-y-24=0 или x+y=0. Чтобы понять, которое из двух уравнений является биссектрисой внутреннего угла треугольника, следует подставить в уравнения координаты точек A и C. Поскольку они лежат по разные стороны от биссектрисы внутреннего угла B, то подстановка их координат в уравнение биссектрисы даёт числа разных знаков.

A(0;-3) и C(3,36;-0,48) в x-y-24=0: 0-(-3)-24 0. Получили числа разных знаков, x+y=0 — биссектриса угла B треугольника ABC.

Составим уравнение биссектрисы угла C. Угол C образован прямыми AC и BC, откуда

уравнения биссектрис угла C: 7x-y-24=0 и x+7y=0.

A(0;-3), B(12;-12) в 7x-y-24=0: 7·0-(-3)-24 0. Получили числа разных знаков, значит 7x-y-24=0 — уравнение биссектрисы внутреннего угла C.

Поскольку все три биссектрисы треугольника пересекаются в одной точке, третью биссектрису находить не требуется.

Точку пересечения биссектрис углов B и C найдём из системы уравнений

O(3;-3) — точка пересечения биссектрис треугольника ABC. Эта точка является центром вписанной в треугольник окружности.

2) Радиус вписанной в треугольник ABC окружности можно найти как расстояние от точки O до прямой AB, BC или AC. Найдем, например, расстояние от O до AB:

3) Чтобы найти уравнение вписанной в треугольник ABC окружности, в уравнение окружности подставляем координаты центра O(3;-3) и r=9/5:

источники:

http://wpcalc.com/okruzhnost-v-treugolnike/

Точка пересечения биссектрис

  • Альфашкола
  • Уроки по математике
  • Планиметрия
  • Вписанная окружность.

Вписанная окружность. — онлайн урок

Тема: Окружность вписанная в треугольник.Рассмотрена теорема о центре вписанной в прямоугольный треугольник окружности. Показано как использовать формулу радиуса вписанной в треугольник окружности. Показана формула радиуса вписанной в прямоугольный треугольник окружности.

Отзывы:

Рекомендую данного репетитора очень хорошо объясняет и всё в общем-то понятно.

Марина Александровна отличный педагог. Очень пунктуальная, всегда готовится к уроку. На уроках с сыном она разбирала большое количество вариантов ВПР, повторяли пройденный материал за 5 класс. Объясняет очень доступно и понятно. Надеюсь, продолжим занятия. Очень довольна и рекомендую

Урок понравился, спасибо!

Похожие уроки

Вписанная окружность и отрезки сторон треугольника

Давай представим, что мы откуда-то узнали все три стороны треугольника.

Можно ли найти как-то отрезочки ( displaystyle AK), ( displaystyle KC), ( displaystyle BL) и.д. —отрезки, на которые точки касания разбивают стороны треугольника?

Представь себе, можно, и даже очень легко. Для этого нужно знать только то, что отрезки касательных, проведённых из одной точки, равны (если ещё не успел это узнать – загляни в тему «Касательные, касающиеся окружности»).

Итак, начнём поиск!

Посмотри внимательно: из точки ( displaystyle A) проведено две касательных, значит их отрезки ( displaystyle AK) и ( displaystyle AM) равны.

Мы обозначим их «( displaystyle x)».

Далее, точно так же:

( displaystyle BM=BL=y) (обозначили).

( displaystyle CK=CL=z) (обозначили).

Теперь вспомним-ка, что мы знаем длины всех трёх сторон треугольника. Обозначим эти длины «( displaystyle a)», «( displaystyle b)», «( displaystyle c)» — смотри на рисунок. Что же теперь получилось?

А вот, например, отрезок «( displaystyle a)» состоит из двух отрезков «( displaystyle y)» и «( displaystyle z)», да и отрезки «( displaystyle b)» и «( displaystyle c)» тоже из чего-то состоят. Запишем это всё сразу:

( displaystyle left{ begin{array}{l}y+z=a\x+z=b\x+y=cend{array} right.)

Ух ты! Выход в алгебру! Три уравнения и три неизвестных! Сейчас решим!

Сложим первые два уравнения и вычтем третье:

( displaystyle left{ begin{array}{l}y+z=a\x+z=b\x+y=cend{array} right.Rightarrow x+y+2z-left( x+y right)=a+b-c), то есть:

( displaystyle z=frac{a+b-c}{2})

А теперь сложим первое и третье уравнение и вычтем второе:

( displaystyle left{ begin{array}{l}y+z=a\x+z=b\x+y=cend{array} right.Rightarrow y+z+x+y-left( x+z right)=a+c-b), то есть:

( displaystyle y=frac{a+c-b}{2})

И последний шаг: сложим второе и третье, а потом вычтем первое.

( displaystyle left{ begin{array}{l}y+z=a\x+z=b\x+y=cend{array} right.Rightarrow x=frac{b+c-a}{2})

( displaystyle x=frac{b+c-a}{2})

Ну вот, всё нашли:

( displaystyle x=frac{b+c-a}{2};y=frac{a+c-b}{2};~z=frac{a+b-c}{2})

Очень много плюсов и минусов – аж в глазах рябит. Как же это запомнить? А оказывается, очень просто. Смотри-ка на картинку и формулу сразу.

( displaystyle x=frac{b+c-a}{2})

Секрет вот в чём: те стороны, на которых есть «( displaystyle x)» («( displaystyle b)» и «( displaystyle c)») будут с плюсом, а та сторона, где нет «( displaystyle x)» (это «( displaystyle a)»), будет с минусом.

Ну, а пополам поделить всё хозяйство. С другими буквами точно так же

( displaystyle y=frac{a+c-b}{2})

На «( displaystyle a)» и «( displaystyle c)» есть «( displaystyle y)» — они с плюсом, на «( displaystyle b)» нет «( displaystyle y)» — она с минусом

( displaystyle z=frac{a+b-c}{2})

На «( displaystyle a)» и «( displaystyle b)» есть «( displaystyle z)» — они с плюсом, на «( displaystyle c)» нет «( displaystyle z)» — она с минусом.

Понравилась статья? Поделить с друзьями:
  • Как найти площадь криволинейной трапеции ограниченной линиями
  • Приложение сбербанк остановлено как исправить на самсунге
  • Как найти работу змее
  • Как найти среднее выборки ряда чисел
  • Как найти полюс скоростей