Как найти центральный угол в правильном шестиугольнике

Определение.

Центральный угол правильного многоугольника — это угол, под которым сторона многоугольника видна из его центра.

centralnyj-ugol-mnogougolnikaНапример,

∠AOB — центральный угол правильного восьмиугольника.

Около любого правильного многоугольника можно описать окружность, центр которой совпадает с центром этого многоугольника. Если у многоугольника n сторон, то центральных углов у него также n и все они равны между собой.

Градусная мера всей окружности — 360º, следовательно, градусная мера каждой дуги окружности, на которую окружность разбивают вершины n-угольника, равна

    [frac{{{{360}^o}}}{n}]

Так как центральный угол равен дуге, на которую от опирается, то и каждый из центральных углов равен 360º:n.

Примеры

centralnyj-ugol-treugolnikaЦентральный угол правильного треугольника

равен 360º:3=120º.

centralnyj-ugol-kvadrataЦентральный угол квадрата

равен 360º:4=90º.

centralnyj-ugol-shestiugolnikaЦентральный угол правильного шестиугольника

равен 360º:6=60º.

centralnyj-ugol-vosmiugolnikaЦентральный угол правильного восьмиугольника

равен 360º:8=45º.

Как найти центральный угол правильного многоугольника вписанного в окружность

Ключевые слова: многоугольник, правильный многоугольник, сторона, угол, вписанная, описанная окружность

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны.

Центром правильного многоугольника называется точка, равноудаленная от всех его вершин и всех его сторон.

Центральным углом правильного многоугольника называется угол, под которым видна сторона из его центра.

См. также:
Вписанная окружность, Описанная окружность, Выпуклый четырёхугольник, Произвольный выпуклый многоугольник

Геометрия

План урока:

Понятие правильного многоугольника

У выпуклого многоугольника могут быть одинаковы одновременно и все стороны, и все углы. В таком случае он именуется правильным многоугольником.

Нам уже известны некоторые правильные многоуг-ки. Например, правильным является равносторонний треугольник. У него все стороны одинаковы по его определению, а все углы составляют по 60°. Поэтому иногда его так и называют – правильный треугольник. Среди четырехугольников правильной фигурой является квадрат, у которого также по определению одинаковы стороны, а углы составляют уже по 90°.

Заметим, что бывают фигуры, у которых одинаковы все стороны, а углы различны. Примером такой фигуры является ромб. Возможна и обратная ситуация – все углы у фигуры одинаковы, но стороны отличаются своей длиной. Таковым является прямоугольник. Важно понимать, такие фигуры (в частности, ромб и прямоугольник) НЕ являются правильными.

Для любого заданного числа n, начиная от n = 3, можно построить правильный n-угольник. На рисунке ниже показано несколько примеров таких n-угольников:

Существует зависимость, которая позволяет определить величину угла правильного многоугольника. Мы уже знаем, что в любом выпуклом n-угольнике сумма углов равна величине 180°(n– 2). Обозначим угол правильного многоуг-ка буквой α. Так как у n-угольника ровно n углов, и все они одинаковы, мы можем записать равенство:

Легко проверить, что эта формула верна для равностороннего треуг-ка и квадрата и позволяет правильно определить углы в этих фигурах. Для треугольника n = 3, поэтому мы получаем 60°:

Задание. Какова величина углов в правильном пятиугольнике, шестиугольнике, восьмиугольнике, пятидесятиугольнике?

Решение. Надо просто подставить в формулу число сторон правильного многоугольник. Сначала считаем для пятиугольника:

Задание. Сколько сторон должно быть у правильного многоуг-ка, чтобы каждый угол в нем был равен 179°?

Решение. В формулу

Задание. Может ли существовать правильный многоуг-к, угол которого равен 145°?

Решение. Предположим, что он существует. Тогда по аналогии с предыдущей задачей найдем количество его сторон:

Получили не целое, а дробное количество сторон. Естественно, что это невозможно, а потому такой многоуг-к существовать не может.

Описанная и вписанная окружности правильного многоугольника

Докажем важную теорему о правильном многоуг-ке.

Для доказательства обозначим вершины произвольного правильного n-угольника буквами А1, А2, А3…Аn. Далее проведем биссектрисы углов ∠А1 и ∠А2. Они пересекутся в некоторой точке О. Соединим О с другими вершинами многоуг-ка отрезками ОА3, ОА4 и т. д.

∠А1 и ∠А2 одинаковы по определению правильного многоуг-ка:

Из этого факта вытекает два равенства:

Получается, что ОА3 – это также биссектриса ∠А3. Тогда, повторив все предыдущие рассуждения, мы можем доказать равенство, аналогичное (1):

Это равенство означает, что точка О равноудалена от вершин многоуг-ка. Значит, можно построить окружность с центром в О, на которой будут лежать все вершины многоуг-ка:

Естественно, существует только одна такая описанная окружность, ведь через любые три точки, в частности, через А1, А2 и А3, можно провести только одну окружность, ч. т. д.

Продолжим рассматривать выполненное нами построение с описанной окружностью. Ясно, что ∆ОА1А2, ∆ОА2А3, ∆ОА3А4, …, равны, ведь у них одинаковы по 3 стороны. Опустим из О высоты ОН1, ОН2, ОН3… на стороны многоуг-ка.

Так как высоты проведены в равных треуг-ках, то и сами они равны:

Теперь проведем окружность, центр которой находится в О, а радиус – это отрезок ОН1. Он должен будет пройти и через точки Н2, Н3, … Нn. Причем отрезки ОН1, ОН2, ОН3 окажутся радиусами. Так как они перпендикулярны сторонам многоуг-ка, то эти самые стороны будут касательными к окружности (по признаку касательной). Стало быть, эта окружность является вписанной:

Ясно, что такая окружность будет единственной вписанной. Если бы существовала вторая вписанная окружность, то ее центр был бы равноудален от сторон многоуг-ка, а потому лежал бы в точке пересечения биссектрис углов ∠А1, ∠А2, ∠А3, то есть в точке О. Так как расстояние от О до А1А2 – это отрезок ОН1, то именно такой радиус был бы у второй окружности. Получается, что вторая окружность полностью совпала бы с первой, так как их центр находился бы в одной точке, и радиусы были одинаковы.

Примечание. Точка, которая центром и вписанной, и описанной окружности, именуется центром правильного многоуг-ка.

Ещё раз вернемся к приведенному доказательству и заметим, что высоты ОН1, ОН2, ОН3,… проведены в равнобедренных треуг-ках∆ОА1А2, ∆ОА2А3, ∆ОА3А4,… Следовательно, эти высоты являются ещё и медианами, то есть точки Н1, Н2, Н3,… – это середины сторон многоуг-ка.

Задание. Могут ли две биссектрисы, проведенные в правильном многоуг-ке, быть параллельными друг другу?

Решение. Центр правильного многоуг-ка находится в точке пересечения всех его биссектрис. То есть любые две биссектрисы будут иметь хотя бы одну общую точку. Параллельные же прямые общих точек не имеют. Получается, что биссектрисы не могут быть параллельными.

Примечание. Аналогичное утверждение можно доказать и для серединных перпендикуляров, проведенных к сторонам правильного многоуг-ка.

Формулы для правильного многоугольника

Правильный многоуг-к, как и любая другая плоская фигура, имеет площадь (она обозначается буквой S) и периметр (обозначается как Р). Длина стороны многоуг-ка традиционно обозначается буквой an, где n– число сторон у многоуг-ка. Например a4– это сторона квадрата, a6– сторона шестиугольника. Наконец, мы выяснили, что для каждого правильного многоуг-ка можно построить описанную и вписанную окружность. Радиус описанной окружности обозначается большой буквой R, а вписанной – маленькой буквой r.

Оказывается, все эти величины взаимосвязаны друг с другом. Ранее мы уже получили формулу

для многоуг-ка, в который вписана окружность. Подходит она и для правильного многоуг-ка.

Для вывода остальных формул правильного многоугольника построим n-угольники соединим две его вершины с центром:

Теперь у нас есть формула, связывающая друг с другом Rи r. Наконец, прямо из определения периметра следует ещё одна формула:

С их помощью, зная только один из параметров правильного n-угольника, легко найти и все остальные параметры (если известно и число n).

Задание. Докажите, что сторона правильного шестиугольника равна радиусу описанной около него окружности.

Решение. Запишем следующую формулу:

Это равенство как раз и надо было доказать в этом задании.

Задание. Около окружности описан квадрат. В свою очередь и около квадрата описана окружность радиусом 4. Найдите длину стороны квадрата и радиус вписанной окружности.

Решение. Запишем формулу:

Задание. Вычислите площадь правильного многоугольника с шестью углами, длина стороны которого составляет единицу.

Найдем периметр шестиугольника:

Задание. Около правильного треугольника описана окружность. В ту же окружность вписан и квадрат. Какова длина стороны этого квадрата, если периметр треугольника составляет 18 см?

Решение. Зная периметр треуг-ка, легко найдем и его сторону:

Далее вычисляется радиус описанной около треугольника окружности:

Задание. Необходимо изготовить болт с шестигранной головкой, причем размер под ключ (так называется расстояние между двумя параллельными гранями головки болта) должен составлять 17 мм. Из прутка какого диаметра может быть изготовлен такой болт, если диаметр прутков измеряется целым числом?

Решение. Здесь надо найти диаметр окружности, описанной около шестиугольника. Ранее мы уже доказывали, что у шестиугольника длина этого радиуса совпадает с длиной его стороны:

Осталось найти сторону шестиугольника. Для этого соединим две его вершины (обозначим их А и С) так, как это показано на рисунке:

Отрезок АС как раз и будет расстоянием между двумя параллельными гранями, что легко доказать. Каждый угол шестиугольника будет составлять 120°:

В частности ∠АВС = 120°. Так как АВ = ВС, то ∆АВС – равнобедренный, и углы при его основании одинаковы:

Аналогично можно показать, что и ∠ACD – прямой. Таким образом, АС перпендикулярен сторонам AF и CD, а значит является расстоянием между ними, и по условию равно 17 мм:

∆АВС – равнобедренный. Опустим в нем высоту НВ, которая одновременно будет и медианой. Тогда АН окажется вдвое короче АС:

AH = AC/2 = 17/2 = 8,5 мм

Теперь сторону АВ можно найти из ∆АВН, являющегося прямоугольным:

Здесь мы округлили ответ до ближайшего большего целого числа, так как по условию можно использовать лишь пруток с целым диаметром.

Построение правильных многоугольников

При использовании транспортира или иного прибора, позволяющего откладывать заранее заданные углы, построение правильного многоуг-ка проблем не вызывает. Например, пусть надо построить пятиугольник со стороной, равной 5 см. Сначала по известной формуле вычисляем величину его угла:

Однако напомним, что в геометрии большой интерес вызывают задачи, связанные с построением с помощью всего двух инструментов – циркуля и линейки, то есть без использования транспортира. В таком случае построение многоугольников правильной формы становится значительно более сложной задачей. Если речь идет не о таких простых фигурах, как квадрат и равносторонний треугольник, то при построении обычно приходится использовать описанную окружность.

Сначала рассмотрим построение правильного шестиугольника по заранее заданной стороне. Ранее мы уже узнали, что его сторона имеет такую же длину, как и радиус описанной окружности:

На основе этого факта предложен следующий метод построения шестиугольника. Сначала строится описанная окружность, причем в качестве ее радиуса берется заданная сторона а6. Далее на окружности отмечается произвольная точка А, которая будет первой вершиной шестиугольника. Из нее проводится ещё одна окружность радиусом а6. Точки, где она пересечет описанную окружность (В и F), будут двумя другими вершинами шестиугольника. Наконец, и из точек B и F проводим ещё две окружности, которые пересекутся с исходной окружностью в точках С и F. Наконец, из С (можно и из F)провести последнюю окружность и получить точку D. Осталось лишь соединить все точки на окружности (А, В, С, D, Еи F):

Данное построение довольно просто. Однако для пятиугольника построение несколько более сложное, а для семиугольника и девятиугольника вообще невозможно осуществить точное построение. Этот факт был доказан только в 1836 г. Пьером Ванцелем.

Если удалось возможно построить правильный n-угольник, вписанный в окружность, то несложно на его основе построить многоуг-к, у которого будет в два раза больше сторон (его можно назвать 2n-угольником) и который будет вписан в ту же окружность. Рассмотрим это построение на примере квадрата и восьмиугольника.

Изначально дан квадрат, вписанный в окружность. Надо построить восьмиугольник, вписанный в ту же окружность. Обозначим любые две вершины квадрата буквами А и В. Для начала нам надо разбить дугу ⋃АВ на две равные дуги. Для этого мы проводим из А и В окружности радиусом АВ. Они пересекутся в некоторых точках С и D. Соединяем их отрезком, который в свою очередь пересечется с исходной окружностью в точке Е.

Е – это середина дуги ⋃АВ. Точки А, В и Е как раз являются тремя первыми точками восьмиугольника. Для получения остальных точек необходимо из вершин квадрата строить окружности радиусом АЕ. Точки, где эти окружности пересекутся с исходной окружностью, и будут вершинами восьмиугольника. Также его вершинами являются вершины самого квадрата:

Аналогичным образом можно из шестиугольника получить 12-угольник, из восьмиугольника – 16-угольник, из 16-угольника – 32-угольник. То есть можно удвоить число сторон многоуг-ка.

Древние греки умели строить правильные многоуг-ки с 3, 4, 5, 6 и 15 сторонами, а также умели на их основе строить многоуг-ки с вдвое большим числом сторон. Лишь в 1796 г. Карл Гаусс смог построить 17-угольник. Также удалось найти способ построения 257-угольника и 65537-угольника, причем описание построения 65537-угольника занимает более 200 страниц.

В этом уроке мы узнали о правильных многоуг-ках и их свойствах. Особенно важно то, что для каждого такого многоуг-ка можно построить описанную и вписанную окружность, причем их центры совпадают. Это позволяет использовать правильные многоуг-ки для более глубокого исследования свойств окружности.

Центральный угол правильного многоугольника

Центральный угол правильного многоугольника — это угол, под которым сторона многоугольника видна из его центра.

Например,

∠AOB — центральный угол правильного восьмиугольника.

Около любого правильного многоугольника можно описать окружность, центр которой совпадает с центром этого многоугольника. Если у многоугольника n сторон, то центральных углов у него также n и все они равны между собой.

Градусная мера всей окружности — 360º, следовательно, градусная мера каждой дуги окружности, на которую окружность разбивают вершины n-угольника, равна

Так как центральный угол равен дуге, на которую от опирается, то и каждый из центральных углов равен 360º:n.

Центральный угол правильного треугольника

Центральный угол квадрата

Центральный угол правильного шестиугольника

Центральный угол правильного восьмиугольника

источники:

Правильным шестиугольником называется выпуклый многоугольник с шестью одинаковыми сторонами и шестью углами.

Внутренние углы в правильном шестиугольнике равны (120^circ):
(alpha = 120^circ)

Апофема правильного шестиугольника (перпендикуляр, проведенный из центра к любой стороне)
(m = alargefrac<<sqrt 3 >><2>
ormalsize)

Радиус вписанной окружности правильного шестиугольника равен апофеме:
(r = m = alargefrac<<sqrt 3 >><2>
ormalsize)

Радиус описанной окружности равен стороне правильного шестиугольника:
(R = a)

Периметр правильного шестиугольника
(P = 6a)

Площадь правильного шестиугольника
(S = pr = largefrac<<3sqrt 3 >><2>
ormalsize),
где (p) − полупериметр шестиугольника.

Правильный шестиугольник — это такой шестиугольник у которого все шесть сторон равны и его шесть углов равны.

Центр правильного шестиугольника — на рисунке точка O равноудалена от вершин.

Светлая линия обозначающая высоту треугольника AOB : h называется — апофемой.

Отрезки OA , OB — радиусы правильного шестиугольника.

Обозначения на рисунке для правильного шестиугольника

n=6 число сторон и вершин правильного шестиугольника, шт
α центральный угол правильного шестиугольника, радианы, °
β половина внутреннего угла правильного шестиугольника, радианы, °
γ внутренний угол правильного шестиугольника, радианы, °
a сторона правильного шестиугольника, м
R радиусы правильного шестиугольника, м
p полупериметр правильного шестиугольника, м
L периметр правильного шестиугольника, м
h апофемы правильного шестиугольника, м

Основные формулы для правильного шестиугольника

Периметр правильного шестиугольника

Полупериметр правильного шестиугольника

Центральный угол правильного шестиугольника в радианах

Центральный угол правильного шестиугольника в градусах

Половина внутреннего угла правильного шестиугольника в радианах

Половина внутреннего угла правильного шестиугольника в градусах

Внутренний угол правильного шестиугольника в радианах

Внутренний угол правильного шестиугольника в градусах

Площадь правильного шестиугольника

Отсюда получим апофему правильного шестиугольника

Ответ оставил Гость

180 ( 6-2) =180* 4 =720 градусов

Нельзя всё время учиться. А для развлечения мы рекомендуем вам поиграть в отличную игру:

Правильный шестиугольник — это многоугольник, состоящий из шести равных сторон и шести равных углов.

Определение правильного шестиугольника

Если шесть равносторонних треугольников расположены бок о бок, то образуется правильный шестиугольник. Поэтому площадь правильного шестиугольника равна шести равносторонним треугольникам.

Правильный шестиугольник
 

  • Правильный шестиугольник имеет (6) сторон, (6) углов и 6 вершин.
  • Сумма внутренних углов шестиугольника (-(6 − 2) · 180° = 720°).
  • Внутренний угол правильного шестиугольника равен (720º / 6 = 120º).
  • Центральный угол правильного шестиугольника меры: (360 : 6 = 60º).
  • Количество диагоналей (- 6 · (6 − 3) : 2 = 9).

Правильный шестиугольник

  • Апофема правильного шестиугольника:

Правильный шестиугольник

(a=sqrt{l^2-frac{l}{2}})

Свойства правильного шестиугольника

Вот некоторые свойства правильного шестиугольника:

  1. Равные стороны: Все стороны правильного шестиугольника имеют одинаковую длину. Это означает, что каждая сторона равна другим сторонам в шестиугольнике.

  2. Равные углы: Углы в правильном шестиугольнике равны между собой. Каждый угол равен 120 градусам.

  3. Сумма углов: Сумма всех углов в правильном шестиугольнике равна 720 градусам. Это можно получить, умножив число углов (6) на величину каждого угла (120 градусов).

  4. Центральная симметрия: У правильного шестиугольника есть центр симметрии, что означает, что при вращении шестиугольника вокруг этого центра на угол 60 градусов он будет выглядеть так же, как и до вращения.

  5. Радиус окружности: В правильном шестиугольнике можно описать окружность, в которую все вершины шестиугольника попадают на окружность. Радиус этой окружности может быть найден с использованием формулы: радиус = сторона / (√3), где сторона — длина стороны шестиугольника.

  6. Площадь: Площадь правильного шестиугольника может быть вычислена с помощью формулы: площадь = (3√3/2) * сторона^2, где сторона — длина стороны шестиугольника.

Эти свойства помогают определить и описать основные характеристики и свойства правильного шестиугольника.

Часто задаваемые вопросы:

Можно ли вписать правильный шестиугольник в окружность?

Да, правильный шестиугольник можно вписать в окружность таким образом, чтобы все его вершины лежали на окружности.

Какие свойства имеют стороны в правильном шестиугольнике?

В правильном шестиугольнике все стороны равны между собой.

Какова сумма углов в правильном шестиугольнике?

Сумма всех углов в правильном шестиугольнике равна 720 градусов.

Больше уроков и заданий по всем школьным предметам в онлайн-школе «Альфа». Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

Правильный шестиугольник

Правильный шестиугольник — это такой шестиугольник у которого все шесть сторон равны и его шесть углов равны.

Правильный шестиугольник

Правильный шестиугольник

Центр правильного шестиугольника — на рисунке точка O равноудалена от вершин.

Светлая линия обозначающая высоту треугольника AOB : h называется — апофемой.

Отрезки OA, OB — радиусы правильного шестиугольника.

Обозначения на рисунке для правильного шестиугольника

n=6 число сторон и вершин правильного шестиугольника, шт
α центральный угол правильного шестиугольника, радианы, °
β половина внутреннего угла правильного шестиугольника, радианы, °
γ внутренний угол правильного шестиугольника, радианы, °
a сторона правильного шестиугольника, м
R радиусы правильного шестиугольника, м
p полупериметр правильного шестиугольника, м
L периметр правильного шестиугольника, м
h апофемы правильного шестиугольника, м

Основные формулы для правильного шестиугольника

Периметр правильного шестиугольника

[ L = 6a ]

Полупериметр правильного шестиугольника

[ p = 3a ]

Центральный угол правильного шестиугольника в радианах

[ α = frac{π}{3} ]

Центральный угол правильного шестиугольника в градусах

[ α = frac{180°}{3} = 60° ]

Половина внутреннего угла правильного шестиугольника в радианах

[ β = frac{π}{3} ]

Половина внутреннего угла правильного шестиугольника в градусах

[ β = frac{180°}{3} = 60° ]

Внутренний угол правильного шестиугольника в радианах

[ γ = 2β = frac{2}{3}π ]

Внутренний угол правильного шестиугольника в градусах

[ γ = frac{2}{3}180° = 120° ]

Площадь правильного шестиугольника

[ S = ph = 3ha ]

Или учитывая формулу Площади правильного шестиугольника получим

[ S = frac{3sqrt{3}}{2}a^2 ]

Отсюда получим апофему правильного шестиугольника

[ h = frac{sqrt{3}}{2}a ]

Правильный шестиугольник

стр. 270

Понравилась статья? Поделить с друзьями:
  • Как найти гробницу куарходрона
  • Как правильно составить завещание чтобы его нельзя было оспорить образец
  • Смещение перегородки носа как исправить
  • Как найти цену деления на весах
  • Как составить анализ за год образец