Как найти центростремительное ускорение массу

Однако центростремительное ускорение и масса являются независимыми величинами; ускорение объекта зависит от его массы и инерции тела.

Масса является неизменной величиной и, следовательно, не изменяется, когда объект находится в центростремительном движении. Но центростремительное ускорение и масса по-прежнему связаны друг с другом, поскольку сила, необходимая для ускорения объекта, в значительной степени зависит от его массы.

Влияет ли масса на центростремительное ускорение?

Центростремительное ускорение находится в прямой зависимости от скорости объекта и обратно пропорционально радиусу окружности.

Как только к объекту приложена сила, чтобы сместить его из исходного положения и двигаться по круговой траектории, импульс и скорость объекта поддерживаются постоянными. центростремительное ускорение направлено по радиусу вектор кругового пути.

Почему масса не влияет на центростремительное ускорение?

Центростремительное ускорение объекта не зависит от массы объекта, поскольку оно постоянно.

Суммарная работа, совершаемая объектом при круговом движении, на самом деле пренебрежимо мала. Кинетическая энергия тела в процессе сохраняется, поэтому скорость тела остается постоянной. Таким образом, масса объекта не влияет на центростремительное ускорение в любом случае.

Сила, приложенная к объекту для придания ему крутящего момента, зависит от массы и других конфигураций объекта. Крутящий момент — это сила, приложенная по касательной к телу объекта, которая ускоряет объект при круговом движении вокруг своей оси.

Почему для расчета центростремительного ускорения требуется масса?

Центростремительное ускорение постоянно для данной массы и радиуса круговой петли; следовательно, она на самом деле не зависит от массы объекта.

Масса объекта определяет величину силы, которую необходимо приложить к его телу для перемещения. Если к объекту приложена меньшая сила, то скорость объекта будет мала и, соответственно, центростремительное ускорение объекта будет опускаться.

Если величина электростатической силы, приложенной к электрону в проводящем поясе, больше, то центростремительное ускорение электрона будет большим. Таким же образом, если магнитная сила генерируемое в катушке за счет токоведущего провода больше, то и число оборотов двигателя малого размера будет больше.

Для двигателей большего размера число оборотов в секунду будет меньше при той же величине тока по сравнению с двигателем с меньшим радиусом. Это различие связано с массой и радиусом.

Как связаны центростремительное ускорение и масса?

Центростремительное ускорение обратно пропорционально массе тела.

Хотя масса объекта не переменная величина, пока объект находится в центростремительном движении, начальная скорость объекта зависит от его массы, которая в дальнейшем определяет центростремительное ускорение объекта при круговом движении.

центростремительное ускорение и масса

Центростремительное ускорение; Кредит изображения: pixabay

Говорят, что масса связана, потому что к ней должна быть приложена достаточная сила в ответ на ее массу, чтобы ускорить ее. Если вы будете поддерживать постоянную силу на всех объектах, имеющих разные массы, то вы заметите, что объект с меньшей массой будет ускоряться с большей скоростью по сравнению с объектами с большими массами.

Как рассчитать центростремительную силу по центростремительному ускорению и массе?

Сила, действующая на объект в центростремительное движение зависит непосредственно от центростремительного ускорения и масса.

Центростремительная сила может быть рассчитана по центростремительному ускорению, а масса равна F=mα. Здесь α — центростремительное ускорение, m — масса. Очевидно, что чем больше масса предмета, тем большую силу требуется приложить к предмету, чтобы сместить его с места.

Центростремительная сила, приложенная к объекту при круговом движении, рассчитывается по формуле

F = mv2/r

Здесь F — центростремительная сила,

m — масса объекта,

v — скорость объекта при круговом движении, а

r — радиус кругового пути.

Формула для нахождения центростремительное ускорение от скорости объекта определяется как:

α = мв2/r

Центростремительное ускорение зависит от радиуса окружности. Это означает, что если радиус мал, то центростремительное ускорение будет высоким, а для больших радиусов центростремительное ускорение будет уменьшено. В таком случае необходимо приложить больше силы, чтобы поддерживать ускорение тела с требуемой скоростью.

Следовательно, центростремительная сила, действующая на тело при центростремительном движении, может быть рассчитана с использованием только массы и центростремительного ускорения объекта с использованием выражения.

F=mα

Основываясь на объектном выражении, можно сказать, что сила, действующая на объект при центростремительном движении, находится в прямой зависимости от его массы и центростремительного ускорения.

Каковы центростремительное ускорение и сила, действующие на тело массой 5 ​​кг, движущееся со скоростью 20 м/с по окружности радиусом 30 м?

Данный: Масса объекта, m =5 кг

Скорость объекта v =20 м/с

Радиус кругового пути составляет, r =30 м

Компания формула для нахождения центростремительного ускорения является,

Центростремительное ускорение тела равно 0.67 м/с.2

Выражение для нахождения центростремительной силы, действующей на объект с использованием центростремительного ускорения, выглядит следующим образом:

F=α

Подставляя значения в это уравнение, получаем:

F=5 кгумножить на 0.67 м/с2= 3.37N

Сила, приложенная к объекту массой 5 ​​кг, равна 3.37 Н. Приложенная сила увеличилась бы, если бы масса объекта была более 5 кг.

Заключение

Компания центростремительное ускорение является ответом на центростремительную силу, действующую внутрь. Следовательно, направление линейной скорости объекта меняется на каждом коротком расстоянии. Объект начинает ускоряться только при приложении к его телу внешней силы. Величина силы, которую необходимо приложить к данному объекту, зависит от общей массы объекта, который необходимо сместить.

Калькулятор ниже предназначен для решения задач на центростремительную силу. Как правило, все задачи на центростремительную силу с численными данными требуют правильного применения ее формулы:

F_{c}=ma_{c}=m{frac {v^{2}}{r}}=momega ^{2}r,

где
ac — центростремительное ускорение,
m — масса тела,
v — скорость,
ω — угловая скорость,
r — радиус кривизны.

В формуле участвует четыре параметра, соответственно, три параметра задаются условием задачи, иногда завуалированно, а четвертый и надо вычислить. Пример подобной задачи: Чему равна центростремительная сила, действующая на груз массой 500 г, вращающийся на веревке длиной 50 сантиметров равномерно со скоростью 5 м/с?

Хотя формула достаточно проста, ошибки в расчетах могут возникать при использовании неправильных величин, например, оборотов в секунду вместо радиан в секунду, грамм вместо килограмм, сантиметров вместо метров и тому подобное. Поэтому калькулятор ниже позволяет выбрать для каждого параметра нужные единицы измерения и сам заботится о правильном использовании стандартных единиц СИ. Формулы для вычисления каждого неизвестного параметра можно посмотреть под калькулятором.

PLANETCALC, Центростремительная сила

Центростремительная сила

Скорость/Угловая скорость

Точность вычисления

Знаков после запятой: 3

Нахождение неизвестных значений в формуле центростремительной силы

Сила

F_{c}=m{frac {v^{2}}{r}}=momega ^{2}r

Масса

m={frac {F_{c} r}{v^{2}}}={frac {F_{c}}{omega^{2} r}}

Радиус кривизны

r={frac {m v^{2}}{F_{c}}}={frac {F_{c}}{m omega^{2}}}

Скорость

v=sqrt{ frac{F_{c} r}{m} }

Угловая скорость

omega=sqrt{ frac{F_{c}}{m r} }

Чтобы определить массу вещества надо. Как найти массу в физике

Что это такое?

Прежде чем приводить формулы массы в физике, дадим ей определение. Этим термином называется физическая величина, которая пропорциональна количеству материи, заключенной в данном теле. Следует не путать ее с количеством вещества, которое выражается в молях. Масса в СИ вычисляется в килограммах. Другими ее единицами являются тонны и граммы.

Вам будет интересно:Слово «кворум». Значение и происхождение термина. Нюансы определения

Масса бывает двух важных видов:

Первый вид рассматриваемой физической величины характеризует инерционные свойства тела, то есть способность некоторой силы изменять скорость тела, а также кинетическую энергию, которой оно обладает.

Канал ДНЕВНИК ПРОГРАММИСТА

Жизнь программиста и интересные обзоры всего. Подпишись, чтобы не пропустить новые видео.

Гравитационная масса связана с интенсивностью притяжения между любыми телами. Она играет важную роль в космосе, поскольку благодаря притяжению между звездами и планетами существует наша галактика и наша Солнечная система. Однако гравитационная масса проявляет себя и в повседневной жизни в виде наличия у всех тел некоторого веса.

Энергия

Выше были приведены разные формулы, как найти массу в физике. Завершая статью, хотелось бы отметить связь массы и энергии. Это связь носит фундаментальный характер, который отражает пространственно-временные свойства нашей Вселенной. Соответствующая формула массы в физике, полученная Альбертом Эйнштейном, имеет вид:

Квадрат скорости света c является коэффициентом перевода между массой и энергией. Это выражение говорит о том, что обе величины, по сути, являются одной и той же характеристикой материи.

Записанное выражение было подтверждено экспериментально при изучении ядерных реакций и реакций элементарных частиц.

Формулы для инерции

В физике формула нахождения массы инерционной имеет следующий вид:

Здесь F — сила, которая на тело действует и вызывает появление у него ускорения a. Формула показывает, что чем больше будет действующая сила и чем меньше она сообщит ускорение телу, тем больше инерционная масса m.

Помимо записанного выражения, следует привести еще одну формулу нахождения массы в физике, которая связана с явлением инерции. Эта формула имеет вид:

Здесь p — количество движения (импульс), v — скорость тела. Чем большим количеством движения обладает тело и чем меньше его скорость, тем большую инерционную массу оно имеет.

Примеры решения задач

Задача 1

имеется алюминиевый брусок со сторонами 3, 5 и 7 сантиметров. Какова его масса?

Найдем объем бруска:

V = 3 * 5 * 7 = 105 см 3 ;

Табличное значение плотности алюминия: 2800 кг/м 3 или 2,8 г/см 3 ;

Вычислим массу бруска:

m = 105 * 2,8 = 294 г.

Задача 2

Задача по смежной теме.

сколько энергии потребуется для того, чтобы довести воду комнатной температуры (20 градусов Цельсия) из стакана (ёмкость 200 мл) до температуры кипения?

Формула для гравитации

Математическое описание явления гравитации стало возможным благодаря многочисленным наблюдениям за движением космических тел. Результаты всех этих наблюдений в XVII веке обобщил Исаак Ньютон в рамках закона всемирного тяготения. Согласно этому закону, два тела, которые имеют массы m1 и m2, друг к другу притягиваются с такой силой F:

F = G * m1 * m2 / r2

Где r — расстояние между телами, G — некоторая постоянная.

Если в данное выражение подставить значение массы нашей планеты и ее радиус, тогда мы получим следующую формулу массы в физике:

Здесь F — сила тяжести, g — ускорение, с которым тела падают на землю вблизи ее поверхности.

Как известно, наличие силы тяжести обуславливает то, что все тела имеют вес. Многие путают вес и массу, полагая, что это одна и та же величина. Обе величины действительно связаны через коэффициент g, однако вес — величина изменчивая (она зависит от ускорения, с которым движется система). Кроме того, вес измеряется в ньютонах, а масса в килограммах.

Весы, которыми человек пользуется в быту (механические, электронные), показывают массу тела, однако измеряют его вес. Перевод между этими величинами является лишь вопросом калибровки прибора.

Понятие массы и ее появление в физике


Смотреть галерею
Перед тем как рассмотреть вопрос о том, как найти массу через объем и плотность, следует понять, откуда взялась масса в физике, и что она определяет. Сам термин «масса» происходит от латинского слова massa – глыба, вещество, тело, которое, в свою очередь, берет свое начало от греческого слова μᾶζα, буквально означающего «тесто».

Масса — физическое понятие, которое указывает на количество содержащейся в теле материи. В Международной системе единиц измерения ее измеряют в килограммах. Появление в физике этого понятия связано с двумя важными законами:

  1. Закон всемирного тяготения.
  2. Второй закон Ньютона.

В соответствии с концепцией всемирного тяготения два тела притягиваются друг к другу с силой, которая пропорциональна произведению двух постоянных величин. Эти постоянные величины получили название гравитационных масс этих тел. То есть гравитационная масса тела — это свойство самой материи, благодаря которому все тела притягиваются друг к другу.

Что касается второго закона Ньютона, то следует вспомнить, что любое ускорение, вызванное действием некоторой внешней силы на данное тело, пропорционально некоторой константе, которая называется инертной массой. В этом законе инертная масса определяет меру «сложности» изменения скорости движения данного тела.

Плотность и объем

Как было отмечено, масса — это неотъемлемое свойство материи, поэтому ее можно вычислить с помощью других физических характеристик тел. Этими характеристиками являются объем и плотность.

Объем представляет собой некоторую часть пространства, которая ограничена поверхностью тела. Измеряется он в кубических единицах длины, например, в м3.

Плотность — это свойство вещества, которое отражает количество материи, помещенной в единице объема.

Формула массы вещества через объем и плотность записывается так:

Чем больше объем тела и чем выше его плотность, тем большей массой оно обладает. В связи с этим фактом полезно вспомнить знаменитую загадку про то, что имеет большую массу: 1 тонна пуха или 1 тонна железа. В отсутствии выталкивающей архимедовой силы массы обоих веществ равны. Пух имеет гораздо меньшую плотность, чем железо, однако разница в плотности компенсируется аналогичной разницей в объеме.

Плотность тела — зависимость массы и объема

Например, железный куб с ребром 10 см имеет массу 7,8 кг, алюминиевый куб тех же размеров имеет массу 2,7 кг, а масса такого же куба изо льда 0,9 кг. Величина, характеризующая массу, приходящуюся на единичный объём данного вещества, называется плотностью. Плотность равна частному от массы тела и его объёма, т.е.

ρ = m/V, где ρ (читается «ро») плотность тела, m — его масса, V объём.

В Международной системе единиц СИ плотность измеряется в килограммах на кубический метр (кг/м3); также часто используются внесистемные единицы, например, грамм на кубический сантиметр (г/см3). Очевидно, 1 кг/м3 = 0,001 г/см3. Заметим, что при нагревании веществ их плотность уменьшается или (реже) увеличивается, но это изменение так незначительно, что при расчётах им пренебрегают.

Сделаем оговорку, что плотность газов непостоянна; когда говорится о плотности какого-нибудь газа, обычно имеется ввиду его плотность при 0 градусов по Цельсию и нормальном атмосферном давлении (760 миллиметров ртутного столба).

Относительная

Понятие об относительной массе применяется в атомной физике и в химии. Поскольку массы атомов и молекул имеют очень маленькие значения (≈10-27 кг), то оперировать ими на практике при решении задач оказывается крайне неудобно. Поэтому сообществом ученых было решено использовать так называемую относительную массу, то есть рассматриваемая величина выражается в единицах массы по отношению к массе известного эталона. Этим эталоном стала 1/12 массы атома углерода, которая равна 1,66057*10-27 кг. Соответствующая относительная величина получила название атомной единицы (а. е. м.).

Формулу относительной массы M можно записать так:

M = ma / (1 / 12 * mC)

Где ma — масса атома в килограммах, mC — масса атома углерода в килограммах. Например, если в это выражение подставить значение массы атома кислорода, то его а. е. м. будет равна:

M = 26,5606 * 10-27 / (1,66057 * 10-27) = 15,9949.

Поскольку а. е. м. является относительной величиной, то она не имеет размерности.

Удобство применения этого термина на практике заключается не только в небольших и целых значениях этой единицы измерения. Дело в том, что значение а. е. м. совпадает по величине с молярной массой, выраженной в граммах. Последняя представляет собой массу одного моль вещества.

Масса сплошной детали

Главная > Вычисление масс > Масса сплошной детали

9.05.2013 // Владимир Трунов

Это странное название статьи объясняется только тем, что детали одной и той же формы могут быть как сплошными, так и полыми (т.е. следующая статья будет называться «Масса полой детали»).

Тут самое время вспомнить, что масса тела — это его объем , умноженный на плотность его материала (см. таблицы плотностей): Объем сплошной детали — это… ее объем и больше ничего.

Примечание. В приведенных ниже формулах все размеры измеряются в миллиметрах, а плотность — в граммах на кубический сантиметр. Буквой обозначено отношение длины окружности к ее диаметру, составляющее примерно 3,14.

Рассмотрим несколько простых форм (более сложные, как вы помните, можно составить путем сложения или вычитания простых).

Масса параллелепипеда (бруска)

Объем параллелепипеда: , где — длина, — ширина, — высота. Тогда масса:

Масса цилиндра

Объем цилиндра: , где — диаметр основания, — высота цилиндра. Тогда масса:

Масса шара

Объем шара: , где — диаметр шара. Тогда масса:

Масса сегмента шара

Объем сегмента шара: , где — диаметр основания сегмента, — высота сегмента. Тогда масса:

Масса конуса

Объем любого конуса: , где — площадь основания, — высота конуса. Для круглого конуса: , где — диаметр основания, — высота конуса. Масса круглого конуса:

Масса усеченного конуса

Поскольку невозможно объять необъятное, рассмотрим только круглый усеченный конус. Его объем — это разность объемов двух вложенных конусов: с основаниями и : , где , . После никому не интересных алгебраических преобразований получаем: , где — диаметр большего основания, — диаметр меньшего основания, — высота усеченного конуса. Отсюда масса:

Масса пирамиды

Объем любой пирамиды равен одной трети произведения площади ее основания на высоту (то же самое, что и для конусов (часто мы не замечаем, насколько мироздание к нам благосклонно)): , где — площадь основания, — высота пирамиды. Для пирамиды с прямоугольным основанием: , где — ширина, — длина, — высота пирамиды. Тогда масса пирамиды:

Масса усеченной пирамиды

Рассмотрим усеченную пирамиду с прямоугольным основанием. Ее объем — это разность объемов двух подобных пирамид с основаниями и : , где , . Исчеркав половину тетрадного листа, получаем: , где , — ширина и длина большего основания, , — ширина и длина меньшего основания, — высота пирамиды. И, оставив в покое остальную половину листа, исходя из одних соображений симметрии, мы можем написать еще одну формулу, которая отличается от предыдущей только заменой W на L и наоборот. В чем разница между длиной и шириной? Только в том, что мы их так назвали. Назовем наоборот и получим: . Тогда масса усеченной прямоугольной пирамиды:

Для пирамиды с квадратным основанием (, ) формула выглядит проще:

I. Механика

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение — изменение скорости за единицу времени. Найдем разницу векторов.

Разница векторов есть . Так как , получим

Движение по циклоиде*

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Количество оборотов выражается следующей формулой:

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Выражая угловую скорость через частоту, получим:

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Сравним две формулы:

Преобразуем формулу линейной скорости и получим:

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Подставляем известные данные в формулу и вычисляем:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Произведем сокращения и получим:

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Подробности
Обновлено 30.05.2018 20:12
Просмотров: 1966

Задачи по физике — это просто!

Вспомним

Формулы центростремительного ускорения и центростремительной силы:

Формулы скорости движения тела по окружности и частоты вращения:

Единица измерения частоты вращения — 1/с или оборот/с.

А теперь к задачам!

Элементарные задачи из курса школьной физики на движение по окружности с постоянной по модулю скоростью.

Задача 1

C какой скоростью велосипедист проходит закругление с радиусом 25 метров, если центростремительная скорость его движения равна 4 м/с?

Задача 2

Колесо радиусом 40 см делает один оборот за 0,4 секунды. Найти скорость точек на ободе колеса.

Задача 3

Колесо велосипедиста имеет радиус 40 см. С какой скоростью едет велосипедист, если колесо делает 4 оборота в секунду? Чему равен период вращения колеса?

Задача 4

С какой скоростью велосипедист должен проходить середину выпуклого моста радиусом 22,5 метра, чтобы его центростремительное ускорение было бы равно ускорению свободного падения?

Задача 5

Чему равно центростремительное ускорение тела, движущегося по окружности радиусом 50 см при частоте вращения 5 оборотов в секунду?

Задача 6

Скорость точек экватора Солнца при его вращении вокруг своей оси равно 2 км/с. Найти период вращения Солнца вокруг своей оси и центростремительное ускорение точек его экватора.

Задача 7

Какова скорость движения автомобиля, если его колесо радиусом 30 см делает 500 оборотов в минуту?

Задача 8

Чему равна центростремительная сила и центростремительное ускорение, действующие на пращу массой 800 г, вращающуюся на веревке длиной 60 сантиметров равномерно со скоростью 2 м/с?

Задача 9

Период обращения космического корабля вокруг Земли равен 90 минутам. Высота подъема корабля над поверхностью Земли составляет 300 км, радиус Земли равен 6400 км. Определить скорость корабля.

На тело, движущееся по окружности, действует множество сил. При описании его движения нужно учесть все силы и правильно определить их направление. В этом вам поможет таблица:

Сила Направление
Сил тяжести Вертикально вниз
Сила реакции опоры Перпендикулярно опоре
Сила натяжения нити Вдоль оси подвеса
Сила упругости Противоположно деформации
Сила трения Противоположно направлению движения или возможного движения
Сила сопротивления
Центростремительная сила К центру окружности

Алгоритм решения задач на движение тела по окружности с постоянной по модулю скоростью

Последовательность действий

  1. Изображение тела.
  2. Отображение всех сил, действующих на тело. Прикладывать их следует к центру тела. На чертеже также указывается направление центростремительного ускорения.
  3. Выбор системы координат. Ее начало должно совпадать с центром тела. Желательно, чтобы одна из ее осей совпадала с направлением ускорения, а другая была бы перпендикулярна ей.
  4. Построение проекций сил на оси ОХ и ОУ.
  5. Выражение искомой величины через известные данные.
  6. Вычисление путем подстановки в формулу, выведенную для нахождения искомой величины, известных данных.

Частные случаи движения тела по окружности

Автомобиль на повороте

Второй закон Ньютона в векторной форме:

mg + N + Fтр = maц.с.

Проекция на ось ОХ:

Fтр = maц.с.

Проекция на ось ОУ:

N – mg = 0

Тело на вращающемся диске

Второй закон Ньютона в векторной форме:

mg + N + Fтр = maц.с.

Проекция на ось ОХ:

Fтр = maц.с.

Проекция на ось ОУ:

N – mg = 0

Конический маятник

Второй закон Ньютона в векторной форме:

T + mg = maц.с.

Проекция на ось ОХ:

T sinα = maц.с.

Проекция на ось ОУ:

T cosα – mg = 0

Учтите, что: mg tgα = maц.с.
Радиус окружности, по которой происходит движение тела: R = l sinα

Пример №1. Автомобиль совершает поворот на горизонтальной дороге по дуге окружности. Каков минимальный радиус окружности траектории автомобиля при его скорости 18 м/с и при коэффициенте трения шин о дорогу 0,4?

Проекция сил, действующих на автомобиль, на проекцию ОХ в данном случае равна:

Fтр = maц.с.

Выразим силу трения через силу реакции опоры:

μN = maц.с.

μmg = maц.с.

После взаимоуничтожения масс остается:

aц.с. = μg

Также известно, что центростремительное ускорение определяется формулой:

Приравняем правые части уравнений:

Выразим радиус окружности, по которой движется автомобиль:

Задание EF18920

На вертикальной оси укреплена гладкая горизонтальная штанга, по которой могут перемещаться два груза массами m1 = 200 г и m2 = 300 г, связанные нерастяжимой невесомой нитью длиной l = 20 см. Нить закрепили на оси так, что грузы располагаются по разные стороны от оси и натяжение нити с обеих сторон от оси при вращении штанги одинаково (см. рисунок). Определите модуль силы натяжения Т нити, соединяющей грузы, при вращении штанги с частотой 600 об/мин.


Алгоритм решения

1.Записать исходные данные. Перевести их в СИ.

2.Сделать чертеж, обозначив все силы, действующие на систему тел, их направления. Выбрать систему координат.

3.Записать второй закон Ньютона в векторной форме для каждого из тел.

4.Записать второй закон Ньютона для каждого из грузов в виде проекций на ось ОХ.

5.Вывести формулу для радиуса окружности, по которой движется любой из грузов.

6.Вывести формулу для вычисления силы натяжения нити, подставить известные данные и произвести вычисления.

Решение

Запишем исходные данные, сразу переведя их в СИ:

 Масса первого груза m1 = 200 г = 0,2 кг.

 Масса первого груза m2 = 300 г = 0,3 кг.

 Длина нити l = 20 см = 0,2 м.

 Натяжение нити с обеих сторон одинаково, следовательно: T1 = T2 = T.

 Частота вращения штанги ν = 600 об./мин. = 10 об./с.

Сделаем чертеж, обозначив все силы. Учтем, что сила натяжения нити равна с обеих сторон. Выберем систему координат, в которой ось ОУ параллельна оси вращения.

Запишем второй закон Ньютона для первого и второго груза соответственно:

Запишем проекции на ось ОХ для каждого из тел:

T = m1aц.с.1

T = m2aц.с.2

Центростремительное ускорение также определяется формулой:

aц.с. = ω2R

Угловая скорость определяется формулой:

ω = 2πν

Следовательно, центростремительное ускорение равно:

aц.с. = 4π2ν2R

Применим эту формулу для обоих грузов:

aц.с.1 = 4π2ν2R1

aц.с.2 = 4π2ν2R2

Сумма радиусов окружностей, по которым вращаются грузы, есть длина нити:

R1 + R2 = l

Выразим радиус окружности, по которой вращается второй груз:

R2 = l – R1

Так как грузы связаны между собой, и ни один из них не перевешивает другой:

m1gR1 = m2gR2

Ускорение свободного падения взаимоуничтожается. Получаем:

Подставим радиус второй окружности и выразим радиус первой окружности:

Следовательно, центростремительное ускорение первого груза равно:

Теперь возьмем проекцию на ось ОХ для первого тела и вставим в формулу найденное центростремительное ускорение для первого тела:

Подставим известные данные и вычислим силу натяжения нити:

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18982

Небольшая шайба массой m=10 г, начав движение из нижней точки закреплённого вертикального гладкого кольца радиусом R=0,14 м, скользит по его внутренней поверхности. На высоте h=0,18м она отрывается от кольца и свободно падает. Какую кинетическую энергию имела шайба в начале движения? Сделайте рисунок с указанием сил, действующих на шайбу в точке А.


Алгоритм решения

1.Записать исходные данные. Перевести единицы измерения величин в СИ.

2.Сделать чертеж и указать все силы, действующие на шайбу в точке А. Указать их направление и выбрать систему координат.

3.Записать второй закон Ньютона в векторной форме.

4.Записать второй закон Ньютона в виде проекций на ось ОХ.

5.Записать формулу, определяющую кинетическую энергию тела.

6.Применить геометрические законы для нахождения величины радиуса кольца и формулу центростремительного ускорения для нахождения скорости тела.

7.Записать решение в общем виде, подставить исходные данные и произвести вычисления.

Решение

Запишем исходные данные:

 Масса шайбы m = 10 г = 0,01 кг.

 Радиус кольца, по которому перемещалась шайба, составляет R = 0,14 м.

 Высота, с которой шайба упала, равна h = 0,18 м.

Сделаем чертеж. Выберем систему координат такую, чтобы направление линейной скорости шайбы в точке совпадала с направлением оси ОУ.

Запишем второй закон Ньютона в векторной форме:

Под ускорением в этой записи понимается полное ускорение, составляющими которого является центростремительное и тангенциальное ускорение, направленное касательно к окружности (на рисунке мы его не обозначили, так как оно нам не понадобится).

Запишем проекцию на ось ОХ. Учтем, что в точке А шайба отрывается от кольца и падает. Следовательно, нормальная реакции опоры равна нулю:

mg cosα = maц.с.

Кинетическая энергия тела определяется формулой:

Выразим центростремительное ускорение из проекции на ось ОХ:

Но центростремительное ускорение также определяется формулой:

Приравняем правые части уравнений и получим:

Квадрат скорости будет равен:

Следовательно, кинетическая энергия равна:

Чтобы избавиться от неизвестных величин, обратимся к геометрии:

Из рисунка видно, что высота h есть сумма радиуса окружности и произведения радиуса на косинус угла α:

h = R + Rcosα

Отсюда следует, что:

Rcosα = h – R

Подставим это выражение в формулу кинетической энергии и выполним вычисления:

Отсюда следует, что кинетическая энергия шарика в начале движения равна 2 мДж.

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18678

Высота полёта искусственного спутника над Землёй увеличилась с 400 до 500 км. Как изменились в результате этого скорость спутника и его потенциальная энергия?

Для каждой величины определите соответствующий характер изменения:

1) увеличилась
2) уменьшилась
3) не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Скорость

спутника

Потенциальная энергия спутника

Алгоритм решения

1.Записать закон всемирного тяготения и формулу центростремительного ускорения для движения тела по окружности с постоянной по модулю скоростью.

2.Установить зависимость скорости от высоты спутника над поверхностью Земли.

3.Записать формулу потенциальной энергии и установить, как она зависит от высоты.

Решение

На спутник действует сила притяжения Земли, которая сообщает ему центростремительное ускорение:

F=maц=GmM(R+h)2

Отсюда центростремительное ускорение равно:

aц=GM(R+h)2

Но центростремительное ускорение также равно:

aц=v2(R+h)

Приравняем правые части выражений и получим:

GM(R+h)2=v2(R+h)

v2=MG(R+h)(R+h)2=MG(R+h)

Квадрат скорости спутника обратно пропорционален радиусу вращения. Следовательно, при увеличении высоты увеличивается радиус вращения, а скорость уменьшается.

Потенциальная энергия спутника определяется формулой:

Ep = mgh

Видно, что потенциальная энергия зависит от высоты прямо пропорционально. Следовательно, при увеличении высоты потенциальная энергия спутника тоже увеличивается.

Верная последовательность цифр в ответе: 21.

Ответ: 21

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17513

Полый конус с углом при вершине 2α вращается с угловой скоростью ω вокруг вертикальной оси, совпадающей с его осью симметрии. Вершина конуса обращена вверх. На внешней поверхности конуса находится небольшая шайба, коэффициент трения которой о поверхность конуса равен μ. При каком максимальном расстоянии L от вершины шайба будет неподвижна относительно конуса? Сделайте схематический рисунок с указанием сил, действующих на шайбу.


Алгоритм решения

1.Построить чертеж. Указать все силы, действующие на шайбу. Выбрать систему координат.

2.Записать второй закон Ньютона для описания движения шайбы в векторном виде.

3.Записать второй закон Ньютона в виде проекций на оси.

4.Через систему уравнений вывести искомую величину.

Решение

Так как шайба вращается, покоясь на поверхности конуса, на нее действуют четыре силы: сила трения, сила тяжести, сила реакции опоры и центростремительная сила. Изобразим их на чертеже. Выберем систему координат, параллельную оси вращения.

Второй закон Ньютона в векторном виде выглядит следующим образом:

Теперь запишем этот закон в проекциях на оси ОХ и ОУ соответственно:

Так как шайба покоится относительно поверхности конуса, сила трения равна силе трения покоя:

Максимальное значение силы трения равно:

Принимая в учет силу трения покоя, проекции на оси ОХ и ОУ примут следующий вид:

Запишем систему уравнение в следующем виде:

Поделим первое уравнение на второе и получим:

Сделаем сокращения и получим:

Отсюда центростремительное ускорение равно:

Но также известно, что центростремительное ускорение равно произведению квадрата угловой скорости на радиус окружности:

Радиус окружности, по которой вращается шайба вместе с конусом, можно вычислить по формуле:

Отсюда центростремительное ускорение равно:

Выразим искомую величину L:

Подставим в это выражение выведенную для центростремительного ускорения формулу и получим:

Поделим числитель на синус угла α, чтобы упростить выражение, и получим:

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 4.6k

Понравилась статья? Поделить с друзьями:
  • Удаленная работа как найти новичку
  • Как составить бизнес план производства мебели
  • Как по номеру земельного участка найти собственника
  • Как найти сторону равнобедренного треугольника зная угол
  • Ошибка 0xc1900223 windows 10 как исправить ошибку