Как найти центростремительное ускорение шарика

Понятия и определения

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Количество оборотов выражается следующей формулой:

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Линейная и угловая скорости

Линейная скорость

Определение и формулы

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Угловая скорость

Определение и формулы

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Полезные факты

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Выражая угловую скорость через частоту, получим:

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Сравним две формулы:

Преобразуем формулу линейной скорости и получим:

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Центростремительное ускорение

Определение и формула

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с2). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙103 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙106. Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Задание EF18273

Верхнюю точку моста радиусом 100 м автомобиль проходит со скоростью 20 м/с. Центростремительное ускорение автомобиля равно…


Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Подставляем известные данные в формулу и вычисляем:

Ответ: 4

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17763

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза
б) уменьшить в 2 раза
в) увеличить в 4 раза
г) уменьшить в 4 раза


Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

  • Радиус окружности R1 = R.
  • Радиус окружности R2 = 4R.
  • Центростремительное ускорение: aц.с. = a1 = a2.

Найти нужно ν2.

Центростремительное ускорение определяется формулой:

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Произведем сокращения и получим:

Или:

Отсюда:

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 22k

Цель
работы
:
определение центростремительного
ускорения шарика при его равномерном
движении по окружности.

Материалы
и оборудование:

штатив
с муфтой и лапкой, линейка, рулетка,
шарик на нити, лист бумаги, секундомер.

Теоретическая
часть

Эксперимент
проводится с коническим маятником
(рис.). Пусть шарик, подвешенный на нити,
описывает окружность радиусом R.
На шарик действуют две силы: сила тяжести
и сила натяжения нити. Их результирующая
создает центростремительное ускорение,
направленное к центру окружности. Модуль
ускорения можно определить, используя
кинематику:

(1)

Для определения
ускорения необходимо измерить радиус
окружности R
и период Т
обращения шарика по окружности.

Центростремительное ускорение можно
определить также, используя 2-й закон
Ньютона:

(2)

Направление
координатных осей выберем так, как
показано на рис. Спроецируем уравнение
(2) на выбранные оси:

Ох:
(3); Оу:(4)

Из уравнений (3) и
(4) и из подобия треугольников получим:

(5)

Таким образом,
используя уравнения (1), (3) и (5),
центростремительное ускорение можно
определить тремя способами:

(6)

Модуль составляющей
Fх
можно непосредственно измерить
динамометром. Для этого оттягиваем
горизонтально расположенным динамометром
шарик на расстояние, равное радиусу R
окружности (рис.), и определяем показание
динамометра. При этом сила упругости
пружины уравновешивает горизонтальную
составляющую Fх
и равна ей по величине.

В данной работе
ставится задача убедится экспериментально,
что числовые значения центростремительного
ускорения, полученные тремя способами,
будут одинаковыми (одинаковыми в пределах
абсолютных ошибок).

Практическая
часть

Задание 1.
Определяем массу m
шарика на весах. Результат взвешивания
и инструментальную ошибку ∆m
записать в таблицу 1.

Задание 2.
Вычерчиваем на листе бумаги окружность
радиусом около 20 см. Измеряем данный
радиус, определяем инструментальную
ошибку и результаты записываем в таблицу
1.

Задание 3.
Штатив с маятником располагаем так,
чтобы продолжение нити проходило через
центр окружности.

Задание 4.
Взять нить пальцами у точки подвеса и
вращать маятник так, чтобы шарик описывал
такую же окружность как и окружность,
начерченную на бумаге.

Задание 5.
Отсчитываем время t,
за которое шарик совершает заданное
число оборотов (к примеру, N
= 30) и оцениваем ошибку ∆t
измерения. Результаты записываем в
таблицу 1.

Задание 6.
Определяем высоту h
конического маятника и инструментальную
ошибку ∆h.
Расстояние h
измеряется по вертикали от центра шарика
до точки подвеса. Результаты записываем
в таблицу 1.

Задание 7.
Оттягиваем горизонтально расположенным
динамометром шарик на расстояние, равное
радиусу R окружности, и определяем
показание динамометра
F
= Fх
и инструментальную ошибку ∆F.
Результаты записываем в таблицу:

m

m

R

∆R

t

t

N

h

h

F

F

g

∆g

π


π

г

г

мм

мм

с

с

мм

мм

Н

Н

м/с2

м/с2

Задание 8.
Рассчитываем период Т
обращения шарика по окружности и ошибку
Т:

.

Задание 9.
По формулам (6) рассчитываем значения
центростремительного ускорения тремя
способами и абсолютные ошибки косвенных
измерений центростремительного
ускорения.

Контрольные
задания

1. Как можно
экспериментально определить период
Т
обращения
шарика по окружности?

2. Что такое
центростремительное ускорение, как его
можно выразить через период обращения
и через радиус окружности?

3. Что такое
конический маятник. Какие силы действуют
на шарик конического маятника?

4. Записать II
закон Ньютона для конического маятника.

5. Какие три способа
определения центростремительного
ускорения предлагаются в данной
лабораторной работе?

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Законы Кеплера

Орбиты небесных тел – траектории, по которым движутся в космическом пространстве Солнце, звёзды, планеты, кометы, а также искусственные космические аппараты (искусственные спутники Земли, Луны и других планет, межпланетные станции и т. п.). Формы орбит и скорости, с которыми движутся по ним небесные тела, определяются главным образом силой всемирного тяготения. При исследовании движения небесных тел в большинстве случаев допустимо считать их материальными точками.

Указанные упрощения приводят к так называемой задаче двух тел. Одно из решений этой задачи было дано И. Кеплером, полное решение задачи было получено И. Ньютоном.

Заслуга открытия законов движения планет принадлежит выдающемуся немецкому учёному Иоганну Кеплеру (1571–1630). В начале XVII в. Кеплер, изучая обращение Марса вокруг Солнца, установил три закона движения планет.

Первый закон Кеплера. Каждая планета обращается по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера(закон площадей). Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади.

Третий закон Кеплера. Квадраты звёздных периодов обращения планет относятся как кубы больших полуосей их орбит.

Ньютон доказал, что одна из притягивающихся материальных точек обращается вокруг другой по орбите, имеющей форму эллипса (или окружности, которая является частным случаем эллипса), параболы или гиперболы. В фокусе этой кривой находится вторая точка. Форма орбиты зависит: от масс рассматриваемых тел; от расстояния между ними; от скорости, с которой одно тело движется относительно другого.

Движение небесных тел

Чтобы начав движение вблизи поверхности Земли, тело преодолело земное притяжение и навсегда покинуло Землю по параболической орбите, необходимо сообщить ему начальную скорость не меньше 11,2 км/с. Эта скорость называется второй космической скоростью. Наименьшая начальная скорость, которую нужно сообщить телу, чтобы оно стало искусственным спутником Земли, называется первой космической скоростью. Она равна 7,91 км/с. Большинство тел Солнечной системы движется по эллиптическим орбитам. Только некоторые малые тела Солнечной системы – кометы, возможно, движутся по параболическим или гиперболическим орбитам. В задачах космического полёта наиболее часто встречаются эллиптические и гиперболические орбиты. Так, межпланетные станции отправляются в полет, имея гиперболическую орбиту относительно Земли; затем они движутся по эллиптическим орбитам относительно Солнца по направлению к планете назначения.

Ориентация орбиты в пространстве, её размеры и форма, а также положение небесного тела на орбите определяются шестью величинами, называемыми элементами орбиты. Орбиты небесных светил имеют некоторые характерные точки, которые получили собственные названия. Так, ближайшая к Солнцу точка орбиты небесного тела, движущегося вокруг Солнца, называется перигелием, а наиболее удалённая от него точка эллиптической орбиты – афелием. Если тело движется относительно Земли, то ближайшая к Земле точка орбиты называется перигеем, а самая далёкая – апогеем. В более общих задачах, когда под притягивающим центром можно подразумевать разные небесные тела, употребляют названия: перицентр (ближайшая к центру точка орбиты) и апоцентр (наиболее удалённая от центра точка орбиты).

Методы, разработанные в небесной механике, позволяют очень точно на много лет вперёд определить положение любых тел Солнечной системы.

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Количество оборотов выражается следующей формулой:

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Выражая угловую скорость через частоту, получим:

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Сравним две формулы:

Преобразуем формулу линейной скорости и получим:

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Подставляем известные данные в формулу и вычисляем:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Произведем сокращения и получим:

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Скорость шарика по окружности

Шарик движется по окружности радиусом r со скоростью Как изменится центростремительное ускорение шарика, если радиус окружности уменьшить в 3 раза, оставив скорость шарика прежней?

1) уменьшится в 9 раз

2) уменьшится в 3 раза

3) увеличится в 9 раз

4) увеличится в 3 раза

Центростремительное ускорение дается следующим выражением: оно обратно пропорционально радиусу окружности. Если радиус окружности уменьшить в 3 раза, оставив скорость шарика прежней, то его центростремительное ускорение увеличится в 3 раза.

Равномерное движение тела по окружности

1. Движением тела по окружности называют движение, траекторией которого является окружность. По окружности движутся, например, конец стрелки часов, точки лопасти вращающейся турбины, вращающегося вала двигателя и др.

При движении по окружности направление скорости непрерывно изменяется. При этом модуль скорости тела может изменяться, а может оставаться неизменным. Движение, при котором изменяется только направление скорости, а её модуль сохраняется постоянным, называется равномерным движением тела по окружности. Под телом в данном случае имеют в виду материальную точку.

2. Движение тела по окружности характеризуется определёнными величинами. К ним относятся, прежде всего, период и частота обращения. Период обращения тела по окружности ​ ( T ) ​ — время, в течение которого тело совершает один полный оборот. Единица периода — ​ ( [,T,] ) ​ = 1 с.

Частота обращения ​ ( (n) ) ​ — число полных оборотов тела за одну секунду: ​ ( n=N/t ) ​. Единица частоты обращения — ( [,n,] ) = 1 с -1 = 1 Гц (герц). Один герц — это такая частота, при которой тело совершает один оборот за одну секунду.

Связь между частотой и периодом обращения выражается формулой: ​ ( n=1/T ) ​.

Пусть некоторое тело, движущееся по окружности, за время ​ ( t ) ​ переместилось из точки А в точку В. Радиус, соединяющий центр окружности с точкой А, называют радиусом-вектором. При перемещении тела из точки А в точку В радиус-вектор повернётся на угол ​ ( varphi ) ​.

Быстроту обращения тела характеризуют угловая и линейная скорости.

Угловая скорость ​ ( omega ) ​ — физическая величина, равная отношению угла поворота ( varphi ) радиуса-вектора к промежутку времени, за которое этот поворот произошел: ​ ( omega=varphi/t ) ​. Единица угловой скорости — радиан в секунду, т.е. ​ ( [,omega,] ) ​ = 1 рад/с. За время, равное периоду обращения, угол поворота радиуса-вектора равен ​ ( 2pi ) ​. Поэтому ​ ( omega=2pi/T ) ​.

Линейная скорость тела ​ ( v ) ​ — скорость, с которой тело движется вдоль траектории. Линейная скорость при равномерном движении по окружности постоянна по модулю, меняется по направлению и направлена по касательной к траектории.

Линейная скорость равна отношению пути, пройденному телом вдоль траектории, ко времени, за которое этот путь пройден: ​ ( vec=l/t ) ​. За один оборот точка проходит путь, равный длине окружности. Поэтому ​ ( vec=2pi!R/T ) ​. Связь между линейной и угловой скоростью выражается формулой: ​ ( v=omega R ) ​.

Из этого равенства следует, что чем дальше от центра окружности расположена точка вращающегося тела, тем больше её линейная скорость.

4. Ускорение тела равно отношению изменения его скорости ко времени, за которое оно произошло. При движении тела по окружности изменяется направление скорости, следовательно, разность скоростей не равна нулю, т.е. тело движется с ускорением. Оно определяется по формуле: ​ ( vec=frac<Deltavec> ) ​ и направлено так же, как вектор изменения скорости. Это ускорение называется центростремительным ускорением.

Центростремительное ускорение при равномерном движении тела по окружности — физическая величина, равная отношению квадрата линейной скорости к радиусу окружности: ​ ( a=frac ) ​. Так как ​ ( v=omega R ) ​, то ​ ( a=omega^2R ) ​.

При движении тела по окружности его центростремительное ускорение постоянно по модулю и направлено к центру окружности.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. При равномерном движении тела по окружности

1) изменяется только модуль его скорости
2) изменяется только направление его скорости
3) изменяются и модуль, и направление его скорости
4) не изменяется ни модуль, ни направление его скорости

2. Линейная скорость точки 1, находящейся на расстоянии ​ ( R_1 ) ​ от центра вращающегося колеса, равна ​ ( v_1 ) ​. Чему равна скорость ​ ( v_2 ) ​ точки 2, находящейся от центра на расстоянии ​ ( R_2=4R_1 ) ​?

1) ​ ( v_2=v_1 ) ​
2) ​ ( v_2=2v_1 ) ​
3) ​ ( v_2=0,25v_1 ) ​
4) ​ ( v_2=4v_1 ) ​

3. Период обращения точки по окружности можно вычислить по формуле:

1) ​ ( T=2pi!Rv ) ​
2) ( T=2pi!R/v ) ​
3) ( T=2pi v ) ​
4) ( T=2pi/v ) ​

4. Угловая скорость вращения колеса автомобиля вычисляется по формуле:

1) ​ ( omega=a^2R ) ​
2) ( omega=vR^2 ) ​
3) ( omega=vR )
4) ( omega=v/R ) ​

5. Угловая скорость вращения колеса велосипеда увеличилась в 2 раза. Как изменилась линейная скорость точек обода колеса?

1) увеличилась в 2 раза
2) уменьшилась в 2 раза
3) увеличилась в 4 раза
4) не изменилась

6. Линейная скорость точек лопасти винта вертолёта уменьшилась в 4 раза. Как изменилось их центростремительное ускорение?

1) не изменилось
2) уменьшилось в 16 раз
3) уменьшилось в 4 раза
4) уменьшилось в 2 раза

7. Радиус движения тела по окружности увеличили в 3 раза, не меняя его линейную скорость. Как изменилось центростремительное ускорение тела?

1) увеличилось в 9 раз
2) уменьшилось в 9 раз
3) уменьшилось в 3 раза
4) увеличилось в 3 раза

8. Чему равен период обращения коленчатого вала двигателя, если за 3 мин он совершил 600 000 оборотов?

1) 200 000 с
2) 3300 с
3) 3·10 -4 с
4) 5·10 -6 с

9. Чему равна частота вращения точки обода колеса, если период обращения составляет 0,05 с?

1) 0,05 Гц
2) 2 Гц
3) 20 Гц
4) 200 Гц

10. Линейная скорость точки обода велосипедного колеса радиусом 35 см равна 5 м/с. Чему равен период обращения колеса?

1) 14 с
2) 7 с
3) 0,07 с
4) 0,44 с

11. Установите соответствие между физическими величинами в левом столбце и формулами для их вычисления в правом столбце. В таблице под номером физической
величины левого столбца запишите соответствующий номер выбранной вами формулы из правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
А) линейная скорость
Б) угловая скорость
В) частота обращения

ФОРМУЛА
1) ​ ( 1/T ) ​
2) ​ ( v^2/R ) ​
3) ​ ( v/R ) ​
4) ​ ( omega R ) ​
5) ​ ( 1/n ) ​

12. Период обращения колеса увеличился. Как изменились угловая и линейная скорости точки обода колеса и её центростремительное ускорение. Установите соответствие между физическими величинами в левом столбце и характером их изменения в правом столбце.
В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) угловая скорость
Б) линейная скорость
B) центростремительное ускорение

ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИНЫ
1) увеличилась
2) уменьшилась
3) не изменилась

Часть 2

13. Какой путь пройдёт точка обода колеса за 10 с, если частота обращения колеса составляет 8 Гц, а радиус колеса 5 м?

источники:

Что такое центростремительное ускорение

Определение

Центростремительным ускорением называется ускорение тела при движении тела по окружности.

Данная величина характеризует, насколько быстро изменяется направление линейной скорости объекта при его движении по окружности.

Обозначается центростремительное ускорение латинской буквой a, так как это векторная величина, обычно ее обозначение условно выглядит так: (vec a)

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Единицами измерения в международной системе СИ является м/с2.

Силы центростремительная и центробежная, в чем отличия

Определение

На любое тело, передвигающееся по круговой траектории, воздействует постоянная сила, которая направлена к центру окружности, описывающей траекторию движения. Эта сила получила название центростремительной.

Определение

Центробежная сила представляет собой силу инерции. По третьему закону Исаака Ньютона, на каждое действие приходится равное ему по силе, но противоположное по направлению противодействие. И центробежная сила является той самой силой, которая противоположна центростремительной силе.

Сходства центростремительной и центробежной силы:

  1. Они являются инерциальными.
  2. Возникают всегда при движении тела.
  3. Появляются только парами и всегда уравновешивают друг друга.

Их различия заключаются в следующем:

  1. Центростремительная сила всегда направлена к центру окружности, в то время как центробежная сила противоположна центростремительной по направлению.
  2. Слово «центростремительная» с латинского языка переводится как «искать центр», а «центробежная» — «бежать от центра».

Куда направлен вектор центростремительного ускорения

При передвижении точки по окружности ее скорость направлена по касательной к окружности, а ускорение — по радиусу к центру окружности. Т.е. центростремительное ускорение всегда перпендикулярно скорости.

Вектор центростремительного ускорения

 

Вывод формулы центростремительного ускорения

Центростремительное ускорение

 

Как найти через угловую и линейную скорость

Центростремительное ускорение, при условии равномерного движения по окружности, можно вычислить с помощью линейной скорости движения.

Равномерное движение

 

Центростремительное ускорение можно вычислить через угловую скорость.

Определение

Угловой скоростью (omega) называется физическая величина, численно равная отношению угла поворота (varphi) к тому интервалу времени (t), за который этот поворот произошел:

(omega =fracvarphi t)

Измеряется величина в рад/с.

Зависимость ускорения от скорости математически выглядит так:

(a=omega^2times R)

Расчет центростремительного ускорения через радиус

Нормальное ускорение

 

Понравилась статья? Поделить с друзьями:
  • Как найти ответ в скаймарте
  • Как найти эйлеров путь или эйлеров цикл
  • Как найти свои штрафы официальный сайт гибдд
  • Доспехи драконоборца как найти
  • Как найти бесплатную игру аниматроники