Как найти циклическую частоту тока в цепи

Период, частота, амплитуда и фаза переменного тока

Период и частота переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2. Радиан.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ? .

? = 6,28*f = 2f

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Характеристики колебаний

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

  • амплитуда,
  • период,
  • частота,
  • циклическая частота,
  • фаза,
  • начальная фаза.

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени (large Delta t), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Что такое амплитуда

Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.

Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.

В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.

Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.

К примеру, пусть колеблется величина ( large x ). Тогда символом ( large x_ <0>) обозначают амплитуду колебаний этой величины.

Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».

С помощью графика амплитуду можно определить так (рис. 2):

Что такое период

Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.

Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.

( large T left( c right) ) – период колебаний.

Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.

Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.

Период – это время одного полного колебания.

На графике период найти удобнее одним из таких способов (рис. 4):

Что такое частота

Обозначают ее с помощью греческой буквы «ню» ( large nu ).

Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».

Поэтому, размерность частоты — это единицы колебаний в секунду:

Иногда в учебниках встречается такая запись ( large displaystyle nu left( c^ <-1>right) ), потому, что по свойствам степени ( large displaystyle frac<1> = c^ <-1>).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол (large 2pi) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный (large 2pi) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

( large displaystyle omega left( frac<text<рад>> right) )

Примечание: Величину ( large omega ) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за (large 2pi) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный (large 2pi) секунд?».

Обычная ( large nu ) и циклическая ( large omega ) частота колебаний связаны формулой:

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину ( large omega ), нужно сначала найти период T.

Затем, воспользоваться формулой ( large displaystyle nu = frac<1> ) и вычислить частоту ( large nu ).

И только после этого, с помощью формулы ( large omega = 2pi cdot nu ) посчитать циклическую ( large omega ) частоту.

Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.

Определить величину ( large omega ) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный (large 2pi), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, (large varphi_ <0>).

(large varphi_ <0>left(text <рад>right) ) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

Рассмотрим теперь, как величина (large varphi_ <0>) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы (large varphi_ <0>) принимаем равной нулю.

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время (large Delta t), начальный угол (large varphi_ <0>) будет отличаться от нулевого значения.

Определим угол (large varphi_ <0>) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина (large varphi_ <0>) — в радианах. Значит, нужно связать формулой кусочек времени (large Delta t) и соответствующий ему начальный угол (large varphi_ <0>).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

  • Сначала определим интервал времени, обозначенный синими стрелками на рисунке. На осях большинства графиков располагают цифры, по которым это можно сделать. Как видно из рис. 8, этот интервал (large Delta t) равен 1 сек.
  • Затем определим период. Для этого отметим одно полное колебание на красной кривой. Колебание началось в точке t = 1, а закончилось в точке t =5. Взяв разность между этими двумя точками времени, получим значение периода.

[large T = 5 – 1 = 4 left( text <сек>right)]

Из графика следует, что период T = 4 сек.

  • Рассчитаем теперь, какую долю периода составляет интервал времени (large Delta t). Для этого составим такую дробь (large displaystyle frac<Delta t >):

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

  • Нам известно, что одно полное колебание — один полный оборот (цикл), синус (или косинус) совершает, проходя каждый раз угол (large 2pi ). Найдем теперь, как связана найденная доля периода с углом (large 2pi ) полного цикла.

Для этого используем формулу:

(large displaystyle frac<1> <4>cdot 2pi = frac<pi > <2>=varphi_ <0>)

Значит, интервалу (large Delta t) соответствует угол (large displaystyle frac<pi > <2>) – это начальная фаза для красной кривой на рисунке.

  • В заключение обратим внимание на следующее. Начало ближайшего к точке t = 0 периода красной кривой сдвинуто вправо. То есть, кривая запаздывает относительно «чистого» синуса.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол (large displaystyle frac<pi > <2>) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая (large varphi_ <0>= 0 ).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину (large varphi_ <0>) записываем со знаком «-».

  1. Физики начинают отсчет времени из точки 0. Поэтому, время в задачах будет величиной не отрицательной.
  2. На графике колебаний начальная фаза ( varphi_<0>) влияет на вертикальный сдвиг точки, из которой стартует колебательный процесс. Значит, можно для простоты сказать, что колебания имеют начальную точку.

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают (varphi).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной ( varphi_<0>) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто ( varphi) фазой (рис. 10б) – это величина переменная.

Как на графике колебаний отметить фазу

На графике колебаний фаза (large varphi) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины (large omega) — циклическая частота и (large varphi_<0>) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу (large varphi), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

( large varphi_<01>) – для первого процесса и,

( large varphi_<02>) – для второго процесса.

Определим разность фаз между первым и вторым колебательными процессами:

Величина (large Delta varphi ) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Как связаны характеристики колебаний — формулы

Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.

Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.

  • Связь между периодом, количеством колебаний и общим временем колебательного процесса:

( large T left( c right) ) – время одного полного колебания (период колебаний);

( large N left( text <шт>right) ) – количество полных колебаний;

( large t left( c right) ) – общее время для нескольких колебаний;

  • Период и частота колебаний связаны так:

(large nu left( text <Гц>right) ) – частота колебаний.

  • Количество и частота колебаний связаны формулой:
  • Связь между частотой и циклической частотой колебаний:

(large displaystyle omega left( frac<text<рад>> right) ) – циклическая (круговая) частота колебаний.

  • Фаза и циклическая частота колебаний связаны так:

(large varphi_ <0>left( text <рад>right) ) — начальная фаза;

(large varphi left( text <рад>right) ) – фаза (угол) в выбранный момент времени t;

  • Между фазой и количеством колебаний связь описана так:
  • Интервал времени (large Delta t ) (сдвигом) и начальная фаза колебаний связаны:

(large Delta t left( c right) ) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.

Источник

Свободные электромагнитные колебания в контуре быстро затухают. Поэтому они практически не используются. Наиболее важное практическое значение имеют незатухающие вынужденные колебания.

Определение

Переменный ток — вынужденные электромагнитные колебания.

Ток в осветительной сети квартиры, ток, применяемый на заводах и фабриках, представляет собой переменный ток. В нем сила тока и напряжение изменяются со временем по гармоническому закону. Колебания легко обнаружить с помощью осциллографа. Если на вертикально отклоняющие пластины осциллографа подать напряжение от сети, то временная развертка на экране будет представлять сбой синусоиду:

Зная скорость движения луча в горизонтальном направлении (она определяется частотой пилообразного напряжения), можно определить частоту колебаний.

Определение

Частота переменного тока — это количество колебаний за 1 с.

Стандартная частота переменного промышленного тока составляет 50 Гц. Это значит, что на протяжении 1 секунды ток 50 раз течет в одну сторону и 50 раз — в другую. Частота 50 Гц принята для промышленного тока во многих странах мира. В США принята частота 60 Гц.

Если напряжение на концах цепи меняется по гармоническому закону, то напряженность электрического поля внутри проводника будет также меняться гармонически. Эти гармонические изменения напряженности поля вызовут гармонические колебания скорости упорядоченного движения заряженных частиц, и, следовательно, гармонические колебания силы тока.

Внимание!

При изменении напряжения на концах цепи электрическое поле не меняется мгновенно во всей цепи. Изменение поля происходит с большой скоростью, но она не бесконечно большая. Она равна скорости света (3∙108 м/с).

Переменное напряжение в гнездах розетки осветительной сети создается генераторами на электростанциях. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока (см. рисунок ниже).

Поток магнитной индукции Ф, пронизывающий проволочную рамку площадью S, пропорционален косинусу угла α между нормалью к рамке и вектором магнитной индукции.

Численно магнитный поток определяется формулой:

Φ=BScosα

При равномерном вращении рамки угол α увеличивается пропорционально времени:

α=2πnt

где n — частота вращения. Поэтому поток магнитной индукции меняется гармонически:

Φ=BScos2πnt

Здесь множитель 2πn представляет собой число колебаний магнитного потока за 2π секунд. Это не что иное, как циклическая частота колебаний:

ω=2πn

Следовательно:

Φ=BScosωt

Согласно закону электромагнитной индукции ЭДС индукции в рамке равна взятой со знаком «минус» скорости изменения потока магнитной индукции, т.е. производной потока магнитной индукции по времени:

e=Φ=BS(cosωt)=BSωsinωt=εmaxsinωt

εmax — амплитуда ЭДС индукции, равная:

εmax=BSω

Напряжение в цепи переменного тока может меняться по закону синуса или по закону косинуса:

u=Umaxsinωt

u=Umaxcosωt

где Umax — амплитуда напряжения (максимальное по модулю значение напряжения).

Сила тока меняется с той частотой, что и напряжение — ω. Но колебания тока необязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае сила тока i в любой момент времени определяется по формуле:

i=Imaxsin(ωt+φс)

где Imax — амплитуда силы тока (максимальное по модулю значение силы тока), φс — разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Пример №1. Найти напряжение в цепи переменного тока в момент времени t = π, если циклическая частота электромагнитных колебаний равна 300,25 Гц, а амплитуда напряжения составляет 12В. Считать, что напряжения меняется по закону косинуса.

u=Umaxcosωt=12cos300,25π=12228,5 (В).

Активное сопротивление в цепи переменного тока

Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (см. рисунок ниже).

Внимание! Ранее под величиной R мы понимали электрическое сопротивление. Но правильно его называть сопротивлением активным. Дело в том, что в цепи переменного тока могут быть сопротивления иного характера. Сопротивление же R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются.

Будем считать, что напряжение на зажимах цепи меняется по закону косинуса:

u=Umaxcosωt

Для нахождения мгновенного значения силы тока мы можем воспользоваться законом Ома, так как эта величина прямо пропорционально мгновенному значению напряжения:

i=uR=UmaxcosωtR=Imaxcosωt

В проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения, а амплитуда силы тока определяется равенством:

Imax=UmaxR

Мощность в цепи с резистором

В цепи переменного тока сила тока и напряжения меняются быстро, поэтому количество выделяемой энергии меняется так же быстро. Но заметить эти изменения невозможно. Чтобы найти среднюю мощность на участке цепи за много периодов, достаточно найти среднюю мощность за один период.

Определение

Средняя за период мощность переменного тока — отношение суммарной энергии, поступающей в цепь за период, к этому периоду.

Мощность постоянного тока определяется формулой:

P=I2R

Следовательно, мгновенная мощность в цепи переменного тока на участке с активным сопротивлением R равна:

p=i2R

Подставим в это выражение полученное ранее значение мгновенной силы переменного тока и получим:

p=(Imaxcosωt)2R

Вспомним из курса математики:

cos2α=1+cos2α2

Отсюда:

p=I2max2R(1+cos2ωt)=I2maxR2+I2maxR2cos2ωt

График зависимости мгновенной мощности от времени:

На протяжении первой четверти периода, когда cos2ωt>0, мощность в любой момент времени больше величины I2maxR2. На протяжении второй четверти периода, когда cos2ωt<0, мощность в любой момент времени меньше этой величины. Среднее за период значение cos2ωt=0, следовательно, средняя за период мощность равна I2maxR2.

Средняя мощность p равна:

p=I2maxR2=i2R

Пример №2. Сила переменного тока в цепи меняется по закону i=Imaxcosωt. Определить мгновенную мощность в момент времени t = 1 с, если циклическая частота колебаний ω = 100π Гц при сопротивлении R = 10 Ом. Амплитуда силы тока равна 1 А.

p=(Imaxcosωt)2R=10(1·cos(100π·1)2=10 (Дж)

Действующие значения силы тока и напряжения

Из предыдущей формулы видно, что среднее значение квадрата силы тока равно половине квадрата амплитуды силы переменного тока:

i2=I2max2

Определение

Действующее значение силы переменного тока — величина, равная квадратному корню, взятому из среднего значения квадрата тока. Обозначается как I.

I=i2=Imax2

Смысл действующего значения силы переменного тока заключается в том, что оно равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за это же время.

Аналогично определяется действующее значение напряжения U:

U=u2=Umax2

Именно действующие значения силы тока и напряжения определяют мощность P переменного тока:

P=I2R=UI

Пример №3. Найти мощность переменного тока, если амплитуда силы тока равна 2 А, а сопротивление цепи равно 5 Ом.

P=I2R

I=Imax2

P=(Imax2)2R=I2max2R=222·5=10 Дж

Задание EF22720

В идеальном колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону UC = U0cos ωt, где U0 = 5 В, ω = 1000π с1. Определите период колебаний напряжения на конденсаторе.


Алгоритм решения

1.Записать исходные данные.

2.Записать формулу Томсона.

3.Вычислить искомую величину, подставив известные данные.

Решение

Запишем исходные данные:

 Закон изменения напряжения между обкладками конденсатора: UC=U0cosωt.

 Амплитуда напряжения: U0=5 В.

 Циклическая частота колебаний: ω = 1000π с–1.

Запишем формулу Томсона:

T=2πω=2π1000π=21000=0,002 (с)

Ответ: 0,002

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18735

В электрической цепи, показанной на рисунке, ключ К длительное время замкнут, E=6 В, r = 2 Ом, L = 1 мГн. В момент t = 0 ключ К размыкают. Амплитуда напряжения на конденсаторе в ходе возникших в контуре электромагнитных колебаний равна ЭДС источника. В какой момент времени напряжение на конденсаторе в первый раз достигнет значения E? Сопротивлением проводов и активным сопротивлением катушки индуктивности пренебречь. Ответ запишите в мкс.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Описать, что происходит в момент замыкания и размыкания цепи.

3.Выполнить решение задачи в общем виде.

4.Вычислить искомую величину, подставив известные данные.

Решение

Запишем исходные данные:

 ЭДС источника тока: ε=5 В.

 Амплитуда колебаний напряжения на конденсаторе: UCmax=5 В.

 Сопротивление ЭДС источника тока: r = 2 Ом.

 Индуктивность катушки: L = 1 мГн.

1 мГн = 10–3 Гн

Перед размыканием ключа К ток через конденсатор не идет, по катушке течёт ток:

I0=εr

Напряжение на конденсаторе в начальный момент времени равно нулю, так как оно равно нулю на катушке: U0C=0 В.

После размыкания ключа К в контуре возникают гармонические колебания напряжения между обкладками конденсатора и тока в контуре. Благодаря начальному условию (U0C=0 В) потенциал верхней обкладки конденсатора относительно нижней начинает меняться по закону:

u=UCmaxsinωt

Знак «–» в формуле связан с тем, что сразу после размыкания ключа К ток приносит положительный заряд на нижнюю обкладку конденсатора.

Циклическую частоту выразим из формулы Томсона:

ω=2πT=1LC

Энергия электромагнитных колебаний в контуре сохраняется. Она определяется формулой:

W=Li22+Cu22=CU2Cmax2=LI202

Выразим максимальное напряжение на конденсаторе:

CU2Cmax=LI20

UCmax=I0LC

Учтем, что амплитуда напряжения на конденсаторе равна напряжению источника тока, а I0=εr. Тогда получим:

UCmax=ε=I0r=I0LC

Отсюда:

LC=r

C=Lr2

Период колебаний в контуре определим через формулу Томсона:

T=2πLC=2πLLr2=2πLr

Вспомним зависимость напряжения от времени:

u=UCmaxsinωt

Подставим известные данные для искомого момента времени:

5=5sinωt

Синус должен быть равен «–1» Это возможно, если с начального момента времени пройдет четверть периода:

t=T4=2π4Lr=π210327,85·106(с)=7,85 (мкс)

Ответ: 7,85

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18116

Ученик изучает зависимость периода электромагнитных колебаний в контуре от ёмкости конденсатора. Какие два контура он должен выбрать для этого исследования?


Алгоритм решения

  1. Выделить цель эксперимента.
  2. Установить, какие величины для достижения цели эксперимента должны меняться, а какие — оставаться постоянными.
  3. Выбрать верную пару контуров

Решение

Цель эксперимента — изучить зависимость периода электромагнитных колебаний в контуре от ёмкости конденсатора. Следовательно, емкости конденсатора должна быть единственной меняющейся величиной. При этом все другие величины должны оставаться постоянными. Поэтому катушки индуктивности должны быть одинаковыми, но конденсаторы — разные. Этому условию соответствует рисунок «а».

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18656

На рисунке приведён график зависимости силы тока i от времени t при свободных гармонических колебаниях в колебательном контуре. Каким станет период свободных колебаний в контуре, если конденсатор в этом контуре заменить на другой конденсатор, ёмкость которого в 4 раза меньше? Ответ запишите в мкс.


Алгоритм решения

1.Записать исходные данные (определить по графику начальный период колебаний).

2.Перевести единицы измерения величин в СИ.

3.Записать формулу Томсона.

4.Выполнить решение в общем виде.

5.Установить, каким станет период колебаний после уменьшения емкости конденсатора.

Решение

Запишем исходные данные:

 Период колебаний (определяем по графику): T = 4 мкс.

 Емкость конденсатора в первом опыте: C1 = 4C.

 Емкость конденсатора во втором опыте: C2 = C.

4 мкс = 4∙10–6 с

Запишем формулу Томсона:

T=2πLC

Применим формулу для обоих опытов и получим:

T1=2πL4C=4πLC

T2=2πLC

Поделим первый период на второй:

T1T2=4πLC2πLC=2

Отсюда:

T2=T12=4·1062=2·106 (с)=2 (мкс)

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 5.6k

Переменный электрический ток

теория по физике 🧲 колебания и волны

Свободные электромагнитные колебания в контуре быстро затухают. Поэтому они практически не используются. Наиболее важное практическое значение имеют незатухающие вынужденные колебания.

Переменный ток — вынужденные электромагнитные колебания.

Ток в осветительной сети квартиры, ток, применяемый на заводах и фабриках, представляет собой переменный ток. В нем сила тока и напряжение изменяются со временем по гармоническому закону. Колебания легко обнаружить с помощью осциллографа. Если на вертикально отклоняющие пластины осциллографа подать напряжение от сети, то временная развертка на экране будет представлять сбой синусоиду:

Зная скорость движения луча в горизонтальном направлении (она определяется частотой пилообразного напряжения), можно определить частоту колебаний.

Частота переменного тока — это количество колебаний за 1 с.

Стандартная частота переменного промышленного тока составляет 50 Гц. Это значит, что на протяжении 1 секунды ток 50 раз течет в одну сторону и 50 раз — в другую. Частота 50 Гц принята для промышленного тока во многих странах мира. В США принята частота 60 Гц.

Если напряжение на концах цепи меняется по гармоническому закону, то напряженность электрического поля внутри проводника будет также меняться гармонически. Эти гармонические изменения напряженности поля вызовут гармонические колебания скорости упорядоченного движения заряженных частиц, и, следовательно, гармонические колебания силы тока.

При изменении напряжения на концах цепи электрическое поле не меняется мгновенно во всей цепи. Изменение поля происходит с большой скоростью, но она не бесконечно большая. Она равна скорости света (3∙10 8 м/с).

Переменное напряжение в гнездах розетки осветительной сети создается генераторами на электростанциях. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока (см. рисунок ниже).

Поток магнитной индукции Ф, пронизывающий проволочную рамку площадью S, пропорционален косинусу угла α между нормалью к рамке и вектором магнитной индукции.

Численно магнитный поток определяется формулой:

При равномерном вращении рамки угол α увеличивается пропорционально времени:

где n — частота вращения. Поэтому поток магнитной индукции меняется гармонически:

Φ = B S cos . 2 π n t

Здесь множитель 2 π n представляет собой число колебаний магнитного потока за 2 π секунд. Это не что иное, как циклическая частота колебаний:

Φ = B S cos . ω t

Согласно закону электромагнитной индукции ЭДС индукции в рамке равна взятой со знаком «минус» скорости изменения потока магнитной индукции, т.е. производной потока магнитной индукции по времени:

e = − Φ ´ = − B S ( cos . ω t ) ´ = B S ω sin . ω t = ε m a x sin . ω t

ε m a x — амплитуда ЭДС индукции, равная:

Напряжение в цепи переменного тока может меняться по закону синуса или по закону косинуса:

u = U m a x sin . ω t

u = U m a x cos . ω t

где U m a x — амплитуда напряжения (максимальное по модулю значение напряжения).

Сила тока меняется с той частотой, что и напряжение — ω . Но колебания тока необязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае сила тока i в любой момент времени определяется по формуле:

i = I m a x sin . ( ω t + φ с )

где I m a x — амплитуда силы тока (максимальное по модулю значение силы тока), φ с — разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Пример №1. Найти напряжение в цепи переменного тока в момент времени t = π, если циклическая частота электромагнитных колебаний равна 300,25 Гц, а амплитуда напряжения составляет 12В. Считать, что напряжения меняется по закону косинуса.

u = U m a x cos . ω t = 12 cos . 300 , 25 π = 12 √ 2 2 . . ≈ 8 , 5 ( В ) .

Активное сопротивление в цепи переменного тока

Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (см. рисунок ниже).

Внимание! Ранее под величиной R мы понимали электрическое сопротивление. Но правильно его называть сопротивлением активным. Дело в том, что в цепи переменного тока могут быть сопротивления иного характера. Сопротивление же R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются.

Будем считать, что напряжение на зажимах цепи меняется по закону косинуса:

u = U m a x cos . ω t

Для нахождения мгновенного значения силы тока мы можем воспользоваться законом Ома, так как эта величина прямо пропорционально мгновенному значению напряжения:

i = u R . . = U m a x cos . ω t R . . = I m a x cos . ω t

В проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения, а амплитуда силы тока определяется равенством:

I m a x = U m a x R . .

Мощность в цепи с резистором

В цепи переменного тока сила тока и напряжения меняются быстро, поэтому количество выделяемой энергии меняется так же быстро. Но заметить эти изменения невозможно. Чтобы найти среднюю мощность на участке цепи за много периодов, достаточно найти среднюю мощность за один период.

Средняя за период мощность переменного тока — отношение суммарной энергии, поступающей в цепь за период, к этому периоду.

Мощность постоянного тока определяется формулой:

Следовательно, мгновенная мощность в цепи переменного тока на участке с активным сопротивлением R равна:

Подставим в это выражение полученное ранее значение мгновенной силы переменного тока и получим:

p = ( I m a x cos . ω t ) 2 R

Вспомним из курса математики:

cos 2 . α = 1 + cos . 2 α 2 . .

p = I 2 m a x 2 . . R ( 1 + cos . 2 ω t ) = I 2 m a x R 2 . . + I 2 m a x R 2 . . cos . 2 ω t

График зависимости мгновенной мощности от времени:

На протяжении первой четверти периода, когда cos . 2 ω t > 0 , мощность в любой момент времени больше величины I 2 m a x R 2 . . . На протяжении второй четверти периода, когда cos . 2 ω t 0 , мощность в любой момент времени меньше этой величины. Среднее за период значение cos . 2 ω t = 0 , следовательно, средняя за период мощность равна I 2 m a x R 2 . . .

Средняя мощность − p равна:

− p = I 2 m a x R 2 . . = − i 2 R

Пример №2. Сила переменного тока в цепи меняется по закону i = I m a x cos . ω t . Определить мгновенную мощность в момент времени t = 1 с, если циклическая частота колебаний ω = 100π Гц при сопротивлении R = 10 Ом. Амплитуда силы тока равна 1 А.

p = ( I m a x cos . ω t ) 2 R = 10 ( 1 · cos . ( 100 π · 1 ) 2 = 10 ( Д ж )

Действующие значения силы тока и напряжения

Из предыдущей формулы видно, что среднее значение квадрата силы тока равно половине квадрата амплитуды силы переменного тока:

− i 2 = I 2 m a x 2 . .

Действующее значение силы переменного тока — величина, равная квадратному корню, взятому из среднего значения квадрата тока. Обозначается как I.

I = √ − i 2 = I m a x √ 2

Смысл действующего значения силы переменного тока заключается в том, что оно равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за это же время.

Аналогично определяется действующее значение напряжения U:

U = √ − u 2 = U m a x √ 2 . .

Именно действующие значения силы тока и напряжения определяют мощность P переменного тока:

Пример №3. Найти мощность переменного тока, если амплитуда силы тока равна 2 А, а сопротивление цепи равно 5 Ом.

P = ( I m a x √ 2 . . ) 2 R = I 2 m a x 2 . . R = 2 2 2 . . · 5 = 10 ⎛ ⎝ Д ж ⎞ ⎠

В идеальном колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону UC = U0cos ωt, где U0 = 5 В, ω = 1000π с – «> – 1 . Определите период колебаний напряжения на конденсаторе.

Циклическая частота в уравнении силы тока

Колебания и волны > Электромагнитные > Уравнение колебаний тока в катушке (i).

Содержание Величина Наименование
— уравнение колебаний тока РІ катушке.
Как будут выглядеть графики колебания тока, придуманные вами, можно увидеть здесь.

В этом уравнении:

Im = qmω — максимальные значения тока

и заряда отличаются на величину циклической частоты.

i = q’ — ток является РїСЂРѕРёР·РІРѕРґРЅРѕР№ РѕС‚ зарада.

Период, частота, амплитуда и фаза переменного тока

Период и частота переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2. Радиан.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ? .

? = 6,28*f = 2f

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

источники:

http://sverh-zadacha.ucoz.ru/lessons/Contents/koleb/em/i.html

http://www.sxemotehnika.ru/period-chastota-amplituda-i-faza-peremennogo-toka.html

Как определить частоту переменного тока

Содержание

  • 1 Что такое частота
  • 2 Как определяется
    • 2.1 Измерение частоты
    • 2.2 Расчёт частоты тока
  • 3 Заключение
  • 4 Видео по теме

В силу различных преимуществ большинство энергетических систем — от общегосударственных до бытовых, функционируют на переменном токе. Однако мало кто считается с тем, что кроме параметров напряжения и тока системы, важную роль играет также частота тока. Например, в функционале популярных мультитестеров измерение частоты переменного тока отсутствует. Между тем значения этой величины, которые выходят за требуемые пределы, грозят тяжёлыми последствиями. Мгновенно происходит разбалансированность системы энергоснабжения с неминуемыми катастрофическими последствиями для целых регионов.

Графическое отображение переменного тока

Графическое отображение переменного тока

Что такое частота

Производство электроэнергии в подавляющем большинстве ситуаций называют контролируемым. Эту работу проделывают генераторы, преобразующие механическую энергию ротора турбины в электрическую. Как показано на схеме, на поверхности ротора имеется обмотка из медной проволоки, поэтому он представляет собой непрерывно вращающийся электромагнит.

Схематическое изображение генератора

Схематическое изображение генератора

Во время вращения ротора, созданное вокруг него магнитное поле, наводит электрический ток. Его направление периодически изменяется на противоположное, поскольку месторасположение полюсов электромагнита чередуется после каждого оборота ротора. Соответственно, ток тоже меняет своё направление два раза за цикл вращения.

Следствием и мерой скорости этих изменений является частота, которая измеряется количеством изменений месторасположения полюсов в секунду. Единица частоты получила наименование герц и обозначается двумя буквами — Гц. Таким образом, можно сказать, что генератор, который снабжён парой магнитных полюсов, вращающихся с угловой скоростью 3000 мин-1, будет производить ток частотой 50 Гц.

Мощность переменного тока изменяется по синусоидальному закону с чередованием положительных и отрицательных полюсов. При переходе каждого цикла из положительной области в отрицательную происходит соответствующее перемещение электронов. В конечном счете, эти циклы создают электрический нагрев или рассеивание мощности. Независимо от направления движения тока (т. е., положительного или отрицательного), если силы тока (напряжения) достаточно для удовлетворения требований электрического устройства, оно будет работать.

Синусоида переменного тока

Синусоида переменного тока

Таким образом, количество полных циклов за секунду, когда переменный ток переходит от положительного полюса к отрицательному, называется частотой, а сам временной отрезок называется периодом. С точки зрения электрического тока частотой принято считать количество повторений синусоиды, а другими словами — это полное колебание, состоящее из положительной и отрицательной составляющих. Следовательно, частота и период связаны между собой обратно пропорциональной зависимостью:

Определение частоты

Определение частоты

Частота и период переменного тока варьируются в зависимости от страны, причём не обязательно привязываются к местному стандарту напряжения. Например, в США, Канаде и других странах со стандартным линейным напряжением 110…120 В эталоном частоты является 60 Гц. В большинстве стран, где значения переменного напряжения равняются 220…240 В (в том числе и в нашей стране), за стандартную частоту принято 50 Гц, однако Южная Корея, Филиппины и многие страны Карибского бассейна используют 220…240 В с частотой 60 Гц. А есть ещё и Япония, где напряжение в сети достигает 100 В, но стандартная частота переменного тока в разных районах составляет 50 и 60 Гц.

Большинство электронных устройств могут работать, потребляя переменный ток, если его частота 50 или 60 Гц. Но, для электроприборов, использующих довольно мощные приводы, рассчитанные на конкретную частоту (холодильники, морозильники, стиральные и сушильные машины), разница в 10 Гц уже значительна. В первую очередь это касается устройств, включающихся периодически. Их электромоторам приходится вращаться то быстрее, то медленнее, что отрицательно сказывается на их долговечности. В таких случаях необходимо использовать преобразователи частоты или трансформаторы напряжения.

Внешний вид преобразователя частоты

Внешний вид преобразователя частоты

Как определяется

Существует два способа установить, чему равна частота и амплитуда переменного тока — применять специальные приборы либо воспользоваться результатами расчётов.

Измерение частоты

Для измерения частоты переменного тока используется принцип механического резонанса. Он является достаточно простым, хотя и не очень точным. Основывается на том факте, что для каждого физического объекта, обладающего упругими свойствами, существует определенное значение частоты, при которой он начинает вибрировать.

Примером подобного устройства является камертон. Если по нему ударить, он будет довольно продолжительное время вибрировать со звуком, зависящим от его длины. Чем длиннее камертон, тем ниже будет резонансная частота и наоборот.

Если представить себе ряд камертонов с постепенно увеличивающимися размерами, установленными на общем основании, то это основание станет вибрировать с частотой измеряемого напряжения или тока. Для этого устройство следует снабдить электромагнитом.

Измерения частоты тока выполняются с помощью набора «камертонов», в качестве которых используются полоски листового металла. Это устройство называется частотомером вибрирующего геркона.

Схема вибрационного частотомера

Схема вибрационного частотомера

Используя частотомер, можно наглядно увидеть, как концы всех полосок встряхиваются в зависимости от того, как меняется величина переменного напряжения, приложенного к катушке. Тот из лепестков, который будет ближе всего к резонансной частоте переменного тока, станет вибрировать наиболее интенсивно.

Особой точностью вибрационные частотомеры не отличаются, зато характеризуются простотой своего изготовления. Их применяют в небольших электроремонтных мастерских, а также в быту с целью калибровки частоты вращения двигателя.

Хотя подобный прибор будет иметь малую точность, этого нельзя сказать о самом принципе измерения. Заменив механический резонатор на электрический, можно получить частотомер на основе катушки индуктивности и параллельно включённого конденсатора. Вместе они образуют колебательный контур.

Один или оба компонента этого контура могут быть регулируемыми. В цепь включается измерительный блок, который показывает максимальную амплитуду напряжения на конденсаторе и катушке. Ручки регулировки предварительно откалибровываются, чтобы иметь возможность выставлять резонансную частоту для любого варианта настройки. Частота считывается после настройки устройства на максимальное показание шкалы измерителя.

Схема электрического частотомера

Схема электрического частотомера

Фактически частотомер реализует схему настраиваемого фильтра, после чего отсчёт показаний происходит как в мостовой схеме (она вначале балансируется для условного нулевого состояния, после чего выполняется отсчёт). До тех пор, пока катушка и/или конденсатор смогут перехватывать достаточное поле магнитного или электрического рассеивания от тестируемой цепи, устройство будет сохранять свою работоспособность.

Метод не требует прямого подключения к цепи, поэтому часто применяется в бытовых условиях. Наиболее точные результаты дают электронные частотомеры.

Внешний вид электронного частотомера

Внешний вид электронного частотомера

Расчёт частоты тока

Для расчёта требуется знать период или временной отрезок, в течение которого значение переменного тока повторяется и образует одну полную волну. Между периодом и частотой переменного тока имеется зависимость, которую отражает следующая формула:

Определение частоты электротока

Определение частоты электротока

Если известно значение циклической частоты ɷ и амплитуда А, то по схожей зависимости можно вычислить силу тока I:

Определение силы электротока

Определение силы электротока

Определение угловой частоты выполняется с помощью такого уравнения:

Формула угловой скорости

Формула угловой скорости

Заключение

Учитывая тенденцию к постепенному уменьшению производства электроэнергии с использованием традиционных видов топлива, всё чаще возникают вопросы оптимального управления частотными параметрами систем энергетики. Идеальным выходом их положения считают такой, при котором данные функции будут реализованы вследствие применения более стабильных и доступных форм генерации. К ним стоит отнести атомную энергетику, использование энергии солнца и ветра.

Видео по теме



Содержание:

Частотные методы анализа электрических цепей:

Частотные характеристики являются компонентами комплексных функций цепи.

Комплексная функция цепи (КФЦ)

Частотные методы анализа и расчёта электрических цепей

Амплитудно-частотная характеристика (АЧХ)

Частотные методы анализа и расчёта электрических цепей

Фазочастотная характеристика (ФЧХ)

Частотные методы анализа и расчёта электрических цепей

Амплитудно-фазовая частотная характеристика (АФЧХ) (комплексная функция цепи)

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей— вещественная частотная характеристика (ВЧХ); Частотные методы анализа и расчёта электрических цепей— мнимая частотная характеристика (МЧХ).

Комплексные функции простых цепей можно рассчитать непосредственно по закону Ома.

На рис.4.1 показаны АЧХ и ФЧХ, а на рис.4.2 — АФЧХ простейшей интегрирующей цепи (апериодического звена). По АЧХ определяют полосу пропускания

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Полосой пропускания П называется диапазон частот, на границах которого мощность сигнала уменьшается в 2 раза, а амплитуда (действующее значение) напряжения (тока) — в Частотные методы анализа и расчёта электрических цепей раз по сравнению с максимальными значениями.

Полоса пропускания может измеряться в радианах в секунду Частотные методы анализа и расчёта электрических цепей или в герцах (Гц).

Например, для простой интегрирующей цепи полоса пропускания (см. рис. 4.1)

Частотные методы анализа и расчёта электрических цепей

Для сложных цепей КФЦ рассчитывают по MKT или МУН. В табл. 4.1 приведены соотношения для расчета КФЦ, выраженные через определитель и алгебраические дополнения матрицы контурных сопротивлений и узловых проводимостей.
Частотные методы анализа и расчёта электрических цепей

Частотные характеристики цепей с одним реактивным элементом

Примеры решения типовых задач:

Пример 4.2.1.

Определить комплексный коэффициент передачи по напряжению для дифференцирующего RC-контура (рис.4.3, а), рассчитать и построить графики АЧХ и ФЧХ.

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.3, б).
Частотные методы анализа и расчёта электрических цепей

2. Определим комплексное напряжение на выходе цепи в виде 

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение, вынеся зa скобки в числителе и знаменателе члены, не содержащие Частотные методы анализа и расчёта электрических цепей. После преобразований получимЧастотные методы анализа и расчёта электрических цепей
Следовательно.

Частотные методы анализа и расчёта электрических цепей

Введем обозначения:

Частотные методы анализа и расчёта электрических цепей
Величина Частотные методы анализа и расчёта электрических цепей называется постоянной времени цепи и измеряется в секундах. Величина Частотные методы анализа и расчёта электрических цепей имеет смысл коэффициента усиления по напряжению на постоянном токе, т. е. на частоте Частотные методы анализа и расчёта электрических цепей

 С учетом принятых обозначений

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений АЧХ и ФЧХ запишем комплексную функцию в показательной форме.
Так как выражение (4.2) есть отношение двух полиномов, то удобно числитель и знаменатель записать отдельно в показательной форме, а затем разделить:

Частотные методы анализа и расчёта электрических цепей

3. Из (4.3) запишем АЧХ и ФЧХ соответственно:

Частотные методы анализа и расчёта электрических цепей

4. Построим график АЧХ и ФЧХ качественно по двум точкам. Для этого рассчитаем значения Частотные методы анализа и расчёта электрических цепей для крайних значений частот:

Частотные методы анализа и расчёта электрических цепей

График АЧХ Частотные методы анализа и расчёта электрических цепей (рис. 4.4, а) является кривой, монотонно возрастающей от значения Частотные методы анализа и расчёта электрических цепей

График функции ФЧХ Частотные методы анализа и расчёта электрических цепей можно построить качественно как сумму двух графиков (рис. 4.4). Из рис. 4.4,б видно, что оба слагаемых монотонно увеличиваются: первое от нуля до +90° и вносит опережение по фазе. Второе до -90° и вносит отставание по фазе. Но первое слагаемое растет быстрее, так как Частотные методы анализа и расчёта электрических цепейчто следует из формулы (4.1). Поэтому функция Частотные методы анализа и расчёта электрических цепейследовательно, дифференцирующий -контур вносит опережение по фазе.

Исследуя функцию (4.5) на экстремум, можно показать, что она имеет максимум на частоте

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Подставляя Частотные методы анализа и расчёта электрических цепей в (4.5), получим

Частотные методы анализа и расчёта электрических цепей

Графики АЧХ и ФЧХ изображены на рис. 4.4.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.2.2.

Для электрической цепи, изображенной на рис. 4.5, определить АЧХ Частотные методы анализа и расчёта электрических цепей граничную частоту полосы пропускания. Рассчитать АЧХ, ФЧХ и построить графики, если параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Решение

1. Найдем комплексную функцию К(; (/ш) но формуле делителя напряжения
Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение к виду
Частотные методы анализа и расчёта электрических цепей

Обозначим:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Отсюда: АЧХ
Частотные методы анализа и расчёта электрических цепей

ФЧХ

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем граничную частоту. По определению
Частотные методы анализа и расчёта электрических цепей

Из (4.7) найдем
Частотные методы анализа и расчёта электрических цепей

Следовательно,
Частотные методы анализа и расчёта электрических цепей

Из уравнения (4.9) получаем, что

Частотные методы анализа и расчёта электрических цепей

Отсюда    Частотные методы анализа и расчёта электрических цепей

3. Построим график функций.

Вычислим значения (4.7) и (4.8) для частот с дискретностью Частотные методы анализа и расчёта электрических цепей

Графики и таблицы выполним в среде Mathcad (рис. 4.6).

Пример 4.2.3.

Определить комплексный коэффициент передачи интегрирующей цепи (рис. 4.7, а), используя метод контурных токов. Построить в среде Mathcad график АЧХ, определить полосу пропускания.

Параметры цепи: Частотные методы анализа и расчёта электрических цепей

Решение

1. Представим цепь комплексной схемой замещения (рис. 4.7, б). Данная цепь имеет два независимых контура. Ток Частотные методы анализа и расчёта электрических цепей в первом контуре замыкается через источник, который на схеме не изображен. Направления контурных токов выбираем одинаковыми.

2.Составим матрицы контурных сопротивлений для двух независимых контуров
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

3.Определим комплексный коэффициент передачи, используя соотношение, приведенное в табл. 4.1.

Частотные методы анализа и расчёта электрических цепей

где сопротивление нагрузки равно Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Подставляя найденные выражения, получаем 

Частотные методы анализа и расчёта электрических цепей

или Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем Частотные методы анализа и расчёта электрических цепей для крайних значений частоты Частотные методы анализа и расчёта электрических цепей и Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Объяснить полученные результаты можно, рассуждая так: на нулевой частоте (режим постоянного тока) сопротивление емкости бесконечно велико, ток в ней равен нулю, что эквивалентно разрыву этой ветви. При этом цепь становится резистивным делителем напряжения с передаточной функцией Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей С ростом частоты емкостное сопротивление уменьшается. ЕслиЧастотные методы анализа и расчёта электрических цепей то Частотные методы анализа и расчёта электрических цепей и шунтирует сопротивление Частотные методы анализа и расчёта электрических цепей. При этом

Частотные методы анализа и расчёта электрических цепей    = 0.

По полученным выражениям строим график АЧХ (рис. 4.8) и среде Mathcad.

Частотные методы анализа и расчёта электрических цепей

5. Определяем полосу пропускания. По определению
Частотные методы анализа и расчёта электрических цепей

Поэтому из (4.11) имеем
Частотные методы анализа и расчёта электрических цепей

После преобразований уравнения (4.12) получаем

Частотные методы анализа и расчёта электрических цепей

откуда

Частотные методы анализа и расчёта электрических цепей

или

Частотные методы анализа и расчёта электрических цепей

Следовательно, цепь имеет полосу пропускания 

Частотные методы анализа и расчёта электрических цепей

На рис. 4.8 указана граничная частота Частотные методы анализа и расчёта электрических цепей

Данная цепь представляет собой фильтр нижних частот с полосой пропускания Частотные методы анализа и расчёта электрических цепей сигналы на частотах Частотные методы анализа и расчёта электрических цепей проходят с большим затуханием.

Пример 4.2.4.

Найти комплексную передаточную проводимость Частотные методы анализа и расчёта электрических цепей для цепи, изображенной на рис. 4.9, а методом узловых напряжений.

Параметры цепи: Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей

Определить АЧХ и ФЧХ, построить их графики в среде Mathcad.
Частотные методы анализа и расчёта электрических цепей

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.9, б). Схема имеет два независимых узла. В данном случае Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

2. Составим матрицу узловых проводимостей. При определении собственной проводимости узлов необходимо помнить, что собственная проводимость ветви, состоящей  из последовательно включенных пассивных элементов, находится из соотношения Частотные методы анализа и расчёта электрических цепей, гдеЧастотные методы анализа и расчёта электрических цепей — эквивалентное сопротивление ветви. Как найти проводимость ветви с последовательно включенными Частотные методы анализа и расчёта электрических цепей

В начале рассчитывают комплексное сопротивление этой ветви, Частотные методы анализа и расчёта электрических цепей, а затем комплексную проводимость

Частотные методы анализа и расчёта электрических цепей

Составим матрицу проводимостей цепи 1 2
Частотные методы анализа и расчёта электрических цепей

Как видим, общие проводимости узлов взяты со знаком минус, так как узловые напряжения Частотные методы анализа и расчёта электрических цепей направлены одинаково, к базисному yзлy.

3.Определим комплексную передаточную проводимость по соотношению, приведенному в табл. 4.1

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей-комплексная проводимость ветви, по которой протекает ток Частотные методы анализа и расчёта электрических цепей,так как по определению

Частотные методы анализа и расчёта электрических цепей

Найдем алгебраические дополнения:

Частотные методы анализа и расчёта электрических цепей

После подстановки найденных значений получим

Частотные методы анализа и расчёта электрических цепей

Для определении АЧХ и ФЧХ запишем выражения для модуля и аргумента Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем значения Частотные методы анализа и расчёта электрических цепей на частотах Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
Примечание. Эти значения можно найти без вывода аналитического выражения для Частотные методы анализа и расчёта электрических цепей Для этого достаточно воспользоваться эквивалентными схемами цепи на рассматриваемых частотах.

Учитывая, что Частотные методы анализа и расчёта электрических цепей получим две схемы, показанные на рис. 4.10. а, б, соответственно.
Частотные методы анализа и расчёта электрических цепей

Для первой схемы:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Аналогично для второй схемы получим 

Частотные методы анализа и расчёта электрических цепей

При расчете сложных схем такой прием можно применять для проверки правильности полученного аналитического выражения КФЦ.

Из (4.13) видно, что функция наметен монотонной, но для качественного построения графика АЧХ (рис. 4.11) необходимо воспользоваться ПЭВМ, например построить функцию в среде Mathcad.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.2.5.

Для интегрирующего -контура (рис.4.12,а) определить комплексный коэффициент передачи по напряжению, рассчитать АЧХ, ФЧХ, ВЧХ, МЧХ. Построить графики АЧХ, ФЧХ. АФЧХ, если

Частотные методы анализа и расчёта электрических цепей

Решение

1. Составим комплексную схему замещения цепи (рис. 4.12, б).
Частотные методы анализа и расчёта электрических цепей

2. Определим Частотные методы анализа и расчёта электрических цепей из соотношения Частотные методы анализа и расчёта электрических цепей где

Частотные методы анализа и расчёта электрических цепей

Следовательно.

Частотные методы анализа и расчёта электрических цепей

3. Для нахождения АЧХ и ФЧХ комплексную функцию Частотные методы анализа и расчёта электрических цепейпредставленную в виде отношения двух полиномов мнимой частоты Частотные методы анализа и расчёта электрических цепей записывают в показательной форме

Частотные методы анализа и расчёта электрических цепей

Найдем модуль (АЧХ) и аргумент (ФЧХ) комплексной функции;

Частотные методы анализа и расчёта электрических цепей

Для определения вещественной и мнимой частотных характеристик запишем КФЦ в алгебраической форме. Для этого умножим и разделим (4.14) на комплексно-сопряженный знаменатель:

Частотные методы анализа и расчёта электрических цепей

4. Для приближенного построения графиков АЧХ, ФЧХ. АФХ найдем значения Частотные методы анализа и расчёта электрических цепей для трех значений частот: Частотные методы анализа и расчёта электрических цепейРезультаты расчетов для удобства построения графиков сведем в табл. 4.2.

Частотные методы анализа и расчёта электрических цепей

Для более точного и наглядного представления графиков воспользуемся ПЭВМ и математической средой Mathcad.

 Графики характеристик приведены на рис. 4.13.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

АЧХ представляет монотонно убывающую функцию (рис. 4.13, а).

ФЧХ принимает отрицательные значения, т.е. контур вносит фазовое отставание, а на частоте Частотные методы анализа и расчёта электрических цепей ФЧХ имеет экстремум (рис.4.13, б). Найдем из соотношения

Частотные методы анализа и расчёта электрических цепей

Взяв производную, получим

Частотные методы анализа и расчёта электрических цепей

Решая полученное уравнение относительно Частотные методы анализа и расчёта электрических цепей, найдем

Частотные методы анализа и расчёта электрических цепей

Подставляя Частотные методы анализа и расчёта электрических цепей в выражение Частотные методы анализа и расчёта электрических цепей определим максимальное значение фазовой частотной характеристики.

Частотные методы анализа и расчёта электрических цепей

АФХ (рис. 4.13, в) представляет собой полуокружность, расположенную в 4-м квадрате. Центр окружности находится на оси Частотные методы анализа и расчёта электрических цепей в точке с абсциссой, равной

Частотные методы анализа и расчёта электрических цепей

Радиус окружности нетрудно определить из соотношения:

Частотные методы анализа и расчёта электрических цепей

МЧХ:

Частотные методы анализа и расчёта электрических цепей

Отрицательное значение Частотные методы анализа и расчёта электрических цепей свидетельствует о том, что 

Частотные методы анализа и расчёта электрических цепей принимает отрицательное значения, т.е. интегрирующий контур вносит запаздывание по фазе.

5. Проверка расчетов АЧХ. Воспользуемся эквивалентными схемами цепи для  частот Частотные методы анализа и расчёта электрических цепей(рис. 4.14).

На частоте Частотные методы анализа и расчёта электрических цепей цепь разомкнута (рис. 4.14, а), поэтому

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

При Частотные методы анализа и расчёта электрических цепей схема представляет собой резистивный делитель напряжения (рис. 4.14, б) с коэффициентом передачи

Частотные методы анализа и расчёта электрических цепей

Подставляя эти значения частот в аналитическое выражение (4.14) для Частотные методы анализа и расчёта электрических цепейполучаем

Частотные методы анализа и расчёта электрических цепей

Следовательно, расчет АЧХ выполнен верно.

Частотные характеристики последовательного колебательного контура

Основные теоретические сведения:

В последовательном колебательном контуре (рис. 4.21) возникает резонанс напряжений, если выполняется условие    

Частотные методы анализа и расчёта электрических цепей

 т. е. Частотные методы анализа и расчёта электрических цепей                     

Частотные методы анализа и расчёта электрических цепей

Резонансная частота

Частотные методы анализа и расчёта электрических цепей

Волновое сопротивление контура Частотные методы анализа и расчёта электрических цепей

Сопротивление контура при резонансе Частотные методы анализа и расчёта электрических цепей

Собственная добротность контура  Частотные методы анализа и расчёта электрических цепей

Добротность нагруженного контура Частотные методы анализа и расчёта электрических цепей

Затухание контура  Частотные методы анализа и расчёта электрических цепей

Абсолютная расстройка   Частотные методы анализа и расчёта электрических цепей

Относительная расстройка   Частотные методы анализа и расчёта электрических цепей

Обобщенная расстройка

Частотные методы анализа и расчёта электрических цепей

Фактор расстройки:  Частотные методы анализа и расчёта электрических цепей

Абсолютная полоса пропускания (рис. 4.22)
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Относительная полоса пропускания

Частотные методы анализа и расчёта электрических цепей

Для нагруженного контура:

Частотные методы анализа и расчёта электрических цепей

Комплексные коэффициенты передачи по напряжению:

на активном сопротивлении
Частотные методы анализа и расчёта электрических цепей
на индуктивности
Частотные методы анализа и расчёта электрических цепей

на емкости 

Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.3.1.

Последовательный колебательный контур (рис. 4.23) подключен к источнику напряжению. Контур настроен в резонанс.

Параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Определить резонансную частоту, волновое сопротивление. добротность и полосу пропускания, ток и напряжения на элементах контура.

Построить АЧХ и ФЧХ по напряжению на конденсаторе в среде Mathcad.    

Частотные методы анализа и расчёта электрических цепей

Решение

1. Определяем резонансную частоту контура

Частотные методы анализа и расчёта электрических цепей

2. Находим волновое сопротивление контура

Частотные методы анализа и расчёта электрических цепей

3. Вычисляем добротность нагруженного контура

Частотные методы анализа и расчёта электрических цепей

4. Определяем полосу пропускания

Частотные методы анализа и расчёта электрических цепей

5. Рассчитываем ток и напряжения на элементах контура при резонансе

Частотные методы анализа и расчёта электрических цепей

Напряжение на R равно

Частотные методы анализа и расчёта электрических цепей

Напряжения на реактивных элементах

Частотные методы анализа и расчёта электрических цепей

6. Рассчитаем АЧХ и ФЧХ комплексного коэффициента передачи напряжения с емкости.

Учитывая (4.22), из (4.29) получим:

Частотные методы анализа и расчёта электрических цепей

Для построения графиков АЧХ и ФЧХ, выполнения расчетов используем среду Mathcad. АЧХ, ФЧХ в виде графиков и таблиц приведены на рис. 4.24.

Следует заметить, что максимум А11Х достигается на частоте

Частотные методы анализа и расчёта электрических цепей

т.е. при Частотные методы анализа и расчёта электрических цепей смещение максимума мало, тогда Частотные методы анализа и расчёта электрических цепей

Задача 4.3.2.

К последовательному колебательному контуру (рис. 4.25) с параметрами Частотные методы анализа и расчёта электрических цепей подключена нагрузка Частотные методы анализа и расчёта электрических цепей

Определить собственную добротность и добротность нагруженного контура, полосу пропускания нагруженного и ненагруженного контура.

Решение

1. Рассчитаем вторичные параметры ненагруженного контура:

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

2.Определим вторичные параметры наруженного контура. Так как сопротивление нагрузки активное, причем Частотные методы анализа и расчёта электрических цепей то согласно (4.15) и (4.16) резонансная частота и волновое сопротивление не изменяются.

Для определения добротности рассчитаем сопротивление Частотные методы анализа и расчёта электрических цепей, вносимое в контур за счет нагрузки, и построим эквивалентную схему нагруженного контура (рис. 4.25, б). Так как Частотные методы анализа и расчёта электрических цепейто
Частотные методы анализа и расчёта электрических цепей
Следовательно,

Частотные методы анализа и расчёта электрических цепей

Вывод. Подключение нагрузки ухудшает добротность контура, что приводит к расширению полосы пропускания.

Пример 4.3.3.

На рис. 4.26, а изображена входная цепь приемника, а на рис. 4.26, б — ее эквивалентная схема. Известны входное сопротивление и входная емкость транзистора входного каскада УВЧ: Частотные методы анализа и расчёта электрических цепей. На резонансной частоте антенна наводит в контуре ЭДС Частотные методы анализа и расчёта электрических цепей Емкость конденсатора Частотные методы анализа и расчёта электрических цепейкатушка индуктивности имеет Частотные методы анализа и расчёта электрических цепей

Определить абсолютную полосу пропускания и ток в контуре на резонансной частоте.

Решение

1. Определяем эквивалентную емкость контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитываем резонансную частоту контура

Частотные методы анализа и расчёта электрических цепей

3. Находим волновое сопротивление и сопротивление, вносимое в контур за счет транзистора усилителя (рис. 4.26, в):

Частотные методы анализа и расчёта электрических цепей

4. Определяем добротность нагруженного контура
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем абсолютную полосу пропускания нагруженного контура

Частотные методы анализа и расчёта электрических цепей

6. Находим ток в контуре

Частотные методы анализа и расчёта электрических цепей

Пример 4.3.4.

Рассчитать емкость последовательного колебательного контура, если резонансная частота контура Частотные методы анализа и расчёта электрических цепей полоса пропускания Частотные методы анализа и расчёта электрических цепейпри сопротивлении потерь 0,5 Ом.

Построить АЧХ и ФЧХ комплексного коэффициента передачи напряжения с индуктивности в среде Mаthcad.

Решение

1. Определим требуемую добротность контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем емкость конденсатора. Из формулы Частотные методы анализа и расчёта электрических цепейнайдем

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем АЧХ и ФЧХ.

Воспользуемся комплексным коэффициентом передачи напряжения с индуктивности по формуле (4.28). Учитывая 4.22), запишем:

Частотные методы анализа и расчёта электрических цепей

Вычислим значения функций на частотах:

Частотные методы анализа и расчёта электрических цепей

Определим частоту, при которой АЧХ имеет максимум

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Смещением частоты Частотные методы анализа и расчёта электрических цепей можно пренебречь.

Результаты расчетов АЧХ и ФЧХ б графическом и табличном видах приведены на рис. 4.27.

Частотные методы анализа и расчёта электрических цепей

Частотные характеристики параллельного колебательного контура

Основные теоретические сведения:

Параллельный колебательный контур образуется путем параллельного соединения катушки индуктивности и конденсатора. Оба элемента, кроме основного эффекта (запасания энергии), имеют потери энергии. В расчетной схеме (рис. 4.29, а) тепловые потери в элементах учтены включением условных сопротивлений Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

где резонансная частота колебанийЧастотные методы анализа и расчёта электрических цепей

Для реального контура Частотные методы анализа и расчёта электрических цепей поэтому при расчете можно полагать, что

Частотные методы анализа и расчёта электрических цепей

При резонансе сопротивление контура является активным, поэтому ток Частотные методы анализа и расчёта электрических цепей в цепи и напряжение Частотные методы анализа и расчёта электрических цепей в контуре синфазны. Эквивалентные схемы цепи в режиме резонанса токов показаны на рис. 4.31, а, б.

Сопротивление параллельного колебательного контура при резонансе максимально и равно (без учета внешней цепи)
Частотные методы анализа и расчёта электрических цепей
где  Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
Добротность Частотные методы анализа и расчёта электрических цепей нагруженного контура меньше собственной добротности Частотные методы анализа и расчёта электрических цепей Ее можно выразить через сопротивления элементов цепи

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

или через их проводимости

Частотные методы анализа и расчёта электрических цепей

Важными параметрами цепи при резонансе являются токи в ветвях и напряжение на контуре. Ток в обшей ветви (ток источника) при резонансе минимален и равен (см. рис. 4.31)

Частотные методы анализа и расчёта электрических цепей

При этом напряжение на контуре максимально и равно

Частотные методы анализа и расчёта электрических цепей

Токи в индуктивности и в емкости при резонансе равны по значению и противоположны по направлению. Они образуют замкнутый ток в контуре, равный

Частотные методы анализа и расчёта электрических цепей

Частотные свойства параллельного колебательного контура обычно оценивают по нормированной АЧХ

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей-обобщенная расстройка контура без учета внешних цепей; Частотные методы анализа и расчёта электрических цепей — фактор расстройки.

Параллельный контур, показанный на рис. 4.29, имеет по одной реактивности в ветвях. Такой контур называется простым или контуром I вида. Для уменьшения шунтирующего действия внешних цепей часто применяют сложные параллельные контуры.

На рис. 4.32, а, б, в показаны контуры II, (III и IV) видов, соответственно.

Частотные методы анализа и расчёта электрических цепей

Главной особенностью этих контуров является то, что их резонансное сопротивление меньше резонансного сопротивления простого контура с такими же параметрами.

Сопротивление контуров (рис.4.32) при резонансе рассчитывается по формулам, соответственно:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — коэффициенты включения:

Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.4.1.

Параллельный контур (см. рис. 4.29, а) подключен к источнику с параметрами Частотные методы анализа и расчёта электрических цепей Контур настроен в резонанс на длину волны, равную 1000 м.

Параметры катушки индуктивности: Частотные методы анализа и расчёта электрических цепей

Определить действующие значения тока в контуре, тока на входе цепи и напряжения на контуре при резонансе, абсолютную и относительную полосы пропускания контура, добавочное сопротивление необходимое для расширения полосы пропускания в 2 раза.

Решение

1. Определим резонансную частоту колебания

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем волновое сопротивление

Частотные методы анализа и расчёта электрических цепей

3. Определим сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

4. Найдем действующее значение тока на входе контура (см. рис. 4.31, а) при резонансе

Частотные методы анализа и расчёта электрических цепей

5. Определим соответственную добротность контура

Частотные методы анализа и расчёта электрических цепей

6. Найдем ток в контуре и напряжение на нем:

Частотные методы анализа и расчёта электрических цепей

7.  Определим добротность нагруженного контура

Частотные методы анализа и расчёта электрических цепей

8. Рассчитаем абсолютную и относительную полосы пропускания:

Частотные методы анализа и расчёта электрических цепей

9.  Определяем добавочное cопротивление Частотные методы анализа и расчёта электрических цепей из (4.31)

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.2.

Рассчитать полосу пропускания колебательного контура (см. рис. 4.30, а).

Дано: Частотные методы анализа и расчёта электрических цепей

Определить сопротивление Частотные методы анализа и расчёта электрических цепей шунта, необходимого для расширения полосы пропускания до 10 кГц.

Решение

1. Рассчитаем волновое сопротивление и резонансную частоту контура:

Частотные методы анализа и расчёта электрических цепей

2.Рассчитаем добротность цепи без шунта. Воспользуемся трехветвевой эквивалентной схемой цепи и соотношением (4.32). Найдем проводимость элементов схемы:

Частотные методы анализа и расчёта электрических цепей

Тогда

Частотные методы анализа и расчёта электрических цепей

3. Определим полосу пропускания

Частотные методы анализа и расчёта электрических цепей

4. Найдем сопротивление шунта, необходимою для расширения полосы до 10 кГц,

В этом случае добротность цепи должна быть равна

Частотные методы анализа и расчёта электрических цепей

Тогда из (4.32) получаем

Частотные методы анализа и расчёта электрических цепей

Следовательно, сопротивление шунта должно быть равно

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.3.

Параллельный колебательный контур с параметрами: Частотные методы анализа и расчёта электрических цепей подключен к источникуЧастотные методы анализа и расчёта электрических цепей

Определить собственную добротность контура, добротность нагруженного контура, абсолютную полосу пропускания и граничные частоты полосы пропускания. Построить резонансную кривую по напряжению на ЭВМ.

Решение

1. Определим волновое сопротивление контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем собственную добротность контура

Частотные методы анализа и расчёта электрических цепей

3. Найдем сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

4. Определим добротность нагруженного контура по формуле (4.31)

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем резонансную частоту

Частотные методы анализа и расчёта электрических цепей

6. Найдем полосу пропускания

Частотные методы анализа и расчёта электрических цепей

7. Определим граничные частоты полосы пропускания:

Частотные методы анализа и расчёта электрических цепей

8. Построим резонансную характеристику контура но напряжению. Из выражения (4.33) запишем

Частотные методы анализа и расчёта электрических цепей

Напряжение па контуре при резонансе 

Частотные методы анализа и расчёта электрических цепей

Для построения резонансной характеристики задаемся характерными значениями частот: Частотные методы анализа и расчёта электрических цепей Результаты расчетов в графическом виде представлены на рис. 4.33.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.4.

Определить резонансную частоту, эквивалентное сопротивление при резонансе и добротность сложного контура (рис. 4.32, а), подключенного к источнику напряжения.

Дано: Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим резонансную частоту и сопротивление параллельного контура при резонансе:

Частотные методы анализа и расчёта электрических цепей

Сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем эквивалентное сопротивление сложного контура II вида

Частотные методы анализа и расчёта электрических цепей

3. Найдем добротность нагруженного контура II  вида

Частотные методы анализа и расчёта электрических цепей

Сравним значения Частотные методы анализа и расчёта электрических цепей с добротностью простого нагруженного контура

Частотные методы анализа и расчёта электрических цепей

Вывод. За счет неполного включения индуктивности Частотные методы анализа и расчёта электрических цепей уменьшилось шунтирующее действие источника. Поэтому добротность сложного контура больше, чем простого с теми же параметрами элементов.

Частотные характеристики связанных колебательных контуров

Основные теоретические сведения:

С целью повышения коэффициента прямоугольности АЧХ контуров применяют связанные контуры последовательного и параллельного питания (рис. 4.37, а, б).

Частотные характеристики связанных контуров рассмотрим на примере системы из двух контуров.
Частотные методы анализа и расчёта электрических цепей

Эквивалентные схемы связанных контуров

Во всех случаях систему связанных контуров можно представить в виде Т- или П-образной эквивалентной схемы (рис. 4.38).

Количественной характеристикой связи является сопротивление связи Частотные методы анализа и расчёта электрических цепей в Т-образной эквивалентной схеме (рис. 4.38,а) или проводимость связи Частотные методы анализа и расчёта электрических цепей в П-образной эквивалентной схеме (рис. 4.38, б).

Удобным параметром для оценки связи является коэффициент связи

В случае реактивной связи для Т-образной схемы

Для П-образной схемы

где — сопротивление (проводимость) связи;Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей— сопротивления (проводимости) контуров, однотипные элементу связи. Для анализа связанных контуров удобно применять схемы, приведенные к первичному (рис. 4.39, а) или ко вторичному (рис. 4.39, б) контуру.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Для этого используют понятия вносимого сопротивления Частотные методы анализа и расчёта электрических цепей и вносимой проводимости Частотные методы анализа и расчёта электрических цепей Эти схемы представляют собой одиночные последовательные (параллельные) контуры с параметрами:

Частотные методы анализа и расчёта электрических цепей

Резонансы в связанных контурах:

При настройке контуров в резонанс добиваются максимального тока (напряжения) во вторичном контуре.

Настройка связанных контуров может производиться различными способами, поэтому различают шесть резонансов. В табл. 4.3, 4.4 приведены виды и условия резонансов, способы настройки и соотношения для токов (напряжений) в связанных контурах последовательного (параллельного) питания.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Резонансные характеристики связанных контуров:

Для двух неидентичных связанных контуров: последовательного питания

Частотные методы анализа и расчёта электрических цепей

где   Частотные методы анализа и расчёта электрических цепей

параллельного питания:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей— параметр связи. 

Если контуры идентичны, то обобщенная расстройка Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

На рис. 4.40 приведены резонансные характеристики при различных факторах связи.

Относительная полоса пропускания:

а) связь слабая Частотные методы анализа и расчёта электрических цепей

б) связь критическая Частотные методы анализа и расчёта электрических цепей

в) связь сильная Частотные методы анализа и расчёта электрических цепей

При Частотные методы анализа и расчёта электрических цепей достигается максимально возможная полоса пропускания Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.5.1.

В системе двух индуктивно связанных контуров (см. рис.4.37,а) известны следующие параметры: коэффициент связи

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Определить емкость Частотные методы анализа и расчёта электрических цепей при которой в системе наступает первый частный резонанс, если частота источника равна 500 кГц.

Решение

Емкость конденсатора Частотные методы анализа и расчёта электрических цепей определим но реактивному сопротивлению первого контура:

Частотные методы анализа и расчёта электрических цепей

отсюда

Частотные методы анализа и расчёта электрических цепей

Определим реактивное сопротивление Частотные методы анализа и расчёта электрических цепей, первого контура из условия первого частного резонанса (см. табл. 4.3)

Частотные методы анализа и расчёта электрических цепей

Peaктивное сопротивление второго контура 

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Рассчитаем полное сопротивление второго контура 

Частотные методы анализа и расчёта электрических цепей

Определим сопротивление связи контуров

Частотные методы анализа и расчёта электрических цепей

Следовательно

Частотные методы анализа и расчёта электрических цепей

Находим емкость первого контура

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.2.

Рассчитать емкости связанных контуров (см. рис. 4.37,а) и оптимальное сопротивление связи, если система настроена и полный резонанс. Определить токи, мощности в контурах при этом режиме, а также КПД системы.

Дано: Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим емкость конденсатора Частотные методы анализа и расчёта электрических цепей, полагая, что

Частотные методы анализа и расчёта электрических цепей

Отсюда

Частотные методы анализа и расчёта электрических цепей

2.  Сопротивление оптимальной связи при полном резонансе

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем токи в первом и втором контурах при полном резонансе

Частотные методы анализа и расчёта электрических цепей

4. Определим активные мощности в первом и втором контурах и КПД связанных контуров:

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.3.

На рис. 4.37, а показана система из двух идентичных связанных контуров с параметрами: Частотные методы анализа и расчёта электрических цепей Рассчитать полосы пропускания одиночного контура и связанных контуров при различной связи: Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим полосу пропускания одиночного контура 

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем полосу пропускания системы связанных контуров:

1)  определим параметр связи для Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Таким образом при Частотные методы анализа и расчёта электрических цепей связь меньше критической Частотные методы анализа и расчёта электрических цепей При этом относительная полоса пропускания

Частотные методы анализа и расчёта электрических цепей

Абсолютная полоса пропускания (рис. 4.41, резонансная кривая А = 0,5)

Частотные методы анализа и расчёта электрических цепей

2) при Частотные методы анализа и расчёта электрических цепей параметр связи Частотные методы анализа и расчёта электрических цепей Таким образом, коэффициент связи является оптимальным, а связь критическая, система настроена в полный резонанс. Полоса пропускания в этом случае

Частотные методы анализа и расчёта электрических цепей

3) если Частотные методы анализа и расчёта электрических цепей то параметр связи Частотные методы анализа и расчёта электрических цепей следовательно, связь больше критической.

Рассчитаем полосу пропускания для этого случая.

Частотные методы анализа и расчёта электрических цепей

Вид резонансных кривых по току и полоса пропускания для критической и сильной связи показаны на рис. 4.41, кривые А = 1 и А = 2.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.4.

Антенный контур (см. рис. 4.37,б) индуктивно связан с входным контуром усилителя высокой частоты. Оба контура настроены в резонанс на частоту Частотные методы анализа и расчёта электрических цепей принимаемого сигнала. В антенном контуре наводится Частотные методы анализа и расчёта электрических цепей

Дано: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Входное сопротивление УВЧ считать бесконечно большим.

Определить емкости и добротности контуров, их взаимную индуктивность, а также ток и напряжение на емкости во вторичном контуре.

Решение

1.Емкости контуров определим из формулы резонансной частоты. Емкость конденсатора первого контура

Частотные методы анализа и расчёта электрических цепей

Емкость конденсатора второго контура

Частотные методы анализа и расчёта электрических цепей
2. Рассчитаем волновое сопротивление контуров:

Частотные методы анализа и расчёта электрических цепей
3. Рассчитаем добротности контуров и параметр связи:

Частотные методы анализа и расчёта электрических цепей
4. Определим взаимную индуктивность двух связанных контуров

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем ток во вторичном контуре. Известно (см. табл. 4.3), что при полном резонансе Частотные методы анализа и расчёта электрических цепей

Тогда, учитывая, что контуры настроены в резонанс, то из (4.34) получаем

Частотные методы анализа и расчёта электрических цепей

Оба контура по условию настроены в резонанс, поэтому расстройки равны нулю:

Частотные методы анализа и расчёта электрических цепей

С учетом этого рассчитаем ток во втором контуре

Частотные методы анализа и расчёта электрических цепей

6. Найдем напряжение на конденсаторе вторичного контура

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.5.

На рис. 4.42 приведена схема одного каскада УПЧ радиоприемника, в котором избирательность обеспечивается двумя связанными контурами с емкостной связью. Оба контура настроены в резонанс на промежуточную частоту Частотные методы анализа и расчёта электрических цепей

Эквивалентная схема этого каскада (рис. 4.43) имеет следующие параметры: Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей

Определить емкости и добротности контуров, емкость связи, напряжение на емкости во вторичном контуре, а также полосу пропускания каскада УПЧ.

Решение

1. Из формулы резонансной частоты найдем емкость первого контура. С учетом влияния выходной емкости транзистора Частотные методы анализа и расчёта электрических цепей и емкости монтажа получаем

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Емкость второго контура с учетом влияния входной емкости транзистора Частотные методы анализа и расчёта электрических цепей и емкости монтажа

Частотные методы анализа и расчёта электрических цепей

2. Определим емкость связи

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем добротности нагруженных контуров при отсутствии связи между ними. Для расчета воспользуемся формулой (4.31)
Частотные методы анализа и расчёта электрических цепей

где

Частотные методы анализа и расчёта электрических цепей

где

Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем параметр связи Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем напряжение на втором контуре. Известно (см. табл. 4.4), что при полном резонансе

Частотные методы анализа и расчёта электрических цепей

Тогда, учитывая, что контуры настроены в резонанс Частотные методы анализа и расчёта электрических цепейиз (4.35) получаем

Частотные методы анализа и расчёта электрических цепей

Найдем проводимость контуров

Частотные методы анализа и расчёта электрических цепей

Тогда

Частотные методы анализа и расчёта электрических цепей

6. Рассчитаем полосу пропускания каскадов УПЧ. учитывая, что А = 1,2.

Частотные методы анализа и расчёта электрических цепей

Частотные методы расчета и построения переходных и установившихся процессов в электрических цепях

Основные теоретические сведения:

Зная частотную характеристику электрической цепи Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей можно определить ее выходную величину при подаче на вход синусоидального (гармонического) сигнала. Действительно, если на вход цепи подано синусоидальное напряжение комплексное изображение которого Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей то в установившемся режиме комплексное изображение выходного напряжения

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей амплитуда и сдвиг по фазе выходных колебаний соответственно.

С помощью частотной характеристики электрической цели можно не только определить выходную величину цепи в установившемся режиме при гармоническом входном воздействии, но и найти реакцию цепи в переходном процессе на произвольное воздействие Частотные методы анализа и расчёта электрических цепей. Действительно, представляя это воздействие в зависимости от того, является оно периодической или непериодической функцией, в виде ряда или интеграла Фурье, т.е. в виде бесконечной суммы гармонических колебаний. По частотной характеристике можно определить реакцию электрической цепи на каждое из этих элементарных колебаний, а затем, просуммировав все реакции, найти результирующую реакцию в виде суммы или интеграла [4].

Найдем реакцию цепи на единичную ступенчатую функцию (т.е. найдем переходную функцию цепи), используя ее частотную характеристику. Как известно, интеграл Фурье для единичной ступенчатой функции имеет вид

Частотные методы анализа и расчёта электрических цепей

т.е. единичная ступенчатая функция может быть представлена как бесконечная сумма элементарных колебаний вида Частотные методы анализа и расчёта электрических цепей

Каждому из этих колебаний соответствует выходное колебание Частотные методы анализа и расчёта электрических цепей а реакция системы на единичную ступенчатую функцию выражается интегралом

Частотные методы анализа и расчёта электрических цепей

Представляя Частотные методы анализа и расчёта электрических цепей в алгебраической форме Частотные методы анализа и расчёта электрических цепей и преобразуя выражение (4.37), получаем следующую формулу для переходной функции |4, 6|:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — вещественная частотная характеристика (ВЧХ) КФ электрической цепи. Полученное выражение связывает ВЧХ КПФ цепи с ее переходной функцией. Таким образом, при частотном методе анализа косвенной характеристикой переходной функции является вещественная частотная характеристика КФ электрической цепи.

Построение переходной функции с помощью вещественной частотной характеристики методами численного интегрирования:

Выражение (4.38) позволяет вычислить переходную функцию ЭЦ и определить качество переходного процесса. Однако интегрирование этого выражения аналитическими методами — задача весьма трудоемкая, а чаще всего просто практически невыполнимая. С применением современных ЭВМ и методов численного интегрирования (метод прямоугольников, трапеций, метод Симпсона и др.) эта задача существенно упрощается, ее решение сводится к составлению программы для ПЭВМ. В инженерной практике интегрирование достаточно осуществлять в области существенных частот от Частотные методы анализа и расчёта электрических цепей В области частот Частотные методы анализа и расчёта электрических цепей влияние ВЧХ Частотные методы анализа и расчёта электрических цепей на переходную функцию (4.38) мало и им можно пренебречь. В dtom случае используют модифицированное выражение от (4.38) [4]

Частотные методы анализа и расчёта электрических цепей

В результате интегрирования получают совокупность значений Частотные методы анализа и расчёта электрических цепейпереходной функции системы и исследуемом интервале времени и строят график переходной функции, по которой определяют показатели качества переходного процесса.

В качестве примера построения алгоритма численного интегрирования рассмотрим интегрирование с точки зрения простоты вычислений и точности результата. Сущность метода заключается в следующем. Пусть необходимо вычислить определенный интеграл

Частотные методы анализа и расчёта электрических цепей

Вид подынтегральной функции, соответствующей выражению

Частотные методы анализа и расчёта электрических цепей

при фиксированном времени Частотные методы анализа и расчёта электрических цепей приведен на рис. 4.47, кривая Частотные методы анализа и расчёта электрических цепей для t = 10 с, кривая 2 для Частотные методы анализа и расчёта электрических цепей, а кривая 3 изображает ВЧХ электрической цепи. Функция Частотные методы анализа и расчёта электрических цепей представляет функцию Частотные методы анализа и расчёта электрических цепей модулированную «замечательным» синусом. Известно, что интеграл (4.40) численно равен площади под кривой функции Частотные методы анализа и расчёта электрических цепей Если интервал аргумента Частотные методы анализа и расчёта электрических цепей разбить на Частотные методы анализа и расчёта электрических цепей равных частей, то длина одного интервала будет равна Частотные методы анализа и расчёта электрических цепей Площадь под кривой можно аппроксимировать суммой площадей прямоугольных трапеций с основаниями Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей и высотой Частотные методы анализа и расчёта электрических цепейТогда интеграл (4.40) можно представить как сумму площадей прямоугольных трапеций:

Частотные методы анализа и расчёта электрических цепей

Очевидно, что погрешность численного интегрирования зависит и от выбора числа интервалов Частотные методы анализа и расчёта электрических цепей разбиения аргумента Частотные методы анализа и расчёта электрических цепей при конкретном времени Частотные методы анализа и расчёта электрических цепей При увеличении времени , как видно из рис. 4.47, период подынтегральной функции уменьшается. Следовательно, необходимо увеличивать число интервалов, которое определился выражением
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

При этом одно полное колебание подынтегральной функции представляется не менее чем шестнадцатью трапециями.

В качестве примера для построения переходной функции возьмем электрическую цепь, ВЧХ которой была построена и приведена на рис. 4.47 (кривая 3). На рис. 4.48 приведена переходная функция этой сложной электрической цепи.

Переходная функция на рис. 4.48 получена с помощью пакета ПП «Сигнал» [5].

Для вычисления интеграла (4.39) необходимо определить значение частоты для верхнего предела интегрирования Частотные методы анализа и расчёта электрических цепей Это значение легко может быть определено из кривой вещественной частотной характеристики (ВЧХ) КФ электрической цепи. В качестве примера возьмем простую интегрирующую цепь (см. рис. 4.1), КФ которой имеет вид

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Алгебраическая форма КФ
Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — вещественная и мнимая части КФ. Построим кривуюЧастотные методы анализа и расчёта электрических цепей (рис. 4.49) в среде Mathcad, если Частотные методы анализа и расчёта электрических цепей.

Из графика ВЧХ видно, что при Частотные методы анализа и расчёта электрических цепей Влияние ВЧХ в области больших частот на переходную функцию несущественно, поэтому за частоту Частотные методы анализа и расчёта электрических цепейможно принять частоту, при которой ВЧХ принимает значение Частотные методы анализа и расчёта электрических цепей Эту частоту принято называть «существенной частотой» и обозначать Частотные методы анализа и расчёта электрических цепей. В нашем примере Частотные методы анализа и расчёта электрических цепей Переходная функция, вычисленная по выражению (4.39), приведена на рис. 4.49.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Для случая электрических цепей с дифференцирующими свойствами может оказаться, что при Частотные методы анализа и расчёта электрических цепей ВЧХ КФ этой цепи Частотные методы анализа и расчёта электрических цепейТогда для расчета переходной функции необходимо использовать мнимую частотную характеристику (МЧХ) в соответствии с выражением

Частотные методы анализа и расчёта электрических цепей

Приведенный пример наглядно показывает, что использование частотных характеристик для построения временных характеристик с помощью ЭВМ существенно расширяет возможности частотных методов анализа электрических цепей.

Спектральный метод расчета и построения выходных величин электрических цепей при сложных входных воздействиях:

Применение частотных методов при анализе и синтезе электрических цепей с требуемыми динамическими характеристиками и использованием ЭВМ позволяет не только строить переходные характеристики, но и строить реакцию цепи на любые детерминированные воздействия, оценивать их в установившихся режимах.

Математической основой частотных методов анализа электрических цепей и систем автоматического управления является обратное преобразование Фурье, позволяющее получать изображение выходного сигнала системы y(t) с помощью вещественной и мнимой частотных характеристик систем. В свою очередь, по вещественной или мнимой частотным характеристикам можно построить переходный процесс выходной величины и оценить реакцию цепи в переходном и установившемся режимах.

Как известно, реакция системы определяется по формуле обратного преобразования Фурье [4]

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

После соответствующих преобразований выражение (4.46) примет вид:

I) для ступенчатой входной функции Частотные методы анализа и расчёта электрических цепей спектром Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

2) для линейной входной функции Частотные методы анализа и расчёта электрических цепей со спектром Частотные методы анализа и расчёта электрических цепей
Частотные методы анализа и расчёта электрических цепей
y{t) = vP(0)t+±l
2 r0(
Л» И
(4.48)
О)
3) для параболической входной функции Частотные методы анализа и расчёта электрических цепей со спектром Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
4) для полиномиального воздействия видаЧастотные методы анализа и расчёта электрических цепей 

Частотные методы анализа и расчёта электрических цепей

Применение ЭВМ и численных методов интегрирования позволяет отказаться от графических и табличных методов построения переходных и других необходимых функций в электрических цепях.

Примеры решения типовых задач:

Пример 4.6.1.

Определить комплексный коэффициент передачи по напряжению для дифференцирующего Частотные методы анализа и расчёта электрических цепей-контура (рис. 4.50,а), рассчитать и построить переходную функцию контура с помощью ВЧХ.

Частотные методы анализа и расчёта электрических цепей

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.50, б).

2. Определим комплексное напряжение на выходе цепи в виде

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение, вынеся за скобки в числителе и знаменателе члены, не содержащие Частотные методы анализа и расчёта электрических цепей После преобразований получим
Частотные методы анализа и расчёта электрических цепей
Следовательно
Частотные методы анализа и расчёта электрических цепей
Введем обозначения:

Частотные методы анализа и расчёта электрических цепей

Величина Частотные методы анализа и расчёта электрических цепей называется постоянной времени цепи и измеряется в секундах. Величина k имеет смысл коэффициента усиления по напряжению на постоянном токе, т. е. на частоте Частотные методы анализа и расчёта электрических цепей С учетом принятых обозначений

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений ВЧХ и МЧХ запишем комплексную функцию и алгебраической форме

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Примем:Частотные методы анализа и расчёта электрических цепей

Для определения частоты Частотные методы анализа и расчёта электрических цепей в среде Mathcad построим кривые ВЧХ и МЧХ (рис. 4.51).

Из частотных характеристик КПФ принимаем Частотные методы анализа и расчёта электрических цепей Для построения переходной функции воспользуемся выражением (4.45). Построение проведем также в среде Mathcad.Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Переходная функция, показанная на рис.4.52, соответствует дифференцирую щему фазоопережающему контуру, который широко применяется в электронных и радиотехнических устройствах, системах автоматического управления.

Пример 4.6.2.

Для электрической цепи, изображенной на рис, 4.53, определить КПФ Частотные методы анализа и расчёта электрических цепей построить ВЧХ Частотные методы анализа и расчёта электрических цепей и МЧХ Частотные методы анализа и расчёта электрических цепей. Рассчитать и построить график переходной функции. Параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей  Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1. Найдем комплексную функцию Частотные методы анализа и расчёта электрических цепей по формуле делителя напряжения

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение к виду 

Частотные методы анализа и расчёта электрических цепей

Обозначим:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений ВЧХ и МЧХ запишем комплексную функцию и алгебраической форме

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Для определения частоты Частотные методы анализа и расчёта электрических цепей в среде Mathcad построим кривые ВЧХ и МЧХ (рис. 4.54).

По виду ВЧХ и МЧХ определяем, что для построения переходной функции необходимо применить МЧХ. Примем из графика МЧХ Частотные методы анализа и расчёта электрических цепей Переходная функция и программа для ее вычисления и построения приведена на рис. 4.55.

Из рис. 4.55 видно, что переходная функция соответствует интегрирующему контуру.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.6.3.

Определить комплексный коэффициент передачи интегрирующей цепи (рис. 4.56, а), используя метод контурных токов. Построить в среде Mathcad графики АЧХ, ВЧХ, МЧХ. Рассчитать и построить эпюру входного и выходного напряжения, если на вход цепи поступает напряжение вида Частотные методы анализа и расчёта электрических цепей где Частотные методы анализа и расчёта электрических цепей

Параметры цепи: Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1.Представим цепь комплексной схемой замещения (рис. 4.56, б). Данная цепь имеет два независимых контура. Ток Частотные методы анализа и расчёта электрических цепей в первом контуре замыкается через источник, который на схеме не изображен. Направление контурных тиков выбираем одинаковым.

2.Составим матрицы контурных сопротивлений для двух независимых контуров

Частотные методы анализа и расчёта электрических цепей

3.Определим комплексный коэффициент передачи, используя соотношение, приведенное в табл. 4.1.

Частотные методы анализа и расчёта электрических цепей

где сопротивление нагрузки Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Подставляя найденные выражения, получаем
Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

т.е.  Частотные методы анализа и расчёта электрических цепей

где  Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем Частотные методы анализа и расчёта электрических цепей для крайних значений частоты Частотные методы анализа и расчёта электрических цепей и Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Объяснить полученные результаты можно, рассуждая так: на нулевой частоте (режим постоянного тока) сопротивление емкости бесконечно велико, ток в ней равен нулю, что эквивалентно разрыву этой ветви. При этом цепь становится резистивным делителем напряжения с передаточной функцией Частотные методы анализа и расчёта электрических цепей = = 0,75. С ростом частоты емкостное сопротивление уменьшается. Если Частотные методы анализа и расчёта электрических цепей   тоЧастотные методы анализа и расчёта электрических цепей и шунтирует сопротивлениеЧастотные методы анализа и расчёта электрических цепей. При этом

Частотные методы анализа и расчёта электрических цепей

5.Определим выражения для АЧХ, ВЧХ, МЧХ. Представим КГ1Ф (4.55) в алгебраической форме

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей вещественная частотная характеристика:

Частотные методы анализа и расчёта электрических цепей — мнимая частотная характеристика.
Амплитудно-частотную характеристику запишем в виде

Частотные методы анализа и расчёта электрических цепей

6. В среде Mathcad построим частотные характеристики и определим Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

По ВЧХ на рис. 4.57 определяем, что существенная частота Частотные методы анализа и расчёта электрических цепей

7. Построим переходную функцию электрической цепи, которая представлена на рис. 4.58.

Переходная функция электрической цепи соответствует апериодическому звену.

Частотные методы анализа и расчёта электрических цепей

8. Построим реакцию электрической цепи на напряжение, изменяющееся но линейному закону (рис. 4.59).

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

  • Операторные передаточные функции
  • Свободные колебания в пассивных электрических цепях
  • Цепи с распределёнными параметрами
  • Волновые параметры длинной линии
  • Энергетические характеристики двухполюсников
  • Комплексные функции электрических цепей
  • Гармонические колебания в колебательном контуре
  • Частотные характеристики линейных электрических цепей

Понравилась статья? Поделить с друзьями:
  • Как составить акт об уничтожении бланков
  • Как составить сипр по фгос вариант 2
  • Как найти терминал а аэропорта шереметьево
  • Как найти процент от числа людей
  • Как найти на самсунг галакси карту памяти