Как найти циклическую частоту зная частоту

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

  • амплитуда,
  • период,
  • частота,
  • циклическая частота,
  • фаза,
  • начальная фаза.

Характеристики колебаний

Рис. 1. Основные характеристики колебаний – это амплитуда, период и начальная фаза

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени (large Delta t), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Что такое амплитуда

Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.

Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.

В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.

Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.

К примеру, пусть колеблется величина ( large x ). Тогда символом ( large x_{0} ) обозначают амплитуду колебаний этой величины.

Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».

С помощью графика амплитуду можно определить так (рис. 2):

Амплитуду на графике находят так

Рис. 2. Амплитуда – это максимальное отклонение от горизонтальной оси либо вверх, либо вниз. Горизонтальная ось проходит через уровень нуля на оси, на которой отмечены амплитуды

Что такое период

Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.

Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.

( large T left( c right) ) – период колебаний.

Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.

Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.

Период – это расстояние между двумя одинаковыми значениями колеблющейся величины

Рис. 3. Период колебаний – это горизонтальное расстояние между двумя похожими точками на графике

Период – это время одного полного колебания.

На графике период найти удобнее одним из таких способов (рис. 4):

По графику колебаний период удобно определять так

Рис. 4. Удобно определять период, как расстояние между двумя соседними вершинами, либо между двумя впадинами

Что такое частота

Обозначают ее с помощью греческой буквы «ню» ( large nu ).

Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».

Поэтому, размерность частоты — это единицы колебаний в секунду:

( large nu left( frac{1}{c} right) ).

Иногда в учебниках встречается такая запись ( large displaystyle nu left( c^{-1} right) ), потому, что по свойствам степени ( large  displaystyle frac{1}{c} = c^{-1} ).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

[ large displaystyle boxed{ frac{ 1 text{колебание}}{1 text{секунда}} = 1 text{Гц} }]

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

[ large boxed{ nu = frac{1}{T} }]

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

Частота – это количество периодов, уместившихся в одну секунду

Рис. 5. На графике частота – это количество периодов, уместившихся в одну секунду

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол (large 2pi) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный (large 2pi) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

( large displaystyle omega left( frac{text{рад}}{c} right) )

Примечание: Величину ( large omega ) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за (large 2pi) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный (large 2pi) секунд?».

Обычная ( large nu ) и циклическая ( large omega ) частота колебаний связаны формулой:

[ large boxed{ omega = 2pi cdot nu }]

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину ( large omega ), нужно сначала найти период T.

Затем, воспользоваться формулой ( large displaystyle nu = frac{1}{T} ) и вычислить частоту ( large nu ).

И только после этого, с помощью формулы ( large omega = 2pi cdot nu ) посчитать циклическую ( large omega ) частоту.

Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.

Определить величину ( large omega ) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный (large 2pi), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

Циклическая частота – это количество периодов, уместившихся в 2 пи секунд

Рис. 6. На графике циклическая (круговая) частота – это количество периодов, уместившихся в 2 пи секунд

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, (large varphi_{0} ).

(large varphi_{0} left(text{рад} right) ) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

Начальная фаза – это угол отклонения качелей перед началом их колебаний

Рис. 7. Угол отклонения качелей перед началом колебаний

Рассмотрим теперь, как величина (large varphi_{0} ) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы (large varphi_{0} ) принимаем равной нулю.

Начальная фаза влияет на сдвиг графика по горизонтальной оси

Рис. 8. Вертикальное положение стартовой точки в момент времени t = 0 и сдвиг графика по горизонтали определяется начальной фазой

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время (large Delta t), начальный угол (large varphi_{0} ) будет отличаться от нулевого значения.

Определим угол (large varphi_{0} ) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина (large varphi_{0} ) — в радианах. Значит, нужно связать формулой кусочек времени (large Delta t) и соответствующий ему начальный угол (large varphi_{0} ).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

  • Сначала определим интервал времени, обозначенный синими стрелками на рисунке. На осях большинства графиков располагают цифры, по которым это можно сделать. Как видно из рис. 8, этот интервал (large Delta t) равен 1 сек.
  • Затем определим период. Для этого отметим одно полное колебание на красной кривой. Колебание началось в точке t = 1, а закончилось в точке t =5. Взяв разность между этими двумя точками времени, получим значение периода.

[large T = 5 – 1 = 4 left( text{сек} right)]

Из графика следует, что период T = 4 сек.

  • Рассчитаем теперь, какую долю периода составляет интервал времени (large Delta t). Для этого составим такую дробь (large displaystyle frac{Delta t }{T} ):

[large frac{Delta t }{T} = frac{1}{4} ]

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

  • Нам известно, что одно полное колебание — один полный оборот (цикл), синус (или косинус) совершает, проходя каждый раз угол (large 2pi ). Найдем теперь, как связана найденная доля периода с углом (large 2pi ) полного цикла.

Для этого используем формулу:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large displaystyle frac{1}{4} cdot 2pi = frac{pi }{2} =varphi_{0} )

Значит, интервалу (large Delta t) соответствует угол (large displaystyle frac{pi }{2} ) – это начальная фаза для красной кривой на рисунке.

  • В заключение обратим внимание на следующее. Начало ближайшего к точке t = 0 периода красной кривой сдвинуто вправо. То есть, кривая запаздывает относительно «чистого» синуса.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

[large varphi_{0} = — frac{pi }{2} ]

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол (large displaystyle frac{pi }{2} ) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая (large varphi_{0} = 0 ).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину (large varphi_{0} ) записываем со знаком «-».

Примечания:

  1. Физики начинают отсчет времени из точки 0. Поэтому, время в задачах будет величиной не отрицательной.
  2. На графике колебаний начальная фаза ( varphi_{0}) влияет на вертикальный сдвиг точки, из которой стартует колебательный процесс. Значит, можно для простоты сказать, что колебания имеют начальную точку.

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

Фаза изменяется в процессе колебаний

Рис. 9. Угол отклонения от равновесия – фаза, изменяется в процессе колебаний

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают (varphi).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной ( varphi_{0}) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто ( varphi) фазой (рис. 10б) – это величина переменная.

Фаза и начальная фаза имеют различия

Рис. 10. Перед началом колебаний задаем начальную фазу — начальный угол отклонения от равновесия. А угол, который изменяется во время колебаний, называют фазой

Как на графике колебаний отметить фазу

На графике колебаний фаза (large varphi) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

Фазу обозначают бегущей по кривой точкой

Рис. 11. На графике колебаний фаза – это точка, скользящая по кривой. В различные моменты времени она находится в разных положениях на графике

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины (large omega) — циклическая частота и (large varphi_{0}) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу (large varphi), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

Обозначим их:

( large varphi_{01}) – для первого процесса и,

( large varphi_{02}) – для второго процесса.

Разность фаз двух колебаний

Рис. 12. Для двух колебаний можно ввести понятие разности фаз

Определим разность фаз между первым и вторым колебательными процессами:

[large boxed{ Delta varphi = varphi_{01} —  varphi_{02} }]

Величина (large Delta varphi ) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Как связаны характеристики колебаний — формулы

Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.

Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.

  • Связь между периодом, количеством колебаний и общим временем колебательного процесса:

[large boxed{ T cdot N = t }]

( large T left( c right) ) – время одного полного колебания (период колебаний);

( large N left( text{шт} right) ) – количество полных колебаний;

( large t left( c right) ) – общее время для нескольких колебаний;

  • Период и частота колебаний связаны так:

[large boxed{ T = frac{1}{nu} }]

(large nu left( text{Гц} right) ) – частота колебаний.

  • Количество и частота колебаний связаны формулой:

[large boxed{ N = nu cdot t}]

  • Связь между частотой и циклической частотой колебаний:

[large boxed{ nu cdot 2pi = omega }]

(large displaystyle omega left( frac{text{рад}}{c} right) ) – циклическая (круговая) частота колебаний.

  • Фаза и циклическая частота колебаний связаны так:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

(large varphi_{0} left( text{рад} right) ) — начальная фаза;

(large varphi left( text{рад} right) ) – фаза (угол) в выбранный момент времени t;

  • Между фазой и количеством колебаний связь описана так:

[large boxed{ varphi = N cdot 2pi }]

  • Интервал времени (large Delta t ) (сдвигом) и начальная фаза колебаний связаны:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large Delta t left( c right) ) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.

Формула циклической частоты колебаний в физике

Формула циклической частоты колебаний

Определение и формула циклической частоты колебаний

Определение

Циклическая частота — это параметр, характеризующий колебательные движения. Обозначают эту скалярную
величину как $omega $, иногда ${omega }_0$.

Напомним, что уравнение гармонических колебаний параметра $xi $ можно записать как:

[xi left(tright)=A{cos left({omega }_0t+{varphi }_0right) }left(1right),]

где $A={xi }_{max}$ — амплитуда колебаний величины $xi $; $left({omega }_0t+{varphi }_0right)$=$varphi $ — фаза колебаний; ${varphi }_0$ — начальная фаза колебаний.

Циклическую частоту при гармонических колебаниях определяют как частную производную от фазы колебаний ($varphi $) по времени ($t$):

[{omega }_0=frac{?varphi }{partial t}=dot{varphi }left(2right).]

Циклическая частота колебаний связана с периодом ($T$) колебаний формулой:

[{omega }_0=frac{2pi }{T}left(3right).]

Циклическую частоту с частотой $?$$?$ связывает выражение:

[{omega }_0=2pi nu left(4right).]

Формулы для частных случаев нахождения циклической частоты

Пружинный маятник совершает гармонические колебания с циклической частотой равной:

[{omega }_0=sqrt{frac{k}{m}}left(5right),]

$k$ — коэффициент упругости пружины; $m$ — масса груза на пружине.

Гармонические колебания физического маятника происходят с циклической частотой равной:

[{omega }_0=sqrt{frac{mga}{J}}left(6right),]

где $J$ — момент инерции маятника относительно оси вращения; $a$ — расстояние между центром масс маятника и точкой подвеса; $m$ — масса маятника.

Частным случаем физического маятника является математический маятник (физический маятник, масса которого сосредоточена в точке), циклическая частота его колебаний может быть найдена как:

[{omega }_0=sqrt{frac{g}{l}}left(7right),]

где $l$ — длина подвеса, на которой находится материальная точка.

Частота колебаний в электрическом контуре равна:

[{omega }_0=frac{1}{sqrt{LC}}left(8right),]

где $C$ — емкость конденсатора, который входит в контур; $L$ — индуктивность катушки контура.

Если колебаний являются затухающими, то их частоту находят как:

[omega =sqrt{{omega }^2_0-{delta }^2}left(9right),]

где $delta $ — коэффициент затухания; в случае с затуханием колебаний, ${omega }_0$ называют собственной угловой частотой колебаний.

Примеры задач с решением

Пример 1

Задание. В электрический колебательный контур (рис.1) входит соленоид, длина которого $l$, площадь поперечного сечения $S_1$, число витков $N $и плоский конденсатор с расстоянием между пластинами $d$, площадью пластин $S_2$. Какова частота собственных колебаний контура (${omega }_0$)?

Формула циклической частоты колебаний, пример 1

Решение. Основой для решения задачи служить формула для частоты колебаний в электрическом контуре:

[{omega }_0=frac{1}{sqrt{LC}}left(1.1right).]

Элементом, обладающим индукцией в нашем контуре является соленоид. Индуктивность соленоида равна:

[L=mu {mu }_0frac{N^2S_1}{l}left(1.2right),]

где $mu =1$, ${mu }_0$ — магнитная постоянная.

Емкость плоского конденсатора вычислим по формуле:

[C=frac{varepsilon {varepsilon }_{0 }S_2}{d}left(1.3right),]

где $varepsilon =1$, ${varepsilon }_{0 }$ — электрическая постоянная.

Правые части выражений (1.2) и (1.3) подставим в (1.1) вместо соответствующих величин:

[{omega }_0=frac{1}{sqrt{LC}}=sqrt{frac{ld}{{{mu }_0{varepsilon }_{0 }N}^2S_1S_2}}left(1.4right).]

Ответ. ${omega }_0=sqrt{frac{ld}{{{mu }_0{varepsilon }_{0 }N}^2S_1S_2}}$

Пример 2

Задание. Чему равна циклическая частота гармонических колебаний материальной точки, если амплитуда скорости точки равна ${dot{x}}_{max}=v_0$, амплитуда ее ускорения: ${ddot{x}}_{max}=a_0$? Начальная фаза колебаний равна нулю.

Решение. Из контекста условий задачи понятно, что колебания совершает координата $x$, поэтому уравнение колебаний (в общем виде) запишем как:

[xleft(tright)=A{cos left({omega }_0t+{varphi }_0right)= }A{cos left({omega }_0tright) }left(2.1right),]

По условию задачи ${varphi }_0$=0. Тогда уравнение для скорости изменения параметра $xleft(tright)$ имеет вид:

[dot{x}left(tright)=vleft(tright)=-A{omega }_0{sin left({omega }_0tright)left(2.2right). }]

Из выражения (2.2) следует, что:

[{dot{x}}_{max}=v_0=A{omega }_0left(2.3right).]

Уравнение для ускорения материальной точки, используя (2.2) запишем как:

[ddot{x}left(tright)=aleft(tright)=-A{{omega }_0}^2{cos left({omega }_0tright)left(2.4right). }]

Получаем, что:

[{ddot{x}}_{max}=A{{omega }_0}^2=a_0 left(2.5right).]

Мы получили следующую систему из двух уравнений с двумя неизвестными:

[left{ begin{array}{c}
v_0=A{omega }_0 \
a_0=A{{omega }_0}^2 end{array}
right.left(2.6right).]

Найдем отношение $frac{a_0}{v_0}$, получим:

[frac{a_0}{v_0}={omega }_0.]

Ответ. ${omega }_0=frac{a_0}{v_0}$

Читать дальше: формула частоты колебаний пружинного маятника.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Циклическая частота колебаний


Циклическая частота колебаний

4.6

Средняя оценка: 4.6

Всего получено оценок: 207.

4.6

Средняя оценка: 4.6

Всего получено оценок: 207.

Любые колебательные процессы в Природе (в том числе и непериодические) могут быть представлены в виде бесконечной суммы простых гармонических колебаний. Поэтому в первую очередь изучаются гармонические колебания. Рассмотрим такую характеристику этих колебаний, как циклическая частота.

Период и частота гармонических колебаний

Впервые гармоническими колебаниями заинтересовались еще античные философы, изучая вопросы музыкальной гармонии. Поэтому простейшие колебания, происходящие по закону круговых функций (синуса или косинуса), называются гармоническими.

Формула гармонических колебаний:

$$x=Asin(omega t+varphi)$$

Рис. 1. График гармонических колебаний.

Как можно видеть из графика колебаний (а также из изучения круговых функций в математическом анализе), функции эти регулярно повторяют свои значения. Более того, регулярно повторяется форма графика колебаний. Это свойство функции называется периодичностью. То есть, функция, обладающая периодичностью, имеет равные значения на промежутках, равных своему периоду.

Период обозначается латинской буквой $T$. Однако, физический и математический подход к измерению периода немного различен.

В математике в качестве аргумента круговой функции рассматривается угол поворота вектора, образующего ее, и этот угол удобно измерять в радианах (каждый радиан равен дуге, имеющей длину радиуса). В радианах измеряется и период круговой функции. Для простого синуса или косинуса $T = 2pi$.

Период синуса и косинуса

Рис. 2. Период синуса и косинуса.

В физике угол поворота менее важен, нередко такой угол даже невозможно указать (например, для колебаний пружинного маятника). Поэтому в физике период измеряется в единицах времени – секундах. Дополнительно это дает возможность ввести специальную характеристику, позволяющую определить «скорость» колебаний – частоту (обозначается греческой буквой $nu$ («ню»).

Если период показывает, за сколько времени совершается одно колебание, то частота показывает, сколько колебаний совершается за одну секунду:

$$nu= {1over T}$$

Частота измеряется в колебаниях в секунду или Герцах (Гц). Один герц – это одно колебание в секунду.

Круговая частота

Как видим, физический и математический подход к описанию периода функций несколько отличаются, и возникает вопрос их связи.

Из приведенной выше формулы гармонических колебаний можно видеть, что она имеет период:

$$T = {2pi over omega}$$

В эту формулу входит параметр $omega$, который обратно пропорционален периоду. При сравнении этой формулы с формулой частоты можно получить:

$$T = {2pi over omega}={1over nu}$$

Или, после упрощений:

$$omega = 2pi nu$$

Таким образом, параметр $omega$ в $2pi$ раз больше частоты колебаний. Поскольку в одном круге $2pi$ радиан, то параметр $omega$ называется «круговой» или «циклической» частотой.

Физический смысл частоты – это количество колебаний, происходящих в системе за единицу времени, а физический смысл круговой частоты – это количество радиан, проходящих функцией, описывающей систему, за единицу времени.

Круговая (циклическая) частота

Рис. 3. Круговая (циклическая) частота.

Таким образом, удобный и наглядный параметр частоты может быть легко преобразован для вида, удобного в математических преобразованиях.

Заключение

Что мы узнали?

Круговая (циклическая) частота – это важный параметр гармонического колебания, удобный в математической обработке функций. Круговая частота обозначает количество радиан, прошедших гармонической функцией за единицу времени. Она прямо пропорциональна обычной частоте.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.6

Средняя оценка: 4.6

Всего получено оценок: 207.


А какая ваша оценка?

Угловая частота
ω
Размерность T
−1
Единицы измерения
СИ рад/с
СГС рад/с
Другие единицы градус/с

Углова́я частота́
(синонимы: радиальная частота, циклическая частота, круговая частота, частота вращения) — скалярная физическая величина, мера частоты вращательного или колебательного движения. В случае вращательного движения угловая частота равна модулю вектора угловой скорости. В Международной системе единиц (СИ) и системе СГС угловая частота выражается в радианах в секунду, её размерность обратна размерности времени (радианы безразмерны).

Угловая частота является производной по времени от фазы колебания:

ω = ∂ φ / ∂ t .

Другое распространённое обозначение ω = φ ˙ . >.>

Угловая частота связана с частотой ν соотношением [1]

ω = 2 π ν . u >.>

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:

ω = 360 ∘ ν . u >.>

В случае вращательного движения угловая частота численно равна углу, на который повернется вращающееся тело за единицу времени (то есть равна модулю вектора угловой скорости), в случае колебательного движения — приращению полной фазы колебания за единицу времени. Численно угловая (циклическая) частота равна числу циклов (колебаний, оборотов) за 2 π единиц времени.

Введение циклической частоты (в её основной размерности — радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC

-контура равна ω L C = 1 / L C , =1/>,> тогда как обычная резонансная частота ν L C = 1 / ( 2 π L C ) . u _=1/(2pi >).>

В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что переводные множители 2 π и 1/(2 π ), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

Амплитуда колебаний (лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша­рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах, санти­метрах и т. д. На графике колебаний амплитуда определяется как макси­мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с.

Единица частоты в СИ названа герцем (Гц) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v) равна 1 Гц, то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

.

В теории колебаний пользуются также понятием циклической, или круговой частоты ω. Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за 2π секунд.

Примечания

  1. ↑ Частота Статья в Научно-техническом энциклопедическом словаре.
  2. ↑ Поставлен новый рекорд точности атомных часов. Membrana (5 февраля 2010). Проверено 4 марта 2011. Архивировано 9 февраля 2012 года.
  3. ↑ Финк Л. М. Сигналы, помехи, ошибки… Заметки о некоторых неожиданностях, парадоксах и заблуждениях в теории связи. — М.: Радио и связь, 1978, 1984.
  4. ↑ Угловая частота. Большой энциклопедический политехнический словарь. Проверено 27 октября 2021.
  5. ↑ Чертов А. Г. Единицы физических величин. — М.: «Высшая школа», 1977. — С. 33. — 287 с.
  6. ↑ Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 104. — 240 с. — ISBN 5-7050-0118-5.
  7. ↑ IEC History. Iec.ch. Проверено 2 июня 2013. Архивировано 2 июня 2013 года.
  8. ↑ Bakshi, K.A. Electronic Measurement Systems. — US : Technical Publications, 2008. — P. 4-14. — ISBN 978-81-8431-206-5.
  9. ↑ Иногда за границу между инфразвуком и слышимым звуком принимают частоту 16 Гц.

Примеры движения

Колебательное движение является одним из наиболее распространенных в природе. Например, можно представить себе струны музыкальных инструментов, качели или голосовые связки человека.

В физике колебаниями называются процессы, которые повторяются через равные промежутки времени. Подобные движения рассматривается посредством нескольких моделей:

  • тела, подвешенного на пружине (двигающееся по направлению вверх-вниз);
  • груза на нитке;
  • электрического контура и других.

Амплитуда, период и частота

Если подвесить одновременно два груза на две разные нити и запустить их, то можно заметить, что расстояние отклонения груза от среднего положения до крайнего — разное.

Это величина носит название амплитуды. Обозначается буквой А и измеряется в системе Си в метрах. Также для обозначения подобного движения применяются следующие термины:

  • Время, за которое маятник приходит в одно и то же положение, называется периодом колебаний.
  • Количество колебаний в единицу времени представляет собой частоту. Она измеряется в Герцах (Гц). Имеет обратную зависимость от периода.
  • Циклическая частота колебаний (угловая, круговая) представляет собой количество колебаний за 2 π секунд. Обозначается греческой буквой омега. Она вводится для упрощения расчетов в теоретической физике и электронике. Единица измерения циклической частоты рад/с.
  • Если имеется два графика функций с одинаковой частотой, но сдвинуты относительно друг друга, то различна их фаза колебаний.

Метрологические аспекты

Для измерения частоты применяются частотомеры разных видов, в том числе: для измерения частоты следования импульсов — электронно-счётные и конденсаторные, для определения частот спектральных составляющих — резонансные и гетеродинные частотомеры, а также анализаторы спектра. Для воспроизведения частоты с заданной точностью используют различные меры — стандарты частоты (высокая точность), синтезаторы частот, генераторы сигналов и др. Сравнивают частоты компаратором частоты или с помощью осциллографа по фигурам Лиссажу.

Эталоны

Для поверки средств измерения частоты используются национальные эталоны частоты. В России к национальным эталонам частоты относятся:

  • Государственный первичный эталон единиц времени, частоты и национальной шкалы времени ГЭТ 1-98 — находится во ВНИИФТРИ.
  • Вторичный эталон единицы времени и частоты ВЭТ 1-10-82 — находится в СНИИМ (Новосибирск).

Вычисления

Вычисление частоты повторяющегося события осуществляется посредством учета количества появлений этого события в течение заданного периода времени. Полученное количество делится на продолжительность соответствующего временного отрезка. К примеру, если на протяжении 15 секунд произошло 71 однородное событие, то частота составит

Если полученное количество отсчетов невелико, то более точным приемом является измерение временного интервала для заданного числа появлений рассматриваемого события, а не нахождение количества событий в пределах заданного промежутка времени[8]. Использование последнего метода вводит между нулевым и первым отсчетом случайную ошибку, составляющую в среднем половину отсчета; это может приводить к появлению средней ошибки в вычисляемой частоте Δν = 1/(2 Tm), или же относительной погрешности Δν/ν = 1/(2vTm), гдеTm — временной интервал, а ν — измеряемая частота. Ошибка убывает по мере возрастания частоты, поэтому данная проблема является наиболее существенной для низких частот, где количество отсчетовN мало.

Методы измерения

Стробоскопический метод

Использование специального прибора — стробоскопа — является одним из исторически ранних методов измерения частоты вращения или вибрации различных объектов. В процессе измерения задействуется стробоскопический источник света (как правило, яркая лампа, периодически дающая короткие световые вспышки), частота работы которого подстраивается при помощи предварительно откалиброванной хронирующей цепи. Источник света направляется на вращающийся объект, а затем частота вспышек постепенно изменяется. Когда частота вспышек уравнивается с частотой вращения или вибрации объекта, последний успевает совершить полный колебательный цикл и вернуться в изначальное положение в промежутке между двумя вспышками, так что при освещении стробоскопической лампой этот объект будет казаться неподвижным. У данного метода, впрочем, есть недостаток: если частота вращения объекта (x) не равна частоте строба (y), но пропорциональна ей с целочисленным коэффициентом (2x, 3x и т. п.), то объект при освещении все равно будет выглядеть неподвижным.

Стробоскопический метод используется также для точной настройки частоты вращения (колебаний). В этом случае частота вспышек фиксирована, а изменяется частота периодического движения объекта до тех пор, пока он не начинает казаться неподвижным.

Метод биений

Близким к стробоскопическому методу является метод биений. Он основан на том, что при смешивании колебаний двух частот (опорной ν и измеряемой ν’1) в нелинейной цепи в спектре колебаний появляется также разностная частота Δν = |ν − ν’1|, называемая частотой биений (при линейном сложении колебаний эта частота является частотой огибающей суммарного колебания). Метод применим, когда более предпочтительным является измерение низкочастотных колебаний с частотой Δf. В радиотехнике этот метод также известен под названием гетеродинного метода измерения частоты. В частности, метод биений используется для точной настройки музыкальных инструментов. В этом случае звуковые колебания фиксированной частоты (например, от камертона), прослушиваемые одновременно со звуком настраиваемого инструмента, создают периодическое усиление и ослабление суммарного звучания. При точной настройке инструмента частота этих биений стремится к нулю.

Применение частотомера

Высокие частоты обычно измеряются при помощи частотомера. Это электронный прибор, который оценивает частоту определенного повторяющегося сигнала и отображает результат на цифровом дисплее или аналоговом индикаторе. Дискретные логические элементы цифрового частотомера позволяют учитывать количество периодов колебаний сигнала в пределах заданного промежутка времени, отсчитываемого по эталонным кварцевым часам. Периодические процессы, которые не являются по своей природе электрическими (такие, к примеру, как вращение оси, механические вибрации или звуковые волны), могут быть переведены в периодический электрический сигнал при помощи измерительного преобразователя и в таком виде поданы на вход частотомера. В настоящее время приборы этого типа способны охватывать диапазон вплоть до 100 ГГц; этот показатель представляет собой практический потолок для методов прямого подсчёта. Более высокие частоты измеряются уже непрямыми методами.

Непрямые методы измерения

Вне пределов диапазона, доступного частотомерам, частоты электромагнитных сигналов нередко оцениваются опосредованно, с помощью гетеродинов (то есть частотных преобразователей). Опорный сигнал заранее известной частоты объединяется в нелинейном смесителе (таком, к примеру, как диод) с сигналом, частоту которого необходимо установить; в результате формируется гетеродинный сигнал, или — альтернативно — биения, порождаемые частотными различиями двух исходных сигналов. Если последние достаточно близки друг к другу по своим частотным характеристикам, то гетеродинный сигнал оказывается достаточно мал, чтобы его можно было измерить тем же частотомером. Соответственно, в результате этого процесса оценивается лишь отличие неизвестной частоты от опорной, каковую следует определять уже иными методами. Для охвата ещё более высоких частот могут быть задействованы несколько стадий смешивания. В настоящее время ведутся исследования, нацеленные на расширение этого метода в направлении инфракрасных и видимо-световых частот (т. н. оптическое гетеродинное детектирование).

Математический маятник

Эта модель рассматривает движение груза, подвешенного на нитке. Описывается система, в которой масса нитки намного меньше массы груза, а ее длина намного больше его размеров.

Также нить должна быть невесомой и нерастяжимой.

Груз в этом случае считается материальной точкой.

При выполнении этих условий частота колебаний маятника и период не будут зависеть от массы груза. Движение математического маятника рассматривается при небольшом угле отклонения (α). Последний измеряется в радианах, поэтому приблизительно соответствует по значению его синусу и тангенсу. Этот же угол пропорционален отношению смещения на длину нити:

α=x/l.

На маятник действует синусовая составляющая силы тяжести и тангенсовая сила натяжения нити. Согласно второму закону Ньютона: ma=-mgsin (α). Откуда можно получить a=-gx/l

Вторая производная уравнения движения дает a=-(ω)^2x

Таким образом: -gx/l=-(ω)^2x -> ω ^2=g/l.

Период: T=2π /ω T=2π*sqrt (g/l)

Это формула Галилея, которая описывает движение математического маятника.

Формула частоты колебаний для математического маятника: v=sqrt (l/g)/2π.

Пружинный маятник

Подобным термином называется система, в которой движения совершает груз, подвешенный на легкой пружине.

Тело находится в положении равновесия, если пружина не деформирована. Если ее растянуть или сжать, то система начнет колебания под действием силы упругости, которая направлена на приведение маятника в положение равновесия.

Сила упругости пропорциональна смещению тела (x), но направлена противоположно. Коэффициент пропорциональности между этими двумя величинами носит название жесткости пружины (k). Таким образом:

F=-kx.

Сила упругости достигает наибольшей величины в положении максимального отклонения тела (амплитуда, смещение) от равновесия. В этой точке наибольшую величину имеет и ускорение.

По мере того, как тело приближается к положению равновесия, уменьшается сила упругости и ускорение. В средней точки обе величины равны нулю, но ненулевое значение имеет скорость тела. Поэтому груз не останавливается, а продолжает движение.

После прохождения положения равновесия он двигается в обратном направлении по инерции, а сила упругости тянет его назад. Благодаря трению воздуха скорость уменьшается, и маятник останавливается.

Все эти модели можно отнести к классическому гармоническому осциллятору — системе, которая имеет одну степень свободы и описывается единственным уравнением.

Колебательный контур

Является еще одним примером колебаний, на котором основаны все радиоприемники. Контур играет роль приемника сигнала.

В простейшем примере представляет собой замкнутую цепь из катушки индуктивности и конденсатора. При определенных обстоятельствах в подобном контуре могут возникать и поддерживаться электрические колебания.

Для возбуждения колебаний необходимо подключить источник постоянного напряжения к конденсатору и зарядить его. После этого источник убрать, а цепь замкнуть.

Конденсатор разряжается через катушку индуктивности, а в цепи создается ток, интенсивность которого увеличивается по мере разряда конденсатора. Вокруг катушки создается магнитное поле.

Электрический заряд конденсатора преобразовался в магнитное поле. После этого магнитное поле катушки будет уменьшаться, а конденсатор обратно заряжаться. Процесс повторяется циклически и описывается теми же характеристиками, что и механические колебания: частотой, амплитудой и периодом.

Они являются свободными и затухающими. Чтобы их поддерживать, необходимо периодически заряжать конденсатор.

Примеры

Электромагнитное излучение

Полный спектр электромагнитного излучения с выделенной видимой частью

Видимый свет представляет собой электромагнитные волны, состоящие из осциллирующих электрических и магнитных полей, перемещающихся в пространстве. Частота волны определяет её цвет: 4×1014 Гц — красный цвет, 8×1014 Гц — фиолетовый цвет; между ними в диапазоне (4…8)×1014 Гц лежат все остальные цвета радуги. Электромагнитные волны, имеющие частоту менее 4×1014 Гц, невидимы для человеческого глаза, такие волны называются инфракрасным (ИК) излучением. Ниже по спектру лежит микроволновое излучение и радиоволны. Свет с частотой выше, чем 8×1014 Гц, также невидим для человеческого глаза; такие электромагнитные волны называются ультрафиолетовым (УФ) излучением. При увеличении частоты электромагнитная волна переходит в область спектра, где расположено рентгеновское излучение, а при ещё более высоких частотах — в область гамма-излучения.

Все эти волны, от самых низких частот радиоволн и до высоких частот гамма-лучей, принципиально одинаковы, и все они называются электромагнитным излучением. Все они распространяются в вакууме со скоростью света.

Другой характеристикой электромагнитных волн является длина волны. Длина волны обратно пропорциональна частоте, так что электромагнитные волны с более высокой частотой имеет более короткую длину волны, и наоборот. В вакууме длина волны

где с — скорость света в вакууме. В среде, в которой фазовая скорость распространения электромагнитной волны c′ отличается от скорости света в вакууме (c′ = c/n, где n — показатель преломления), связь между длиной волны и частотой будет следующей:

Ещё одна часто использующаяся характеристика волны — волновое число (пространственная частота), равное количеству волн, укладывающихся на единицу длины: k = 1/λ. Иногда эта величина используется с коэффициентом 2π, по аналогии с циклической и круговой частотой ks = 2π/λ. В случае электромагнитной волны в среде

Звук

Основная статья: Звук

Свойства звука (механических упругих колебаний среды) зависят от частоты. Человек может слышать колебания с частотой от 20 Гц до 20 кГц (с возрастом верхняя граница частоты слышимого звука снижается). Звук с частотой более низкой, чем 20 Гц (соответствует ноте ми субконтроктавы), называется инфразвуком[9]. Инфразвуковые колебания, хотя и не слышны, могут ощущаться осязательно. Звук с частотой выше 20 кГц называется ультразвуком, а с частотой выше 1 ГГц — гиперзвуком.

В музыке обычно используются звуки, высота (основная частота) которых лежит от субконтроктавы до 5-й октавы. Так, звуки стандартной 88-клавишной клавиатуры фортепиано укладываются в диапазон от ноты ля субконтроктавы (27,5 Гц) до ноты до 5-й октавы (4186,0 Гц). Однако музыкальный звук обычно состоит не только из чистого звука основной частоты, но и из примешанных к нему обертонов, или гармоник (звуков с частотами, кратными основной частоте); относительная амплитуда гармоник определяет тембр звука. Обертоны музыкальных звуков лежат во всём доступном для слуха диапазоне частот.

Частота переменного тока

Напряжение и частота: 220-240 В/60 Гц 220-240 В/50 Гц 100-127 В/60 Гц 100-127 В/50 Гц

В Европе (в том числе в России и всех странах бывшего СССР), большей части Азии, Океании (кроме Микронезии), Африке и в части Южной Америки промышленная частота переменного тока в силовой сети составляет 50 Гц. В Северной Америке (США, Канада, Мексика), Центральной и в некоторых странах северной части Южной Америки (Бразилия, Венесуэла, Колумбия, Перу), а также в некоторых странах Азии (в юго-западной части Японии, в Южной Корее, Саудовской Аравии, на Филиппинах и на Тайване) используется частота 60 Гц. См. Стандарты разъёмов, напряжений и частот электросети в разных странах. Почти все бытовые электроприборы одинаково хорошо работают в сетях с частотой 50 и 60 Гц при условии одинакового напряжения сети. В конце XIX — первой половине XX века, до стандартизации, в различных изолированных сетях использовались частоты от 162⁄3 до 1331⁄3 Гц. Первая до сих пор используется на некоторых железнодорожных линиях мира напряжением 15 кВ, где была принята для использования электровозов без выпрямителей — тяговые двигатели постоянного тока питались напрямую от трансформатора.

В бортовых сетях самолётов, подводных лодок и т. д. используется частота 400 Гц. Более высокая частота силовой сети позволяет уменьшить массу и габариты трансформаторов и получить высокие частоты вращения асинхронных двигателей, хотя увеличивает потери при передаче на большие расстояния — из-за ёмкостных потерь, роста индуктивного сопротивления линии и потерь на излучение.

  1. Колебания.

  2. Механические
    колебания.

  3. Превращения
    энергии при механических колебаниях.

  4. Период колебаний.

  5. Частота колебаний.

  6. Циклическая
    частота колебаний.

  7. Амплитуда
    механических колебаний.

  8. Гармонические
    колебания.

  9. Фаза гармонического
    колебания.

  10. Аналитическое
    представление колебаний.

  11. Графическое
    представление колебаний.

  12. Скорость точки в
    гармоническом колебании.

  13. Ускорение точки
    в гармоническом колебании.

  14. Динамика
    гармонического колебания.

  15. Период колебаний
    пружинного маятника.

  16. Математический
    маятник. Квазиупругая сила.

  17. Колебания тела,
    плавающего на поверхности жидкости.

  18. Колебания однородной
    жидкости в U
    – образной трубке.

  19. Колебания тела в
    сферической чаше.

  20. Энергия гармонического
    колебания.

  21. Затухающие
    колебания.

  22. Вынужденные
    колебания.

  23. Резонанс.

  24. Свободные колебания.
    Собственная частота.

  25. Автоколебания.

1. Колебания.
Колебаниями
вообще называют периодические изменения
состояния системы, при которых периодически
изменяются значения различных физических
величин, характеризуют данную систему.
Например, периодические изменения
давления и плотности воздуха, напряжения
и силы электрического тока есть колебания
этих величин.

Математически
периодичность означает, что, если

— есть периодическая функция времени с
периодом Т,
то при любом t
выполняется
равенство

2. Механические
колебания

– движения тела, которые точно или почти
точно повторяются через равные интервалы
времени.

Механические
колебания возникают в системах, имеющих
положение устойчивого равновесия.
Согласно с принципом минимума потенциальной
энергии, в положении устойчивого
равновесия потенциальная энергия
системы минимальна. Когда тело выводят
из положения устойчивого равновесия,
его потенциальная энергия возрастает.
При этом возникает сила, направленная
к положению равновесия (возвращающая
сила), и чем дальше от положения равновесия
отклоняется тело, тем больше его
потенциальная энергия и тем больше
модуль возвращающей силы. Например, при
отклонении пружинного маятника от
положения равновесия, роль возвращающей
силы играет сила упругости, модуль
которой изменяется пропорционально
отклонению

,
где х
отклонение маятника от положения
равновесия. Потенциальная энергия
пружинного маятника изменяется
пропорционально квадрату смещения

.

Аналогично возникают
колебания нитяного маятника и шарика,
движущегося по дну сферической чаши
радиуса R,
который можно рассматривать как нитяной
маятник с длиной нити равной радиусу
чаши (Рис.78).

3.Превращения
энергии при механических колебаниях
.
Если отсутствуют силы трения, то полная
механическая энергия тела, совершающего
колебательное движение, остаётся
постоянной. В процессе колебаний
происходят периодические взаимные
превращения потенциальной и кинетической
энергии тела. Проведем рассуждения на
примере колебаний нитяного маятника .
Для упрощения рассуждений примем
потенциальную энергию маятника в
положении равновесия равной нулю. В
крайнем отклонённом положении
потенциальная энергия маятника
максимальна, а кинетическая энергия
равна нулю, т.к. в этом положении маятник
находится в покое. При движении к
положению равновесия высота маятника
над поверхностью Земли уменьшается,
уменьшается и потенциальная энергия,
при этом возрастают его скорость и
кинетическая энергия. В положении
равновесия потенциальная энергия равна
нулю, а кинетическая энергия максимальна.
Продолжая движение по инерции, маятник
проходит положение равновесия. После
прохождения положения равновесия
кинетическая энергия маятника убывает,
но возрастает его потенциальная энергия.
Когда произойдёт остановка маятника,
его кинетическая энергия станет равной
нулю, а потенциальная энергия достигнет
максимума и всё повторится в обратном
порядке.

По закону сохранения
энергии потенциальная энергия маятника
в крайнем отклоненном положении равна
его кинетической в момент прохождения
положения равновесия.

В процессе колебаний
в любой момент времени полная механическая
энергия маятника равна его потенциальной
в крайнем отклонённом положении или
кинетической энергии в момент прохождения
положения равновесия

где

высота
маятника в крайнем отклоненном положении,

скорость
в момент прохождения положения
равновесия.

4. Период
колебания

– минимальный интервал времени , через
который происходит повторение движения,
или интервал времени, в течение которого
происходит одно полное колебание. Период
(Т)
измеряется в секундах.

5. Частота
колебании


определяет число полных колебаний,
совершаемых за одну секунду. Частота и
период связаны соотношением


,


.

Частота измеряется
в герцах (Гц). Один герц – одно полное
колебание совершаемое за одну секунду

6. Циклическая
частота или круговая частота


определяет число полных колебаний,
свершаемых за

секунд


.

Частота – величина
положительная

,


.

7. Амплитуда
механических колебаний

– максимальное отклонение тела от
положения равновесия. В общем случае
колебаний амплитуда есть максимальное
значение, которое принимает периодически
изменяющаяся физическая величина.

8. Гармонические
колебания

– колебания, в которых колеблющаяся
величина изменяется по закону синуса
или косинуса (по гармоническому закону):

Здесь

амплитуда
колебаний,

циклическая
частота.

9
.
Фаза
гармонического колебания –

величина

,
стоящая под
знаком синуса или косинуса. Фаза
определяет значение колеблющейся
величины в данный момент времени,

начальная
фаза, т.е. в момент начала отсчёта времени

Простейшим
примером гармонических колебаний
является колебание проекции на оси
координат точки m
движущейся равномерно по окружности

радиуса А
в плоскости XOY,
центр которой совпадает с началом
координат (рис. 79)

Для простоты
положим

,
т.е.

тогда

Многие известные
колебательные системы можно лишь
приближенно считать гармоническими
лишь приближенно при очень малых
отклонениях. Главным условием
гармонического колебания является
постоянство циклической частоты и
амплитуды. Например, при колебаниях
нитяного маятника, угол отклонения от
вертикали изменяется неравномерно,
т.е. циклическая частота

не постоянна. Если отклонения очень
малы, то движение маятника происходит
очень медленно и неравномерностью
движения можно пренебречь, полагая

.
Чем медленнее движение, тем меньше
сопротивление среды, те меньше потери
энергии и меньше изменения амплитуды.

Итак, малые колебания
можно приближенно считать гармоническими.

1
0.
Аналитическое
представление колебаний

– запись колеблющейся величины в виде
функции

,
выражающей зависимость величины от
времени.

11. Графическое
представление колебаний –
представление
колебаний
в виде графика функции

в координатных осях OX
и t
.

Например, аналитически
гармоническое колебания записывается
в виде

,
а его графическое представление
изображается синусоидой — сплошная
линия на Рис.80.

12.
Скорость точки при гармоническом
колебании

– получим, дифференцируя по времени
функцию х(t)


,
где

амплитуда скорости, пропорциональна
циклической частоте и амплитуде смещения.

Итак, скорость V
по синусоидальному закону с таким же
периодом T,
что и смещение
х
в пределах

.
Фаза скорости

опережает фазу смещения на

.
Это значит, что скорость максимальна,
когда точка проходит положение равновесия


,
а при максимальных смещениях точки

её скорость равна нулю . График скорости
представлен пунктирной линией на рис
Рис.80

13. Ускорение
точки при гармонических колебаниях
получим,
дифференцируя скорость по времени или
дифференцируя смещение х
дважды по времени :


,

где

— амплитуда ускорения пропорциональная
амплитуде смещения и квадрату циклической
частоты.

У
скорение
точки при гармонических колебаниях
изменяется по синусоидальному закону
с тем же периодом Т,
что и смещение в пределах

Фаза ускорения опережает фазу смещения
на

.
Ускорение равно нулю в момент прохождения
точкой положения равновесия, На Рис.81
график ускорения изображен пунктирной
линией, сплошная линия изображает
график смещения.

Учитывая, что

ускорение запишем в виде


,

т.е. ускорение в
гармоническом колебании пропорционально
смещению и всегда направлено к положению
равновесия ( против смещения). Удаляясь
от положения равновесия точка движется
ускоренно, приближаясь к положению
равновесия точка движется ускоренно.

14. Динамика
гармонического колебания.

Умножив ускорение точки, совершающей
гармоническое колебание, на её массу
получим согласно второму закону Ньютона
силу, действующую на точку

Обозначим

Теперь запишем силу, действующую на
точку


.

Из последнего равенства
следует, что гармонические колебания
вызываются силой пропорциональной
смещению и направленной против смещения,
т.е. к положению равновесия.

15. Период
колебаний пружинного маятника.
Пружинный
маятник совершает колебания под
действием силы упругости

.

Сила пропорциональная
смещению и направленная к положению
равновесия вызывает гармонические
колебания точки. Поэтому колебания
пружинного маятника гармонические.
Коэффициент жесткости равен


.

Помня, что

получим период свободных колебаний
пружинного маятника


.

Частота пружинного
маятника равна


.

1
5.
Математический
маятник

материальная точка, подвешенная на
бесконечно тонкой, невесомой, нерастяжимой
нити, совершающая колебания в вертикальной
плоскости, под действием силы тяжести.

Груз, подвешенный
на нити, размеры которого пренебрежимо
малы по сравнению с длиной нити , можно
приближенно считать математическим
маятником. Часто такой маятник называют
нитяным маятником.

Рассмотрим малые
колебания математического маятника
длиной l.
В положении равновесия сила тяжести
уравновешена силой натяжения нити,
т.е.

.

Если отклонить
маятник на малый угол

,
то сила тяжести и сила натяжения,
направленные под углом друг к другу, в
сумме дают равнодействующую силу

,которая
направлена к положению равновесия. На
Рис.82 отклонение маятника от вертикали
равно


.

Угол

настолько мал, что циклическую частоту,
т.е. угловую скорость вращения нити
можно считать постоянной. Поэтому

и смещение маятника запишем в виде


.

Таким образом,
малые колебания математического маятника
есть гармонические колебания. Из Рис.
82 следует, что сила

,
но

,
следовательно


,

где m,
g,
и l
постоянные величины. Обозначим

и получим модуль возвращающей силы в
виде

.
Если учесть, что сила

всегда направлена к положению равновесия,
т.е. против смещения, то её выражение
запишем в виде

.

Итак, сила, вызывающая
колебания математического маятника
пропорциональна смещению и направлена
против смещения, как при колебаниях
пружинного маятника, т.е характер этой
силы такой же как и силы упругой. Но по
природе упругая сила есть сила
электромагнитная. Сила же вызывающая
колебания математического маятника по
своей природе есть сила гравитационная
– неэлектромагнитная поэтому её называют
квазиупругой

силой. Любая сила, которая действует
как сила упругая, по природе не является
электромагнитной, называется квазиупругой
силой. Это позволяет нам записать
выражение периода колебаний математического
маятника в виде


.

Из этого равенства
следует, что период колебаний
математического маятника не зависит
от массы маятника, но зависит от его
длины и ускорения свободного падения.
Зная период колебаний математического
маятника и его длину, можно определить
ускорение свободного падения в любой
точке на поверхности Земли.

17. Колебания
тела, плавающего на поверхности жидкости.
Для простоты
рассмотрим тело массы m
в форме цилиндра с площадью основания
S.
Тело плавает
частично погрузившись в жидкость,
плотность которой

(Рис.
83).

Пусть в положении
равновесия глубина погружения

.
При этом равнодействующая силы Архимеда

и силы тяжести

равна нулю


.

Если изменить
глубину погружения на х
то сила Архимеда станет равной

и модуль равнодействующей силы F
станет отличен от нуля

Учитывая, что

получим


.

Обозначая

,
модуль силы F
в виде

.

Если глубина
погружения увеличивается, т.е. тело
смещается вниз, сила Архимеда становится
больше силы тяжести и равнодействующая
F
направлена вверх, т.е. против смещения.
Если же глубина погружения уменьшается
, т.е. смещается вверх от положения
равновесия, сила Архимеда становится
меньше силы тяжести и равнодействующая
F
направлена вниз, т.е. против смещения.

Итак, сила F
всегда направлена против смещения и
её модуль пропорционален смещению

.

Э
та
сила квазиупругая и она вызывает
гармонические колебания тела, плавающего
на поверхности жидкости. Период этих
колебаний вычисляется по общей для
гармонических колебаний формуле


.

18. Колебания
однородной жидкости в
U-трубке.
Пусть однородная жидкость массы m,
плотность которой

налита
в U
– образную трубку, площадь сечения
которой S
(Рис.84) В состоянии равновесия высоты
столбов в обоих коленах трубки одинаковы,
по закону сообщающихся сосудов для
однородной жидкости.

Если жидкость
вывести из состояния равновесия, то
высоты столбов жидкости в коленах будут
периодически изменяться, т.е. жидкость
в трубке будет совершать колебан
ия.

Пусть в некоторый
момент времени высота столба жидкости
в правом колене на х
больше . чем в левом. Это значит, что на
жидкость в трубке действует сил тяжести
жидкости в столбе высотой х,

,
где

— объём столба жидкости высотой x.
Произведение

величина постоянная, следовательно

.

Таким образом,
модуль силы F
пропорционален разности высот столбов
жидкости в коленах, т.е. пропорционален
смещению жидкости в трубке. Направление
этой силы всегда противоположно смещению,
т.е.

.

Следовательно
эта сила вызывает гармонические колебания
жидкости в трубке. Период этих колебаний
запишем по правилу для гармонических
колебаний


.

19. Колебания
тела в сферической чаше.

Пусть тело скользит без трения в
сферической чаше радиуса R
(Рис. 78). При малых отклонениях от положения
равновесия колебания этого тела можно
рассматривать как гармонические
колебания математического маятника,
длина которого равна R,
с периодом равным


.

20. Энергия
гармонического колебания
.
В качестве примера рассмотрим колебания
пружинного маятника. При смещении х
его потенциальная энергия равна


.
В
этот же момент его кинетическая энергия
равна


.

Учитывая, что

получим
полную механическую энергию маятника


.

Или подставив

,


.

Эта формула
позволяет вычислить полную механическую
энергию любой системы, совершающей
гармонические колебания.

21. Затухающие
колебания.

Механические колебания происходят в
средах, оказывающих сопротивление
движению. Поэтому энергия колебательного
движения расходуется на работу по
преодолению сил трения.

Е
сли
силы трения не очень велики, то амплитуда
колебаний постепенно уменьшается и
колебания прекратятся. График затухающего
колебания представлен на Рис. 85. Это
периодическое движение, амплитуда
которого постепенно уменьшается.

Если сила трения
очень велика, то затухающие колебания
не происходят. Тело , выведенное из
положения равновесия какими-либо силами,
после прекращения действия этих сил
возвращается в положение равновесия и
останавливается. Такое движение
называется апериодическим (непериодическим).
График апериодического движения
представлен на Рис.86.

2
2.
Вынужденные
колебания

– незатухающие колебания системы,
которые вызываются внешними периодически
меняющимися с течением времени силами
( вынуждающие силы).

Если вынуждающая
сила изменяется по гармоническому
закону


,

где

амплитуда
вынуждающей силы,

её
циклическая частота, то в системе могут
установиться вынужденные гармонические
колебания с циклической частотой равной
частоте вынуждающей силы


.

23. Резонанс
– резкое возрастание амплитуды
вынужденных колебаний при совпадении
частоты вынуждающей силы с частотой
свободных колебаний системы


.
Если колебание происходит в среде,
оказывающей сопротивление, то график
зависимости амплитуды вынужденных
колебаний от частоты вынуждающей силы
выглядит так как на Рис.87

Вынуждающая сила,
частота которой совпадает с частотой
свободных колебаний системы, даже при
очень малых амплитудах вынуждающей
силы может вызвать колебания с очень
большой амплитудой.

24. Свободные
колебания. Собственная частота системы.

Свободными колебаниями называют
колебания системы, происходящие под
действием её внутренних сил. Для
пружинного маятника внутренней силой
является сила упругости. Для математического
маятника, который состоит из самого
маятника и Земли, внутренней силой
является сила тяжести. Для тела, плавающего
на поверхности жидкости, внутренней
силой является сила Архимеда.

25. Автоколебания
– незатухающие
колебания, происходящие в среде, за счет
источника энергии не обладающего
колебательными свойствами, компенсирующего
потери энергии на преодоление сил
трения. Автоколебательные системы
получают равные порции энергии через
равные интервалы времени например,
через один период. Примером автоколебательной
системы являются часы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти площадь прямоугольника в см3
  • Как найти код от своего домофона
  • Как найти пассажира для поездки на машине
  • Если помарка в трудовой книжке как исправить
  • Как составить текст своей презентации