Как найти давление идеального газа через температуру

Содержание:

Идеальный газ:

Наиболее простым из всех агрегатных состояний вещества является газообразное. Поэтому изучение свойств веществ начинают с газов. Газ (греч. chaos — хаос) — такое агрегатное состояние вещества, когда составляющие его частицы почти свободно и хаотически движутся между соударениями, во время которых происходит резкое изменение их скорости. Термин «газ» предложил в начале XVII в. нидерландский химик Ян Батист ван Гельмонт (1579— 1644).

Макро- и микропараметры:

При изучении механики в 9-м классе вы познакомились с понятием «состояние механической системы тел». Параметрами этого состояния являются координаты, скорости или импульсы тел. В тепловых процессах основными физическими величинами, характеризующими состояние макроскопических тел без учёта их молекулярного строения, являются давление Идеальный газ в физике - основные понятия, формулы и определение с примерами

Одна из важнейших задач молекулярно-кпнетической теории состоит в установлении связи между макроскопическими и микроскопическими параметрами.

Идеальный газ

Для теоретического объяснения свойств газов используют их упрощённую модель — идеальный газ.

Идеальный газ — модель газа, удовлетворяющая следующим условиям: 1) молекулы газа можно считать материальными точками, которые хаотически движутся; 2) силы взаимодействия между молекулами идеального газа практически отсутствуют (потенциальная энергия их взаимодействия равна нулю); силы действуют только во время столкновений молекул, причём это силы отталкивания.

Поведение молекул идеального газа можно описать, используя законы Ньютона и учитывая, что между соударениями молекулы движутся практически равномерно и прямолинейно.

Модель идеального газа можно использовать в ограниченном диапазоне температур и при достаточно малых давлениях. Так, например, свойства водорода и гелия при нормальном атмосферном давлении и комнатной температуре близки к свойствам идеального газа.

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Изучая физику в 7-м классе, вы узнали, что давление газа на стенки сосуда, в котором он находится, как и на любое тело, помещённое внутрь сосуда, создаётся в результате ударов частиц, образующих газ (рис. 14). Вследствие хаотичности их движения усреднённое по времени давление газа в любой части сосуда одинаково, и его можно определить по формуле

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Выражение (3.1) называют основным уравнением молекулярно-кинетической теории идеального газа. Это уравнение позволяет рассчитать макроскопический параметр давление р идеального газа через массу Идеальный газ в физике - основные понятия, формулы и определение с примерами молекулы, концентрацию Идеальный газ в физике - основные понятия, формулы и определение с примерами молекул и среднюю квадратичную скорость их теплового движения, определяемую по формуле Идеальный газ в физике - основные понятия, формулы и определение с примерами Формула (3.1) связывает между собой макро- и микроскопические параметры системы «идеальный газ».

Зависимость давления газа от среднего значения квадрата скорости Идеальный газ в физике - основные понятия, формулы и определение с примерами теплового движения его молекул обусловлена тем, что с увеличением скорости, во-первых, возрастает импульс молекулы, а следовательно, и сила удара о стенку. Во-вторых, возрастает число ударов, так как молекулы чаще соударяются со стенками.

Обозначим через Идеальный газ в физике - основные понятия, формулы и определение с примерами среднюю кинетическую энергию поступательного движения молекул. Тогда основное уравнение молекулярно-кинетической теории примет вид:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Из выражения (3.2) следует, что давление идеального газа зависит от средней кинетической энергии поступательного движения его молекул и их концентрации.

Идеальный газ в физике - основные понятия, формулы и определение с примерами
 

Пример №1

Баллон электрической лампы наполнен газом, плотность которого Идеальный газ в физике - основные понятия, формулы и определение с примерами После включения лампы давление газа в ней увеличилось от Идеальный газ в физике - основные понятия, формулы и определение с примерами Определите, на сколько при этом увеличился средний квадрат скорости теплового движения молекул газа.

Идеальный газ в физике - основные понятия, формулы и определение с примерами
Решение. Покажем, что между плотностью р газа и концентрацией Идеальный газ в физике - основные понятия, формулы и определение с примерами его частиц существует связь. Плотность вещества газа равна отношению массы к предоставленному ему объёму. Поскольку произведение массы одной молекулы Идеальный газ в физике - основные понятия, формулы и определение с примерами и числа N молекул равно массе вещества, то:

Идеальный газ в физике - основные понятия, формулы и определение с примерами
Тогда основное уравнение молекулярно-кинетической теории можно записать в виде: Идеальный газ в физике - основные понятия, формулы и определение с примерами Следовательно, средний квадрат скорости теплового движения молекул газа Идеальный газ в физике - основные понятия, формулы и определение с примерами Определим изменение среднего квадрата скорости теплового движения молекул газа после включения лампы:

Идеальный газ в физике - основные понятия, формулы и определение с примерами
Ответ: Идеальный газ в физике - основные понятия, формулы и определение с примерами

Пример №2

В сосуде вместимостью Идеальный газ в физике - основные понятия, формулы и определение с примерами находится одноатомный газ, количество вещества которого Идеальный газ в физике - основные понятия, формулы и определение с примерами и давление Идеальный газ в физике - основные понятия, формулы и определение с примерами Па. Определите среднюю кинетическую энергию теплового движения атомов этого газа. 

Идеальный газ в физике - основные понятия, формулы и определение с примерами
Решение. Из основного уравнения молекулярно-кинетической теории, записанного в виде Идеальный газ в физике - основные понятия, формулы и определение с примерами, следует, что Идеальный газ в физике - основные понятия, формулы и определение с примерами Так как концентрация атомов Идеальный газ в физике - основные понятия, формулы и определение с примерами а число атомов газа

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Ответ: Идеальный газ в физике - основные понятия, формулы и определение с примерами

Уравнение состояния идеального газа

Выясним, как связаны между собой макроскопические параметры идеального газа, которые характеризуют его равновесное состояние: давление, масса всего газа, объём, предоставленный ему, и температура.

Состояние макроскопической системы полностью определено, если известны её макроскопические параметры — давление р, масса Идеальный газ в физике - основные понятия, формулы и определение с примерами температура Идеальный газ в физике - основные понятия, формулы и определение с примерами и объём Идеальный газ в физике - основные понятия, формулы и определение с примерами Уравнение, связывающее параметры данного состояния, называют уравнением состояния системы. Изменение параметров состояния системы с течением времени называют процессом.

Если при переходе идеального газа из одного состояния в другое число его т

молекул Идеальный газ в физике - основные понятия, формулы и определение с примерами остается постоянным, т. е. масса и молярная масса газа не изменяются, то из уравнений Идеальный газ в физике - основные понятия, формулы и определение с примерами и Идеальный газ в физике - основные понятия, формулы и определение с примерами следует:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

где Идеальный газ в физике - основные понятия, формулы и определение с примерами — постоянная Больцмана; Идеальный газ в физике - основные понятия, формулы и определение с примерами — параметры начального состояния газа, а Идеальный газ в физике - основные понятия, формулы и определение с примерами — конечного. Из соотношений (5.1) следует, что

Идеальный газ в физике - основные понятия, формулы и определение с примерами

или

Идеальный газ в физике - основные понятия, формулы и определение с примерами

При неизменных массе и молярной массе идеального газа отношение произведения его давления и объёма к абсолютной температуре является величиной постоянной.

Уравнение (5.2) связывает два рассматриваемых состояния идеального газа независимо от того, каким образом газ перешёл из одного состояния в другое.

Уравнение состояния в виде (5.2) впервые вывел в 1834 г. французский физик Бенуа Клапейрон (1799—1864), поэтому его называют уравнением Клапейрона.

Идеальный газ в физике - основные понятия, формулы и определение с примерами

В справедливости уравнения состояния можно убедиться, воспользовавшись установкой, изображённой на рисунке 18. Манометром 1, соединённым с герметичным гофрированным сосудом, регистрируют давление газа внутри сосуда. Объём газа в сосуде можно рассчитать, используя линейку 2. Температура газа в сосуде равна температуре окружающей среды и может быть измерена термометром.

Измерив параметры газа Идеальный газ в физике - основные понятия, формулы и определение с примерами в начальном состоянии, вычисляют отношение Идеальный газ в физике - основные понятия, формулы и определение с примерами Затем помещают сосуд в горячую воду. При этом температура газа и его давление изменяются. Вращая винт 3, изменяют вместимость сосуда. Измерив снова давление газа Идеальный газ в физике - основные понятия, формулы и определение с примерами и температуру Идеальный газ в физике - основные понятия, формулы и определение с примерами а также рассчитав предоставленный ему объём Идеальный газ в физике - основные понятия, формулы и определение с примерами вычисляют отношение Идеальный газ в физике - основные понятия, формулы и определение с примерами Как показывают расчёты, уравнение состояния (5.2) выполняется в пределах погрешности эксперимента.

Уравнение состояния (5.2) можно применять для газов при следующих условиях:

  1. не очень большие давления (пока собственный объём всех молекул газа пренебрежимо мал по сравнению с предоставленным ему объёмом);
  2. не слишком низкие или же высокие температуры (пока абсолютное значение потенциальной энергии межмолекулярного взаимодействия пренебрежимо мало по сравнению с кинетической энергией теплового движения молекул).

Поскольку число частиц Идеальный газ в физике - основные понятия, формулы и определение с примерами то из уравнения (5.1) следует:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Величину, равную произведению постоянной Больцмана Идеальный газ в физике - основные понятия, формулы и определение с примерами и постоянной Авогадро Идеальный газ в физике - основные понятия, формулы и определение с примерами назвали универсальной газовой постоянной R:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

С учётом выражения (5.4) уравнение (5.3) примет вид:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Поскольку количество вещества Идеальный газ в физике - основные понятия, формулы и определение с примерами то формулу (5.5) можно записать в виде:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Уравнение состояния в виде (5.5) впервые получил русский учёный Д. И. Менделеев (1834—1907) в 1874 г., поэтому его называют уравнением Клапейрона—Менделеева.

Отметим, что уравнение Клапейрона—Менделеева связывает между собой макроскопические параметры конкретного состояния идеального газа. Используя уравнение Клапейрона-Менделеева, можно описать различные процессы, происходящие в идеальном газе.

Давление смеси газов

В повседневной жизни часто приходится иметь дело не с газом, состоящим из одинаковых молекул, а со смесью нескольких разнородных газов, не вступающих в химические реакции при рассматриваемых условиях. Например, воздух в комнате является смесью азота, кислорода, инертных газов и водорода, а также некоторых других газов. 

Вследствие теплового движения частиц каждого газа, входящего в состав газовой смеси, они равномерно распределяются по всему предоставленному смеси объёму. Столкновения частиц обеспечивают в смеси тепловое равновесие.

Каждый газ вносит свой вклад в суммарное давление, производимое газовой смесью, создавая давление, называемое парциальным.

Парциальное давление — давление газа, входящего в состав газовой смеси, если бы он один занимал весь объём, предоставленный смеси, при той же температуре.

Смесь идеальных газов принимают за идеальный газ. 

Из истории физики:

Фундаментальные исследования газовых смесей провёл английский учёный Джон Дальтон (1766-1844). Им сформулирован закон независимости парциальных давлений компонентов смеси (1801-1802). В 1802 г. на несколько месяцев раньше французского учёного Жозефа Гей-Люссака (1778-1850) Дальтон установил закон теплового расширения газов, а также ввёл понятие атомного веса.

При постоянных массе и молярной массе отношение произведения давления идеального газа и его объёма к абсолютной температуре является величиной постоянной (уравнение состояния идеального газа):

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Парциальное давление — давление газа, входящего в состав газовой смеси, если бы он один занимал весь объём, предоставленный смеси, при той же температуре.

Пример №3

Баллон с газом, давление которого Идеальный газ в физике - основные понятия, формулы и определение с примерами находился в неотапливаемом помещении, где температура воздуха Идеальный газ в физике - основные понятия, формулы и определение с примерами После того как некоторое количество газа было израсходовано, баллон внесли в помещение, где температура воздуха Идеальный газ в физике - основные понятия, формулы и определение с примерами Определите, какая часть газа была израсходована, если после длительного пребывания баллона в отапливаемом помещении давление газа в нём стало Идеальный газ в физике - основные понятия, формулы и определение с примерами
Идеальный газ в физике - основные понятия, формулы и определение с примерами
Решение. Если пренебречь тепловым расширением баллона, то его вместимость не изменяется. Запишем уравнение Клапейрона—Менделеева для начального и конечного состоянии газа, считая его идеальным:

Идеальный газ в физике - основные понятия, формулы и определение с примерами
откуда
Идеальный газ в физике - основные понятия, формулы и определение с примерами

Тогда

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Идеальный газ в физике - основные понятия, формулы и определение с примерами
Ответ: Идеальный газ в физике - основные понятия, формулы и определение с примерамиИдеальный газ в физике - основные понятия, формулы и определение с примерами

Основное уравнение молекулярно-кинетической теории идеального газа

В молекулярной физике изучаются свойства вещества во всех агрегатных состояниях, в том числе и газообразном. В природе почти нет отдельно взятого газа, реальный газ атмосферы представляют собой сложную систему разных газов.

Основная задача молекулярно-кинетической теории — установление связи между макроскопическими и микроскопическими параметрами, характеризующими свойства этой сложной системы. С этой целью реальный газ сложного состава заменяется упрощенной, идеализированной моделью.

Идеальный газ:

Первый шаг в создании любой физической теории состоит в построении идеализированной модели реального объекта. Такая модель всегда имеет упрощенный вид действительности, и с ее помощью изучаются количественные и качественные закономерности и свойства реального объекта с учетом определенных ограничений.

Для изучения свойств газов в молекулярно-кинетической теории применяется идеализированная модель — «идеальный газ».

Идеальный газ — это газ, удовлетворяющий следующим условиям:

  • —  линейные размеры молекул во много раз меньше расстояний между ними и не принимаются во внимание. Поэтому можно сказать, что молекулы идеального газа не взаимодействуют друг с другом, то есть потенциальная энергия взаимодействия молекул идеального газа равна нулю:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Поэтому идеальный газ можно сколько угодно сжимать; —только при соударении молекул друг с другом или со стенками сосуда между ними возникают силы отталкивания;

  • — соударения молекул абсолютно упругие;
  • — скорость молекул может иметь произвольные значения, движение каждой молекулы подчиняется законам классической механики.

Свойства идеального газа характеризуются микроскопическими и макроскопическими параметрами и связями между ними.

Микроскопические параметры газа — это параметры, характеризующие движение молекул газа. К ним относятся масса молекулы, его скорость, импульс и кинетическая энергия поступательного движения молекулы.

Макроскопическими являются такие параметры газа, как ее давление, объем и температура, определяющие свойства газа в целом.

Основной задачей молекулярно-кинетической теории является установление взаимной связи между микроскопическими параметрами, характеризующими молекулы газа, и макроскопическими (измеряемыми) величинами, характеризующими газ.

Основное уравнение молекулярно-кинетической теории идеального газа:

Известно, что давление газа возникает в результате многочисленных непрерывных и беспорядочных соударений молекул газа о стенки сосуда, в котором он находится. Это давление равно среднему значению модуля равнодействующей силы, приходящейся на единицу площади:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

В 1857 г. немецкий физик Рудольф Клаузиус (1822-1888), используя модель идеального газа, определил уравнение для давления газа, называемое основным уравнением молекулярно-кинетической теории идеального газа.

Основное уравнение молекулярно-кинетической теории идеального газа — это уравнение, связывающее макроскопический параметр газа — его давление, с микроскопическими параметрами, характеризующими молекулы газа:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Где Идеальный газ в физике - основные понятия, формулы и определение с примерами — количественный коэффициент, характеризующий трехмерность пространства и выражающий равноправность всех трех направлений в хаотическом движении молекул, Идеальный газ в физике - основные понятия, формулы и определение с примерами — масса одной молекулы, Идеальный газ в физике - основные понятия, формулы и определение с примерами — концентрация молекул, Идеальный газ в физике - основные понятия, формулы и определение с примерами — средняя квадратичная скорость молекул.

Концентрация молекул — это число молекул в единице объема:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Единица концентрации в СИ: Идеальный газ в физике - основные понятия, формулы и определение с примерами

Средняя квадратичная скорость молекул равна корню квадратному из средней арифметической величины квадратов скоростей отдельных молекул:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Так как среднее значение квадрата скорости молекул связано со средним значением кинетической энергии их поступательного движения, то, следовательно, и давление идеального газа зависит от среднего значения кинетической энергии молекул:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Давление идеального газа прямо пропорционально концентрации молекул и среднему значению кинетической энергии молекул.

Если принять во внимание, что плотность газа Идеальный газ в физике - основные понятия, формулы и определение с примерами в (6.1), то получится формула зависимости давления идеального газа от ее плотности:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Вы исследовали идеальный газ с позиций MKT и определили связь между его макроскопическими и микроскопическими параметрами.

Уравнение Клапейрона

Связь между тремя макроскопическими параметрами (давление, объем и температура), характеризующими состояние идеального газа, определяет уравнение состояние идеального газа.

Уравнение состояния идеального газа — это уравнение, описывающее состояние газа и устанавливающее связь между параметрами его начального и конечного состояний.

Если число молекул идеального газа остается постоянным, то есть масса и молярная масса не меняются, то при переходе идеального газа из одного состояния в другое, из формул (6.2) и (6.9) имеем для этих состояний:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Где Идеальный газ в физике - основные понятия, формулы и определение с примерами — параметры идеального газа в начальном состоянии, Идеальный газ в физике - основные понятия, формулы и определение с примерами — параметры идеального газа в конечном состоянии. При помощи простых математических преобразований выражений (6.14) для идеального газа данной массы Идеальный газ в физике - основные понятия, формулы и определение с примерами получим:

Идеальный газ в физике - основные понятия, формулы и определение с примерами или Идеальный газ в физике - основные понятия, формулы и определение с примерами

Это уравнение (6.15), характеризующее состояние идеального газа, впервые в 1834 году получил французский физик Бенуа Клапейрон (1799-1864), поэтому его назвали уравнением Клапейрона.

Отношение произведения давления идеального газа данной массы на его объем к абсолютной температуре является постоянной величиной.

Уравнение Менделеева-Клапейрона:

Приняв во внимание формулу, связывающую число частичек вещества, общую массу вещества, молярную массу и число Авогадро,

Идеальный газ в физике - основные понятия, формулы и определение с примерами

в формуле (6.14), получим:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Произведение постоянной Больцмана на постоянную Авогадро также является постоянной величиной. Оно называется универсальной газовой постоянной, обозначается буквой Идеальный газ в физике - основные понятия, формулы и определение с примерами и имеет числовое значение:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Приняв во внимание выражение (6.17) в (6.16), получаем выражение, характеризующее состояние идеального газа и называемое уравнением Менделеева-Клапейрона.

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Физический смысл универсальной газовой постоянной определяется из последнего выражения.

Универсальная газовая постоянная равна отношению произведения давления и объема к абсолютной температуре одного моля любого газа.

Уравнение Менделеева-Клапейрона можно записать и в таком виде:

Идеальный газ в физике - основные понятия, формулы и определение с примерами

Где Идеальный газ в физике - основные понятия, формулы и определение с примерами — плотность газа.

  • Уравнение МКТ идеального газа
  • Уравнение состояния идеального газа
  • Температура в физике
  • Парообразование и конденсация 
  • Зависимость веса тела от вида движения
  • Движение тел под воздействием нескольких сил
  • Абсолютно упругие и неупругие столкновения тел
  • Механизмы, работающие на основе правила моментов 
Определение

Идеальный газ — газ, удовлетворяющий трем условиям:

  • Молекулы — материальные точки.
  • Потенциальная энергия взаимодействия молекул пренебрежительно мала.
  • Столкновения между молекулами являются абсолютно упругими.

Реальный газ с малой плотностью можно считать идеальным газом.

Измерение температуры

Температуру можно измерять по шкале Цельсия и шкале Кельвина. По шкале Цельсия за нуль принимается температура, при которой происходит плавление льда. По шкале Кельвина за нуль принимается абсолютный нуль — температура, при котором давление идеального газа равно нулю, и его объем тоже равен нулю.

Обозначение температуры

  1. По шкале Цельсия — t. Единица измерения — 1 градус Цельсия (1 oC).
  2. По шкале Кельвина — T. Единица измерения — 1 Кельвин (1 К).

Цена деления обеих шкал составляет 1 градус. Поэтому изменение температуры в градусах Цельсия равно изменению температуры в Кельвинах:

∆t = ∆T

При решении задач в МКТ используют значения температуры по шкале Кельвина. Если в условиях задачи температура задается в градусах Цельсия, нужно их перевести в Кельвины. Это можно сделать по формуле:

T = t + 273

Если особо важна точность, следует использовать более точную формулу:

T = t + 273,15

Пример №1. Температура воды равна oC. Определить температуру воды в Кельвинах.

T = t + 273 = 2 + 273 = 275 (К)

Основное уравнение МКТ идеального газа

Давление идеального газа обусловлено беспорядочным движением молекул, которые сталкиваются друг с другом и со стенками сосуда. Основное уравнение МКТ идеального газа связывает давление и другие макропараметры (объем, температуру и массу) с микропараметрами (массой молекул, скоростью молекул и кинетической энергией).

Основное уравнение МКТ

Давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.

p=23nEk

p — давление идеального газа, n — концентрация молекул газа, Ek — средняя кинетическая энергия поступательного движения молекул.

Выражая физические величины друг через друга, можно получить следующие способы записи основного уравнения МКТ идеального газа:

p=13m0nv2

m0— масса одной молекулы газа;

n — концентрация молекул газа;

v2 — среднее значение квадрата скорости молекул газа.

Среднее значение квадрата скорости не следует путать со среднеквадратичной скоростью v, которая равна корню из среднего значения квадрата скорости:

v=v2

p=13ρv2

ρ — плотность газа

p=nkT

k — постоянная Больцмана (k = 1,38∙10–3 Дж/кг)

T — температура газа по шкале Кельвина

Пример №2. Во сколько раз уменьшится давление идеального одноатомного газа, если среднюю кинетическую энергию теплового движения молекул и концентрацию уменьшить в 2 раза?

Согласно основному уравнению МКТ идеального газа, давление прямо пропорционально произведению средней кинетической энергии теплового движения молекул и концентрации его молекул. Следовательно, если каждая из этих величин уменьшится в 2 раза, то давление уменьшится в 4 раза:

Следствия из основного уравнения МКТ идеального газа

Через основное уравнение МКТ идеального газа можно выразить скорость движения молекул (частиц газа):

v=3kTm0=3RTM

R — универсальная газовая постоянная, равная произведения постоянной Авогадро на постоянную Больцмана:

R=NAk=8,31 Дж/К·моль

Температура — мера кинетической энергии молекул идеального газа:

Ek=32kT

T=2Ek3k

Полная энергия поступательного движения молекул газа определяется формулой:

E=NEk

Пример №3. При уменьшении абсолютной температуры на 600 К средняя кинетическая энергия теплового движения молекул неона уменьшилась в 4 раза. Какова начальная температура газа?

Запишем формулу, связывающую температуру со средней кинетической энергией теплового движения молекул, для обоих случаев, с учетом что:

Следовательно:

Составим систему уравнений:

Отсюда:

Задание EF19012

На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.


Алгоритм решения

1.Указать, в каких координатах построен график.

2.На основании основного уравнения МКТ идеального газа и уравнения Менделеева — Клапейрона выяснить, как меняются указанные физические величины во время процессов 1–2 и 2–3.

Решение

График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

T=2Ek3

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева — Клапейрона:

pV=νRT

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

νR=p1V1T1=p2V2T2

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

Ответ:

 Участок 1–2 — изобарный процесс. Температура увеличивается, давление постоянно.

 Участок 2–3 — изотермический процесс. Температура постоянно, давление увеличивается.

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17560

Первоначальное давление газа в сосуде равнялось р1. Увеличив объём сосуда, концентрацию молекул газа уменьшили в 3 раза, и одновременно в 2 раза увеличили среднюю энергию хаотичного движения молекул газа. В результате этого давление р2 газа в сосуде стало равным

Ответ:

а) 13p1

б) 2p1

в) 23p1

г) 43p1


Алгоритм решения

1.Записать исходные данные.

2.Записать основное уравнение МКТ идеального газа.

3.Составить уравнения для состояний 1 и 2.

4.Выразить искомую величину.

Решение

Исходные данные:

 Начальное давление: p0.

 Начальная концентрация молекул: n1 = 3n.

 Конечная концентрация молекул: n2 = n.

 Начальная средняя энергия хаотичного движения молекул: Ek1 = Ek.

 Конечная средняя энергия хаотичного движения молекул: Ek2 = 2Ek.

Основное уравнение МКТ:

p=23nEk

Составим уравнения для начального и конечного состояний:

p1=23n1Ek1=233nEk=2nEk

p2=23n2Ek2=23n2Ek=43nEk

Отсюда:

nEk=p12=3p24

p2=4p16=23p1

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18416

Цилиндрический сосуд разделён неподвижной теплоизолирующей перегородкой. В одной части сосуда находится кислород, в другой – водород, концентрации газов одинаковы. Давление кислорода в 2 раза больше давления водорода. Чему равно отношение средней кинетической энергии молекул кислорода к средней кинетической энергии молекул водорода?


Алгоритм решения

1.Записать исходные данные.

2.Записать основное уравнение МКТ идеального газа.

3.Составить уравнения для обоих газов.

4.Найти отношение средней кинетической энергии молекул кислорода к средней кинетической энергии молекул водорода.

Решение

Анализируя условия задачи, можно выделить следующие данные:

 Концентрации кислорода и водорода в сосуде равны. Следовательно, n1 = n2 = n.

 Давление кислорода вдвое выше давления водорода. Следовательно, p1 = 2p, а p2 = p.

Запишем основное уравнение идеального газа:

p=23nEk

Применим его для обоих газов и получим:

p1=23n1Ek1 или 2p=23nEk1 

p2=23n2Ek2 или p=23nEk2 

Выразим среднюю кинетическую энергию молекул газа из каждого уравнения:

Ek1=3pn

Ek2=3p2n

Поделим уравнения друг на друга и получим:

Ek1Ek2=3pn·2n3p=2

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18824

В одном сосуде находится аргон, а в другом – неон. Средние кинетические энергии теплового движения молекул газов одинаковы. Давление аргона в 2 раза больше давления неона. Чему равно отношение концентрации молекул аргона к концентрации молекул неона?


Алгоритм решения

1.Записать исходные данные.

2.Записать основное уравнение МКТ идеального газа.

3.Составить уравнения для обоих газов.

4.Найти отношение концентрации молекул аргона к концентрации молекул неона.

Решение

Анализируя условия задачи, можно выделить следующие данные:

 Средние кинетические энергии теплового движения молекул газов одинаковы. Следовательно, Ek1=Ek2=Ek.

 Давление аргона в 2 раза больше давления неона. Следовательно, p1 = 2p, а p2 = p.

Запишем основное уравнение идеального газа:

p=23nEk

Применим его для обоих газов и получим:

p1=23n1Ek1 или 2p=23n1Ek 

p2=23n2Ek2 или p=23n2Ek 

Выразим концентрации молекул газа из каждого уравнения:

n1=3pEk

n2=3p2Ek

Поделим уравнения друг на друга и получим:

n1n2=3pEk·2Ek3p=2

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 10.9k

Давление идеального газа, теория и онлайн калькуляторы

Давление идеального газа

Определение давления идеального газа

Определение

Давление идеального газа — это один из самых важных макроскопических параметров, при помощи которого характеризуют состояние
системы в молекулярной физике.

Обозначают давление буквой $p$. Если для известной массы идеального газа определены давление и температура (или объем), то полагают, что состояние термодинамической системы в состоянии равновесия определяется однозначно, так как существующие законы и уравнения молекулярно кинетической теории (МКТ) позволяют все остальные параметры вычислить.

В общем случае давление определяют как:

[p={mathop{lim }_{Delta Sto 0} frac{Delta F_n}{Delta S} }left(1right),]

где $F_n$ проекция силы на нормаль к поверхности S данная сила оказывает воздействие, $Delta S$- площадь поверхности.

Идеальный газ оказывает давление на стенки сосуда, в котором он находится, за счет того, что молекулы этого газа движутся и ударяются о стенки сосуда. Давление идеального газа можно найти, применяя основные положение МКТ. При этом получают, что давление идеального газа равно:

[p=frac{1}{3}nm_0{leftlangle v_{kv}rightrangle }^2left(2right),]

где $m_0$ — масса одной молекулы газа; $n$- концентрация молекул газа; $leftlangle v_{kv}rightrangle =sqrt{frac{1}{N}sumlimits^N_{i=1}{v^2_i}}, N $- количество молекул в объеме газа равном $V$. Уравнение (2) называют основным уравнением МКТ. Его можно записать в другом виде, используя среднюю кинетическую энергию молекул ($leftlangle E_krightrangle $):

[p=frac{2}{3}nleftlangle E_krightrangle left(3right).]

С таким важным термодинамическим параметром как термодинамическая температура давление связывает формула:

[p=nkT left(4right),]

где $k$ — постоянная Больцмана. Уравнение (4) называют уравнением состояния идеального газа.

Если проводить изохорный процесс ($V=const$) с некоторой массой идеального газа, то давление его будет подчинено закону Шарля:

[p_2=p_1frac{T_2}{T_1}left(5right),]

где $p_1$- давление газа имеющего температуру $T_1$.

При проведении изотермического процесса ($T=const$) c постоянной массой некоторого газа поведение давления можно характеризовать, используя уравнение:

[p_1V_1=p_2V_2left(6right).]

В соответствии с законом Дальтона давление смеси газов можно найти как сумму давлений каждого газа:

[p=sumlimits^N_{i=1}{p_i} left(7right),]

где $p_i$ — давление каждого газа в отдельности.

Уравнения МКТ, содержащие давление идеального газа

Уравнение Менделеева — Клапейрона (еще один вариант уравнения состояния):

$pV=frac{m}{mu }RT$(8),

где $frac{m}{mu }=nu $ -количество вещества; $m$ — масса газа; $mu $- молярная масса газа; $R$ — универсальная газовая постоянная.textit{}

Определение работы газа в термодинамике:

[A=intlimits^{V_2}_{V_1}{pdV}left(9right).]

Соответственно, первое начало термодинамики для идеального газа в дифференциальном виде запишем как:

[delta Q=pdV+frac{i}{2}nu RdTleft(10right),]

где $i$ — число степеней свободы молекулы газа; $delta Q$ — элементарное количество теплоты, которое получает идеальный газ; $frac{i}{2}nu RdT=dU$ — изменение внутренней энергии термодинамической системы.textit{}

Примеры задач с решением

Пример 1

Задание. В идеальном газе проводят процесс, при котором $p=frac{AU}{V},$ где $U$ — внутренняя энергия газа; $A=const$ для определенного газа. Сравните коэффициенты пропорциональности $A$, если в первом случае газ одноатомный, во втором двух атомный. textit{}

Решение. Внутренняя энергия идеального газа для любого процесса равна:

[U=frac{i}{2}nu RT left(1.1right).]

Состояние идеального газа описывает уравнение Менделеева — Клайперона:

[pV=nu RT left(1.2right).]

Подставим правую часть уравнения, которое описывает заданный в условиях задачи процесс ($p=frac{AU}{V}$) вместо давления в (1.2), имеем:

[frac{AU}{V}V=nu RT left(1.3right).]

Получим из (1.3), что внутренняя энергия вычисляется как:

[U=frac{1}{A}nu RTleft(1.4right).]

Сравним выражения для внутренней энергии (1.1) и (1.4), имеем:

[frac{i}{2}=frac{1}{A}left(1.5right).]

Для одноатомного газа $i=3$; для двухатомного газа (без учета колебаний молекул) $i=5$.

[frac{3}{2}=frac{1}{A_1};; frac{5}{2}=frac{1}{A_2}to frac{A_2}{A_1}=frac{3}{2}cdot frac{2}{5}=frac{3}{5}.]

Ответ. $frac{A_2}{A_1}=frac{3}{5}$

Пример 2

Задание. На рис.1 представлены процессы, проводимые с постоянной массой идеального газа, укажите, как изменяются давления в процессах?

Давление идеального газа, пример 1

Решение. Уравнение процесса можно аналитически описать уравнением:

[V(T)=AT-B left(2.1right),]

где $A$ и $B$ положительные постоянные величины.

Состояние газа определим при помощи уравнения Менделеева — Клапейрона:

[pV=nu RT left(2.2right).]

Вместо объема подставим уравнение процесса в (2.2):

[pleft(AT-Bright)=nu RTleft(2.3right).]

Раздели обе части (2.3) на температуру:

[frac{pleft(AT-Bright)}{T}=nu Rto pleft(A-frac{B}{T}right)=nu Rto p=frac{nu R}{A-frac{B}{T}} left(2.4right).]

Из уравнения (2.4) следует, что при увеличении температуры $frac{B}{T}$ уменьшается, следовательно, знаменатель дроби правой части выражения (2.4) увеличивается, значит, давление уменьшается.

Ответ. Давление в заданном процессе уменьшается.

Читать дальше: диэлектрический гистерезис.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

   Как известно, многие вещества в природе могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном.

   Учение о свойствах вещества в различных агрегатных состояниях основывается на представлениях об атомно-молекулярном строении материального мира. В основе молекулярно-кинетической теории строения вещества (МКТ) лежат три основных положения:

  • все вещества состоят из мельчайших частиц (молекул, атомов, элементарных частиц), между которыми есть промежутки;
  • частицы находятся в непрерывном тепловом движении;
  • между частицами вещества существуют силы взаимодействия (притяжения и отталкивания); природа этих сил электромагнитная.

   Значит, агрегатное состояние вещества зависит от взаимного расположения молекул, расстояния между ними, сил взаимодействия между ними и характера их движения.

   Сильнее всего проявляется взаимодействие частиц вещества в твердом состоянии. Расстояние между молекулами примерно равно их собственным размерам. Это приводит к достаточно сильному взаимодействию, что практически лишает частицы возможности двигаться: они колеблются около некоторого положения равновесия. Они сохраняют форму и объем.

   Свойства жидкостей также объясняются их строением. Частицы вещества в жидкостях взаимодействуют менее интенсивно, чем в твердых телах, и поэтому могут скачками менять свое местоположение – жидкости не сохраняют свою форму – они текучи. Жидкости сохраняют объем.

   Газ представляет собой собрание молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. Газы не имеют собственной формы, занимают весь предоставляемый им объем и легко сжимаются.

   Существует еще одно состояние вещества – плазма. Плазма — частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру и дальше, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы.

Модель идеального газа. Связь между давлением и средней кинетической энергией.

   Для выяснения закономерностей, которым подчиняется поведение вещества в газообразном состоянии, рассматривается идеализированная модель реальных газов – идеальный газ. Это такой газ, молекулы которого рассматриваются как материальные точки, не взаимодействующие друг с другом на расстоянии, но взаимодействующие друг с другом и со стенками сосуда при столкновениях.

   Идеальный газэто газ, взаимодействие между молекулами которого пренебрежимо мало. (Ек>>Ер)

   Идеальный газ – это модель, придуманная учеными для познания газов, которые мы наблюдаем в природе реально. Она может описывать не любой газ. Не применима, когда газ сильно сжат, когда газ переходит в жидкое состояние. Реальные газы ведут себя как идеальный, когда среднее расстояние между молекулами во много раз больше их размеров, т.е. при достаточно больших разрежениях.

   Свойства идеального газа:

  1. расстояние между молекулами много больше размеров молекул;
  2. молекулы газа очень малы и представляют собой упругие шары;
  3. силы притяжения стремятся к нулю;
  4. взаимодействия между молекулами газа происходят только при соударениях, а соударения считаются абсолютно упругими;
  5. молекулы этого газа двигаются беспорядочно;
  6. движение молекул по законам Ньютона.

   Состояние некоторой массы газообразного вещества характеризуют зависимыми друг от друга физическими величинами, называемыми параметрами состояния. К ним относятся объем V, давление p и температура T.

   Объем газа обозначается V. Объем газа всегда совпадает с объемом того сосуда, который он занимает. Единица объема в СИ м3.

   Давление физическая величина, равная отношению силы F, действующей на элемент поверхности перпендикулярно к ней, к площади S этого элемента.

   p = F/S       Единица давления в СИ паскаль [Па]

   До настоящего времени употребляются внесистемные единицы давления:

   техническая атмосфера 1 ат = 9,81-104 Па;

   физическая атмосфера 1 атм = 1,013-105 Па;

   миллиметры ртутного столба 1 мм рт. ст.= 133 Па;

   1 атм = = 760 мм рт. ст. = 1013 гПа.

   Как возникает давление газа? Каждая молекула газа, ударяясь о стенку сосуда, в котором она находится, в течение малого промежутка времени дей­ствует на стенку с определенной силой. В результате беспорядочных ударов о стенку сила со стороны всех молекул на единицу площади стенки быстро меняется со временем относительно некоторой (средней) величины.

   Давление газа возникает в результате беспорядочных ударов молекул о стенки сосуда, в котором находится газ.

   Используя модель идеального газа, можно вычислить давление газа на стенку сосуда.

   В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υx скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υy скорости, параллельная стенке, остается неизменной.

 

   Приборы, измеряющие давление, называют манометрами. Манометры фиксиру­ют среднюю по времени силу давления, приходящуюся на единицу площади его чувствительного элемента (мембраны) или другого приемника давления.

   Жидкостные манометры:

  1. открытый – для измерения небольших давлений выше атмосферного 
  2. закрытый — для измерения небольших давлений ниже атмосферного, т.е. небольшого вакуума

        

    Металлический манометр – для измерения больших давлений.

   Основной его частью является изогнутая трубка А, открытый конец которой припаян к трубке В, через которую поступает газ, а закрытый – соединен со стрелкой. Газ поступает через кран и трубку В в трубку А и разгибает её. Свободный конец трубки, перемещаясь, приводит в движение передающий механизм и стрелку. Шкала градуирована в единицах давления.

 

Основное уравнение молекулярно-кинетической теории идеального газа.

   Основное уравнение МКТ: давление идеального газа пропорционально произведению массы молекулы, концентрации молекул и среднему квадрату скорости движения молекул

   p = 1/3·mn·v2 

   m0 — масса одной молекулы газа;

   n = N/V – число молекул в единице объема, или концентрация молекул;

   v2 — средняя квадратичная скорость движения молекул.

   Так как средняя кинетическая энергия поступательного движения молекул E = m0*v2/2, то домножив основное уравнение МКТ на 2, получим p = 2/3· n·(m0· v2)/2 = 2/3·E·n

   p = 2/3·E·n

   Давление газа равно 2/3 от средней кинетической энергии поступательного движения молекул, которые содержатся в единичном объеме газа.

   Так как m0·n = m0·N/V = m/V = ρ,   где ρ – плотность газа, то имеем     p = 1/3· ρ· v2

Объединенный газовый закон.

   Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа.

   Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.

   Всякое изменение состояния газа называется термодинамическим процессом.

   В любом термодинамическом процессе изменяются параметры газа, определяющие его состояние.

   Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом.

   Газовый закон, выражающий связь между всеми тремя параметрами газа называется объединенным газовым законом.

p = nkT 

   Соотношение p = nkT связывающее давление газа с его температурой и концентрацией молекул, получено для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V, давлением p, температурой T и количеством вещества ν. Для этого нужно использовать равенства

 

   где n – концентрация молекул, N – общее число молекул, V – объем газа

   Тогда получим  или      

   Так как при постоянной массе газа N остается неизменным, то Nk – постоянное число, значит

 

   При постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

   Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном и часто его называют уравнением Клайперона.

   Уравнение Клайперона можно записать в другой форме.

p = nkT,

   учитывая, что

 

   Здесь N – число молекул в сосуде, ν – количество вещества, NА – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:

 

   Произведение постоянной Авогадро NА на постоянную Больцмана k называется универсальной (молярной) газовой постоянной и обозначается буквой R.

   Ее численное значение в СИ   R = 8,31 Дж/моль·К

   Соотношение                                                        

            

   называется уравнением состояния идеального газа.

   В полученной нами форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева.`

   Для одного моля любого газа это соотношение принимает вид: pV=RT

   Установим физический смысл молярной газовой постоянной. Предположим, что в некотором цилиндре под поршнем при температуре Е находится 1 моль газа, объем которого V. Если нагреть газ изобарно (при постоянном давлении) на 1 К, то поршень поднимется на высоту Δh, а обьем газа увеличится на ΔV.

   Запишем уравнение pV=RT для нагретого газа: p ( V + ΔV ) = R (T + 1)

   и вычтем из этого равенства уравнение pV=RT , соответствующее состоянию газа до нагревания. Получим   pΔV = R

   ΔV = SΔh, где S – площадь основания цилиндра. Подставим в полученное уравнение:

   pSΔh = R

   pS = F – сила давления.

   Получим FΔh = R, а   произведение силы на перемещение поршня FΔh = А – работа по перемещению поршня, совершаемая этой силой против внешних сил при расширении газа.

   Таким образом, R = A.

   Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

Уравнение состояния идеального газа

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: модель идеального газа, связь между давлением и средней кинетической энергией теплового движения молекул идеального газа, связь температуры газа со средней кинетической энергией его частиц, уравнение p=nkT, уравнение Менделеева—Клапейрона.

Из трёх агрегатных состояний вещества наиболее простым для изучения является газообразное. В достаточно разреженных газах расстояния между молекулами намного больше размеров самих молекул (тогда как в жидкостях и твёрдых телах молекулы «упакованы» весьма плотно).Поэтому силы взаимодействия между молекулами таких газов очень малы.

Для описания разреженных газов в физике используется модель идеального газа. В рамках этой модели делаются следующие допущения.

1. Пренебрегаем размерами молекул. Иными словами, молекулы газа считаются материальными точками.
2. Пренебрегаем взаимодействием молекул на расстоянии.
3. Соударения молекул друг с другом и со стенками сосуда считаем абсолютно упругими.

Таким образом, идеальный газ — это газ, частицы которого являются не взаимодействующими на расстоянии материальными точками и испытывают абсолютно упругие соударения друг с другом и со стенками сосуда.

Средняя кинетическая энергия частиц газа

Оказывается, что ключевую роль в описании идеального газа играет средняя кинетическая энергия его частиц.

Частицы газа двигаются с разными скоростями. Пусть в газе содержится N частиц, скорости которых равны v_1, v_2, ldots, v_N. Масса каждой частицы равна m_0. Кинетические энергии частиц:

E_1=frac{displaystyle m_0 v_1^2}{displaystyle 2 vphantom{1^a}}, E_2=frac{displaystyle m_0 v_2^2 }{displaystyle 2 vphantom{1^a}}, ldots,E_N=frac{displaystyle m_0 v_N^2}{displaystyle 2 vphantom{1^a}}.

Средняя кинетическая энергия E частиц газа это среднее арифметическое их кинетических энергий:

E=frac{displaystyle E_1+E_2+ ldots+E_N}{displaystyle N vphantom{1^a}}= frac{displaystyle 1}{displaystyle N vphantom{1^a}}left ( frac{displaystyle m_0 v_1^2}{displaystyle 2 vphantom{1^a}}+frac{displaystyle m_0 v_2^2}{displaystyle 2 vphantom{1^a}}+ ldots + frac{displaystyle m_0 v_N^2}{displaystyle 2 vphantom{1^a}} right ) =frac{displaystyle m_0}{displaystyle 2 vphantom{1^a}}  frac{displaystyle v_1^2+v_2^2+ ldots v_N^2}{displaystyle N vphantom{1^a}}.

Последний множитель — это средний квадрат скорости, обозначаемый просто v_2:

v_2=frac{displaystyle v_1^2+v_2^2+ ldots v_N^2}{displaystyle N vphantom{1^a}}.

Тогда формула для средней кинетической энергии приобретает привычный вид:

E=frac{displaystyle m_0 v^2}{displaystyle 2 vphantom{1^a}}. (1)

Корень из среднего квадрата скорости называется средней квадратической скоростью:

v=sqrt{ frac{displaystyle v_1^2+v_2^2+ ldots v_N^2}{displaystyle N vphantom{1^a}}}.

Основное уравнение МКТ идеального газа

Cвязь между давлением газа и средней кинетической энергией его частиц называется основным уравнением молекулярно-кинетической теории идеального газа. Эта связь выводится из законов механики и имеет вид:

p= frac{displaystyle 2}{displaystyle 3 vphantom{1^a}} nE.   (2)

где n — концентрация газа (число частиц в единице объёма). С учётом (1) имеем также:

p= frac{displaystyle 1}{displaystyle 3 vphantom{1^a}} m_0 nv^2.   (3)

Что такое m_0n? Произведение массы частицы на число частиц в единице объёма даёт массу единицы объёма, то есть плотность: m_0n= rho. Получаем третью разновидность основного уравнения:

p= frac{displaystyle 1}{displaystyle 3 vphantom{1^a}} rho v^2.   (4)

Энергия частиц и температура газа

Можно показать, что при установлении теплового равновесия между двумя газами выравниваются средние кинетические энергии их частиц. Но мы знаем, что при этом становятся равны и температуры газов. Следовательно, температура газа — это мера средней кинетической энергии его частиц.

Собственно, ничто не мешает попросту отождествить эти величины и сказать, что температура газа — это средняя кинетическая энергия его молекул. В продвинутых курсах теоретической физики так и поступают. Определённая таким образом температура измеряется в энергетических единицах — джоулях.

Но для практических задач удобнее иметь дело с привычными кельвинами. Связь средней кинетической энергии частиц и абсолютной температуры газа даётся формулой:

E= frac{displaystyle 3}{displaystyle 2 vphantom{1^a}} kT,   (5)

где k=1,38 cdot 10^{-23} Дж/К — постоянная Больцмана.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Уравнение состояния идеального газа» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Понравилась статья? Поделить с друзьями:
  • Как найти диктофон в помещении
  • Как составить параметры
  • Как найти потерянный телефон самостоятельно через интернет
  • Как найти начальную температуру при охлаждении
  • Код ошибки 0x80010108 как исправить