Как найти давление на стенки сосуда формула

Содержание:

  • § 1  Особенности давления в жидкости и газе
  • § 2  Формула для вычисления давления в жидкостях и газах
  • § 3  Решение задачи по теме урока
  • § 4  Краткие итоги по теме урока

§ 1  Особенности давления в жидкости и газе

Известно, что давление, производимое на жидкости и газы, передается в каждую точку без изменения по всем направлениям. Это утверждение называется законом Паскаля.

На жидкости, как и на все тела на Земле, действует сила тяжести. Поэтому верхние слои жидкости давят на нижележащие слои, это давление по закону Паскаля передается по всем направлениям. Значит, внутри жидкости существует давление. Чтобы убедиться в этом, поставим опыт.

Возьмем стеклянную трубочку, затянутую снизу резиновой пленкой. Если в трубочку нальем воду, то увидим, что резиновая пленка прогибается. На резиновую пленку действуют две силы: вес воды, направленный вниз, из-за чего пленка изменяет свою форму, и возникающая при деформации сила упругости, которая стремится восстановить первоначальную форму и направленная вверх. Если две эти силы равны, то пленка будет находиться в покое.

Опустим трубку с водой в другой, более широкий, сосуд с водой. Возникает третья сила, действующая на резиновую пленку, — сила давления воды снизу, она направлена вверх и заставляет пленку выпрямляться. Если уровни воды в трубке и в сосуде совпадут, то силы давления, действующие сверху и снизу на пленку, окажутся равными.

Такой же опыт проведем с трубкой, в которой есть боковое отверстие, затянутое резиновой пленкой. Если в трубку налить воду, то пленка выгибается наружу, так как вода давит не только на дно трубки, но и на стенки. Опустим трубку в воду и заметим, что пленка выпрямляется, то есть силы, действующие на пленку изнутри и снаружи, оказались равными.

Итак, опыты показывают, что внутри жидкости существует давление и на одном и том же уровне оно одинаково по всем направлениям.

Такое же утверждение справедливо и для газов.

§ 2  Формула для вычисления давления в жидкостях и газах

От чего зависит давление в жидкостях и газах?

Вспомним определение давления.

Давление – скалярная физическая величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности: p = F/S.

Сила давления Fравна весу P: P = mg. 

Мы знаем, что массу тела можно найти по плотности вещества: m = ρV, где ρ – плотность, V – объем. 

Объем жидкости, находящейся в сосуде в форме прямоугольного параллелепипеда или в форме цилиндра, можно найти, умножив площадь дна на высоту сосуда: V = Sh. Подставим формулы веса, массы, объема в формулу давления и, сократив площадь, получим:

Мы вывели формулу для вычисления давления в жидкостях и газах:

p = gρh.

Из этой формулы видно, что давление жидкости на дно сосуда зависит только от плотности и высоты столба жидкости.

По формуле p = gρhможно рассчитывать:

1)давление жидкости на дно в сосуде любой формы, то есть давление жидкости не зависит от формы сосуда;

2)давление жидкости на стенки сосуда, так как давление на одной и той же глубине одинаково по всем направлениям: вверх, вниз, вправо, влево, вперед, назад;

3)давление в газах.

Проверим единицу измерения давления по формуле p = gρh. 

g – коэффициент тяжести, измеряется в Н/кг, 

ρ – плотность, в международной системе единиц измеряется в кг/м3, 

h – высота столба жидкости (глубина) – в м.

§ 3  Решение задачи по теме урока

Рассмотрим решение задачи:

Задача:Определить давление воды на дно морской впадины, глубина которой 10900 м. Плотность морской воды — 1030 кг/м3.

Решение: Запишем условие задачи: нам известны глубина h = 10900 м, плотность ρ = 1030 кг/м3. Необходимо найти: давление p. Для решения: запишем формулу расчета давления в жидкостях и газах p = gρh и подставим числовые значения: 

p = 10 Н/кг · 1030 кг/м3· 10 900 м = 112 270 000 Па = 112, 27 МПа.

Ответ: 112, 27 МПа

§ 4  Краткие итоги по теме урока

ВАЖНО ЗАПОМНИТЬ:

На жидкости и газы действует сила тяжести, поэтому они обладают весом. Вышележащие слои жидкости и газа своим весом давят на нижележащие слои, то есть оказывают давление. Давление внутри жидкости и газа на одном и том же уровнеодинаково по всем направлениям.

Давление в жидкостях и газах рассчитывается по формуле p = gρh, где g — коэффициент тяжести, ρ — плотность, h – высота столба жидкости или газа.

Давление в жидкостях и газах зависит только от плотности и высоты столба жидкости или газа и не зависит от формы и площади поперечного сечения сосуда, в котором находится жидкость или газ.

Список использованной литературы:

  1. Волков В.А. Поурочные разработки по физике: 7 класс. – 3-е изд. – М.: ВАКО, 2009. – 368 с.
  2. Волков В.А. Тесты по физике: 7-9 классы. – М.: ВАКО, 2009. – 224 с. – (Мастерская учителя физики).
  3. Кирик Л.А. Физика -7. Разноуровневые самостоятельные и контрольные работы. М.: Илекса, 2008. – 192 с.
  4. Контрольно-измерительные материалы. Физика: 7 класс / Сост. Зорин Н.И. – М.: ВАКО, 2012. – 80 с.
  5. Марон А.Е., Марон Е.А. Физика. 7 Дидактические материалы. – М.: Дрофа, 2010. – 128 с.
  6. Перышкин А.В. Физика. 7 класс — М.: Дрофа, 2011.
  7. Тихомирова С.А. Физика в пословицах и поговорках, стихах и прозе, сказках и анекдотах. Пособие для учителя. – М.: Новая школа, 2002. – 144 с.
  8. Я иду на урок физики: 7 класс. Часть III: Книга для учителя. – М.: Издательство «Первое сентября», 2002. – 272 с.

Формула давления жидкости

Содержание:

  • Что такое давление жидкости
  • История открытия
  • Факторы, влияющие на показатель
  • Давление на дно и стенку сосуда
  • Расчет давления жидкости на дно и стенки сосуда
  • Единицы измерения
  • Формулы расчета
  • Применение на практике
  • Гидростатический парадокс

Что такое давление жидкости

Наука гидростатика исследует ситуации, когда движение в жидкости отсутствует или скорость пренебрежимо мала, и позволяет понять некоторые свойства такой важной гидродинамической величины, как давление.

Теорема

Давление — физическая величина, описывающая силу, которая действует перпендикулярно поверхности на единицу ее площади. Для ее обозначения используется символ р или Р.

На опору под действием силы тяжести давят и твердые, и сыпучие вещества, но их воздействие отличается от гидростатического давления. Воздействие твердого тела определяется его весом, жидкости — ее глубиной. В газе и жидкости давящее воздействие на поверхности создается за счет хаотических столкновений молекул и связано с другими параметрами состояния вещества — например, температурой Т и плотностью (rho.)

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Для жидкости, учитывая ее малую сжимаемость, вместо уравнения Клапейрона, учитывающего температуру и молярную массу газа, обычно используют условие несжимаемости, которое существенно упрощает уравнения гидроаэромеханики:

(rho = const.)

Сила гидростатического давления р на дно сосуда не зависит от его формы и изменяется пропорционально уровню налитой в сосуд жидкости и ее плотности в соответствии с основной гидростатической формулой:

(р = р_{0} + rhotimes gtimes h.)

(rho) здесь — плотность вещества, (р_{0}) — атмосферное давление, g — ускорение свободного падения, h — глубина погружения.

История открытия

Гидростатика как наука была достаточно хорошо известна еще в античные времена, поскольку она тесно связана с практической деятельностью людей. Для строительства лодок и кораблей, колодцев и различных гидравлических аппаратов, например, поршневых насосов, необходимо было понимать, как вода взаимодействует с твердыми материальными предметами.

Различие между давлением твердого тела и воды очень эффектно пояснил на опыте Блез Паскаль: всего лишь стакан воды, вылитый в высокую тонкую трубку, соединенную с наполненной водой закрытой бочкой, создал такое избыточное давление, что вода через щели брызнула наружу.

Определение

В 1653 году Паскаль сформулировал свой закон: давление, производимое на жидкость или газ, передается в любую точку одинаково.

Позже был сконструирован прибор, демонстрирующий действие закона Паскаля. Он называется шар Паскаля и представляет собой заполняемый водой шар с маленькими отверстиями, соединенный с цилиндрической рукояткой, внутри которой движется поршень. Внешнее давление, производимое поршнем, передается во все точки воды одинаково, и она выплескивается в виде одинаковых струек. Поэтому струйки, вытекающие из отверстий, расположенных в горизонтальной плоскости, оставляют на полу следы равной длины.

Факторы, влияющие на показатель

На давление жидкости могут влиять:

  • ее плотность;
  • атмосферное давление;
  • температура;
  • глубина сосуда;
  • площадь дна сосуда.

Давление на дно и стенку сосуда

Закон Паскаля утверждает, что давление в любом месте покоящейся жидкости или газа по всем направлениям одинаково, причем оно одинаково передается по всему объему вещества. Таким образом, разницы между давлением на дно и на стенку нет.

Расчет давления жидкости на дно и стенки сосуда

Чтобы найти давление на дно сосуда, нужно взять приведенное выше основное уравнение гидростатики и подставить туда глубину, плотность и атмосферное давление.

В случае стенок непосредственно прилагать эту формулу можно только к бесконечно малым горизонтальным полоскам на боковых стенках сосуда. Чтобы рассчитать давление на стенки, нужно суммировать давление на все горизонтальные элементы их поверхности, используя правила интегрального исчисления. Паскаль, проведя эти расчеты, доказал, что от формы сосуда давление жидкости не зависит.

Единицы измерения

В международной системе единиц давление измеряется в Паскалях. Один Паскаль равен силе в один ньютон, производящей равномерное давление на единицу поверхности в один метр. Но на практике часто используют такую единицу измерения, как атмосфера, равную 76 см ртутного столба при нулевой температуре по Цельсию.

Определение

Атмосфера — внесистемная единица измерения, которая примерно означает давление атмосферы Земли на уровне Мирового океана.

Формулы расчета

Для описания процессов в гидравлических прессах или любых других системах, в которых давление собственно жидкостей ничтожно мало по сравнению с передаваемым им извне, используется формула закона Паскаля:

(р = frac{F}{S}.)

F — сила, с которой происходит воздействие на поверхности сосуда, S — площадь этой поверхности.

В учебных задачах обычно опускают такой параметр, как атмосферное давление, и используют для расчетов формулу:

(р = rhotimes gtimes h.)

Можно вывести эту формулу для сосудов, имеющих форму прямой призмы или цилиндра, из закона Паскаля.

(m = rhotimes V = rhotimes Stimes h)

Вес (Р = g times m = gtimes rhotimes Stimes h.)

Вес столба, давящего на дно сосуда, равен силе, и тогда:

(р = frac{Р}{S} = gtimes rhotimes Stimes frac{h}{S} = gtimes rhotimes h.)

Применение на практике

Для гидравлических механизмов, например, прессов, можно рассчитать пропорциональный изменению площади выигрыш в силе, зная, во сколько раз увеличивается площадь большего поршня по сравнению с меньшим.

Применение на практике

 

Соотношение между полезной и затраченной работой описывается понятием КПД, коэффициент полезного действия, и рассчитывается по формуле:

(frac{F_{2}h_{2}}{F_{1}h_{1}})

Также закон Паскаля описывает работу жидкостных манометров, приборов для измерения давления, отличного от атмосферного. Давление в одном колене манометра вызывает повышение жидкости в другом колене — это явление называется избыточным столбом. По его высоте, соотнося ее с нанесенной шкалой, пользователь прибора узнает точную цифру в миллиметрах ртутного столба.

Гидростатический парадокс

Согласно гидростатическому парадоксу, давление жидкости на любую плоскую стенку равняется весу столба этой жидкости, давящему на основание, площадь которого равна площади этой стенки. Поэтому от формы емкости давление не зависит. Если емкость расширяется к горлышку, то вес содержимого распределяется по наклонным стенкам и передается вниз через стенки, не давя на дно, а если емкость к горлышку сужается, то содержимое давит на стенки снизу вверх, что уменьшает его воздействие на дно.

Расчет давления жидкости на дно и стенки сосуда

1. Вывод формулы для давления жидкости на дно сосуда

Для того чтобы упро­стить вывод фор­му­лы для рас­че­та дав­ле­ния на дно и стен­ки со­су­да, удоб­нее всего ис­поль­зо­вать сосуд в форме пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да (Рис. 1).

Сосуд для рас­че­та дав­ле­ния жид­ко­сти

Рис. 1. Сосуд для рас­че­та дав­ле­ния жид­ко­сти

Пло­щадь дна этого со­су­да – S, его вы­со­та – h. Пред­по­ло­жим, что сосуд на­пол­нен жид­ко­стью на всю вы­со­ту h. Чтобы опре­де­лить дав­ле­ние на дно, нужно силу, дей­ству­ю­щую на дно, раз­де­лить на пло­щадь дна. В нашем слу­чае сила – это вес жид­ко­сти P, на­хо­дя­щей­ся в со­су­де

По­сколь­ку жид­кость в со­су­де непо­движ­на, ее вес равен силе тя­же­сти, ко­то­рую можно вы­чис­лить, если из­вест­на масса жид­ко­сти m

На­пом­ним, что сим­во­лом g обо­зна­че­но уско­ре­ние сво­бод­но­го па­де­ния.

Для того чтобы найти массу жид­ко­сти, необ­хо­ди­мо знать ее плот­ность ρ и объем V

Объем жид­ко­сти в со­су­де мы по­лу­чим, умно­жив пло­щадь дна на вы­со­ту со­су­да

Эти ве­ли­чи­ны из­на­чаль­но из­вест­ны. Если их по оче­ре­ди под­ста­вить в при­ве­ден­ные выше фор­му­лы, то для вы­чис­ле­ния дав­ле­ния по­лу­чим сле­ду­ю­щее вы­ра­же­ние:

В этом вы­ра­же­нии чис­ли­тель и зна­ме­на­тель со­дер­жат одну и ту же ве­ли­чи­ну S – пло­щадь дна со­су­да. Если на нее со­кра­тить, по­лу­чит­ся ис­ко­мая фор­му­ла для рас­че­та дав­ле­ния жид­ко­сти на дно со­су­да:

Итак, для на­хож­де­ния дав­ле­ния необ­хо­ди­мо умно­жить плот­ность жид­ко­сти на ве­ли­чи­ну уско­ре­ния сво­бод­но­го па­де­ния и вы­со­ту стол­ба жид­ко­сти.

2. Давление жидкости на стенки сосуда

По­лу­чен­ная выше фор­му­ла на­зы­ва­ет­ся фор­му­лой гид­ро­ста­ти­че­ско­го дав­ле­ния. Она поз­во­ля­ет найти дав­ле­ние на дно со­су­да. А как рас­счи­тать дав­ле­ние на бо­ко­вые стен­ки со­су­да? Чтобы от­ве­тить на этот во­прос, вспом­ним, что на про­шлом уроке мы уста­но­ви­ли, что дав­ле­ние на одном и том же уровне оди­на­ко­во во всех на­прав­ле­ни­ях. Это зна­чит, дав­ле­ние в любой точке жид­ко­сти на за­дан­ной глу­бине h может быть най­де­но по той же фор­му­ле.

3. Анализ и примеры применения полученной формулы

Рас­смот­рим несколь­ко при­ме­ров.

Возь­мем два со­су­да. В одном из них на­хо­дит­ся вода, а в дру­гом – под­сол­неч­ное масло. Уро­вень жид­ко­сти в обоих со­су­дах оди­на­ков. Оди­на­ко­вым ли будет дав­ле­ние этих жид­ко­стей на дно со­су­дов? Без­услов­но, нет. В фор­му­лу для рас­че­та гид­ро­ста­ти­че­ско­го дав­ле­ния вхо­дит плот­ность жид­ко­сти. По­сколь­ку плот­ность под­сол­неч­но­го масла мень­ше, чем плот­ность воды, а вы­со­та стол­ба жид­ко­стей оди­на­ко­ва, то масло будет ока­зы­вать на дно мень­шее дав­ле­ние, чем вода (Рис. 2).

Жид­ко­сти с раз­лич­ной плот­но­стью при одной вы­со­те стол­ба ока­зы­ва­ют на дно раз­лич­ные дав­ле­ния

Рис. 2. Жид­ко­сти с раз­лич­ной плот­но­стью при одной вы­со­те стол­ба ока­зы­ва­ют на дно раз­лич­ные дав­ле­ния

Еще один при­мер. Име­ют­ся три раз­лич­ных по форме со­су­да. В них до од­но­го уров­ня на­ли­та одна и та же жид­кость.

Будет ли оди­на­ко­вым дав­ле­ние на дно со­су­дов? Ведь масса, а зна­чит, и вес жид­ко­стей в со­су­дах раз­ли­чен. Да, дав­ле­ние будет оди­на­ко­вым (Рис. 3). Ведь в фор­му­ле гид­ро­ста­ти­че­ско­го дав­ле­ния нет ни­ка­ко­го упо­ми­на­ния о форме со­су­да, пло­ща­ди его дна и весе на­ли­той в него жид­ко­сти. Дав­ле­ние опре­де­ля­ет­ся ис­клю­чи­тель­но плот­но­стью жид­ко­сти и вы­со­той ее стол­ба.

Дав­ле­ние жид­ко­сти не за­ви­сит от формы со­су­да

Рис. 3. Дав­ле­ние жид­ко­сти не за­ви­сит от формы со­су­да

4. Заключение

Мы по­лу­чи­ли фор­му­лу для на­хож­де­ния дав­ле­ния жид­ко­сти на дно и стен­ки со­су­да. Этой фор­му­лой можно поль­зо­вать­ся и для рас­че­та дав­ле­ния в объ­е­ме жид­ко­сти на за­дан­ной глу­бине. Она может быть ис­поль­зо­ва­на для опре­де­ле­ния глу­би­ны по­гру­же­ния ак­ва­лан­ги­ста, при рас­че­те кон­струк­ции ба­ти­ска­фов, под­вод­ных лодок, для ре­ше­ния мно­же­ства дру­гих на­уч­ных и ин­же­нер­ных задач.

Как вы уже знаете, согласно закону Паскаля, давление в жидкостях распространяется одинаково во всех направлениях. Что же необходимо знать, чтобы рассчитать это давление? От чего зависит давление жидкости?

Взгляните на рисунок 1.

Рисунок 1. Сосуды разной формы, наполненные жидкостью

Как вы думаете, в каком сосуде больше жидкости? А будет ли одинаково давление, оказываемое на дно сосудов? С этими вопросами нам и предстоит разобраться. 

Вывод формулы

Выведем формулу для расчета давления жидкости на дно сосуда, имеющего форму прямоугольного параллелепипеда (рисунок 2).

Рисунок 2. Определение давления жидкости на дно прямоугольного параллелепипеда

Давление жидкости $p$ рассчитывается по формуле: $p = frac{F}{S}$, где $F$ — это сила, действующая на дно сосуда, а $S$ — это площадь дна сосуда.

  1. Сила $F$ в данном случае равна весу $P$ жидкости, которая находится в сосуде;
  2. Как узнать вес жидкости? Необходимо знать массу $m$ жидкости;
  3. Массу $m$ мы можем вычислить по известной нам формуле: 
    $m = rho V$;
  1. Так как нам известна жидкость, находящаяся в сосуде, мы знаем ее плотность . Остается вычислить объем $V$ жидкости. Обозначим высоту столба жидкости буквой $h$, площадь дна сосуда — $S$. Тогда объем можно вычислить по формуле:
    $V = Sh$;
  1. Итак, подставляем наши данные в формулу для вычисления массы и получаем:
    $m = rho Sh$;
  1. Таким образом, возвращаемся к весу жидкости и получаем, что: 
    $P = mg$, где $g$ — ускорение свободного падения, или $P = g rho Sh$.

С другой стороны, мы знаем, что вес столба жидкости равен силе, с которой жидкость давит на дно сосуда. Поэтому если мы разделим вес $P$ на площадь $S$, то получим искомое давление жидкости:
$p = frac{P}{S}$,
или $p =frac{g rho Sh}{S}$,

То есть:

$p = rho gh$.

Рассмотрим измерительные величины, которые мы будем использовать в данной формуле: плотность мы будем выражать в килограммах на кубический метр ($frac{кг}{м^3}$), $g = 9.8 frac{H}{кг}$, высоту столба жидкости  — в метрах ($м$). Тогда давление $p$ будет выражено в паскалях ($Па$).

Выводы

Так мы с вами вывели формулу для расчета давления жидкости на дно сосуда. Какие выводы мы можем сделать? 

От каких величин зависит давление жидкости на дно сосуда?

Давление жидкости не зависит от формы сосуда, оно зависит только от плотности жидкости и высоты ее столба.

Обратите внимание, что во многих случаях, когда говорят о высоте столба жидкости, говорят о глубине.

По какой формуле рассчитывают давление жидкости на стенки сосуда, давление внутри жидкости?

По формуле $p = rho gh$ можно вычислить давление на стенки сосуда или внутри жидкости, так как на одной глубине давление в жидкости будет одинаково во всех направлениях.

Давление жидкости не зависит от формы сосуда, оно зависит только от плотности жидкости и высоты ее столба

Вопросы и пример задачи

Вопрос №1

Как вы думаете, изменится ли давление на дно цилиндрического сосуда, частично заполненного водой, если в него опустить деревянный брусок (рисунок 3)?

Рисунок 3. Иллюстрация к задаче

Посмотреть ответ

Скрыть

Ответ:

В данном случае уровень воды поднимется и высота столба станет больше, значит и давление увеличится.

Вопрос №2

Какая вода: пресная или соленая оказывает большее давление на дно сосуда при одинаковом объеме?

Посмотреть ответ

Скрыть ответ

Ответ:

Здесь достаточно вспомнить, что в соленой воде нам намного проще плавать и держаться на поверхности, что о говорит о ее большей плотности. А давление прямо пропорционально плотности. Соответственно, большее давление оказывает соленая вода.

Задача

Определите давление керосина на дно цистерны, если высота столба керосина $8 space м$, а его плотность $800 frac{кг}{м^3}$.

Дано:
$rho = 800 frac{кг}{м^3}$
$h = 8 space м$

$p — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Давление рассчитывается по формуле:
$p= rho gh$.

Подставим все величины и рассчитаем его:
$p = 800 frac{кг}{м^3} cdot 9.8 frac{Н}{кг} cdot 8 space м = 62 720 space Па approx 63 space кПа$.

Ответ: $p approx 63 space кПа$.

Упражнения

Упражнение №1

Определите давление на глубине $0.6 space м$ в воде, керосине, ртути.

Дано:
$h = 0.6 space м$
$rho_1 = 1000 frac{кг}{м^3}$
$rho_2 = 800 frac{кг}{м^3}$
$rho_3 = 13600 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$

$p_1 — ?$
$p_2 — ?$
$p_3 — ?$

Показать решение и ответ

Скрыть

Решение:

Для расчета давления на заданной глубине будем использовать формулу $p = rho gh$.

Давление в воде:
$p_1 = rho_1 gh$,
$p_1 = 1000 frac{кг}{м^3} cdot 9.8 frac{Н}{кг} cdot 0.6 space м = 5880 space Па approx 5.9 space кПа$.

Давление в керосине:
$p_2 = rho_2 gh$,
$p_2 = 800 frac{кг}{м^3} cdot 9.8 frac{Н}{кг} cdot 0.6 space м = 4704 space Па approx 4.7 space кПа$.

Давление в ртути:
$p_3 = rho_3 gh$,
$p_3 = 13600 frac{кг}{м^3} cdot 9.8 frac{Н}{кг} cdot 0.6 space м = 79 space 968 space Па approx 80 space кПа$.

Ответ: $p_1 approx 5.9 space кПа$, $p_2 approx 4.7 space кПа$, $p_3 approx 80 space кПа$.

Упражнение №2

Вычислите давление воды на дно одной из глубочайших морских впадин — Марианской, глубина которой приблизительно равна $10 space 900 space м$. Плотность морской воды равна $1030 frac{кг}{м^3}$.

Дано:
$h = 10 space 900 space м$
$rho = 1030 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$

$p — ?$

Показать решение и ответ

Скрыть

Решение:

Рассчитаем давление на дне Марианской впадины по формуле:
$p = rho gh$,
$p = 1030 frac{кг}{м^3} cdot 9.8 frac{Н}{кг} cdot 10 space 900 space м = 110 space 024 space 600 space Па approx 110 space МПа$.

Ответ: $p approx 110 space МПа$.

Упражнение №3

На рисунке 3 изображена футбольная камера, соединенная с вертикально расположенной стеклянной трубкой. В камере и трубке находится вода. На камеру положена дощечка, а на нее — гиря массой $5 space кг$. Высота столба воды в трубке равна $1 space м$. Определите площадь соприкосновения дощечки с камерой.

Рисунок 3. Футбольная камера с подсоединенной трубкой под давлением гири

Дано:
$m = 5 space кг$
$h = 1 space м$
$rho = 1000 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$

$S — ?$

Показать решение и ответ

Скрыть

Решение:

Гиря оказывает давление на футбольную камеру:
$p_1 = frac{F}{S}$.

Сила $F$, с которой она давит, будет определяться ее весом:
$F = P = F_{тяж} = mg$.

Тогда формула для давления примет следующий вид:
$p_1 = frac{mg}{S}$.

В то же время вода в трубке и камере давит на нее изнутри снизу вверх:
$p_2 = rho gh$.

Так как гиря и камера находятся в равновесии:
$p_1 = p_2$,
$frac{mg}{S} = rho gh$,
$S = frac{m}{rho h}$.

Рассчитаем эту площадь:
$S = frac{5 space кг}{1000 frac{кг}{м^3} cdot 1 space м} = 0.005 space м^2 = 50 space см^2$.

Ответ: $S = 50 space см^2$.

Задания

Задание №1

Возьмите высокий сосуд. В боковой поверхности его на разной высоте от дна сделайте три небольших отверстия. Закройте отверстия спичками и наполните сосуд водой. Откройте отверстия и проследите за струйками вытекающей воды (рисунок 4). Почему вода вытекает из отверстий? Из чего следует, что давление увеличивается с глубиной?

Рисунок 4. Увеличение давления с глубиной на наглядном опыте

Показать ответ

Скрыть

Ответ:

Вода вытекает из отверстий по действием давления самой жидкости. Мы видим, что из самого нижнего отверстия бьет струйка воды с самым сильным напором, а из верхнего отверстия — с самым слабым. Этот момент объясняется тем, что с увеличением глубины давление увеличивается.

Задание №2

Налейте в стеклянный сосуд (стакан или банку) произвольное количество воды. Сделайте необходимые измерения и рассчитайте давление воды на дно сосуда.

Дано:
$h = 0.086 space м$
$rho = 1000 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$

$p — ?$

Показать решение и овет

Скрыть

Решение:

Рассчитаем давление воды на дно нашего стакана по формуле:
$p = rho gh$,
$p = 1000 frac{кг}{м^3} cdot 9.8 frac{Н}{кг} cdot 0.086 space м = 842.8 space Па approx 843 space Па$.

Ответ: $p approx 843 space Па$.

Конспект по физике для 7 класса «Расчёт давления жидкости на дно и стенки сосуда». ВЫ УЗНАЕТЕ: Что такое гидростатическое давление. Как рассчитать давление жидкости на дно сосуда. Как рассчитать давление жидкости на стенки сосуда. ВСПОМНИТЕ: Как формулируется закон Паскаля? Как определить давление твёрдого тела на опору? Как зависит масса тела от его плотности? Что такое вес тела? Как вес тела зависит от его массы?

Конспекты по физике    Учебник физики    Тесты по физике


Расчёт давления жидкости на дно и стенки сосуда

Жидкость, находящаяся в сосуде, оказывает давление как на дно сосуда, так и на его стенки. Поверхность жидкости, которая не соприкасается со стенками сосуда, называют свободной поверхностью жидкости. Давление, оказываемое покоящейся жидкостью, называют гидростатическим.

РАСЧЁТ ДАВЛЕНИЯ ЖИДКОСТИ НА ДНО СОСУДА

Вычислим давление жидкости на дно сосуда площадью S, если высота столба жидкости в этом сосуде равна h. Как известно, давление определяется по формуле p = F/S.

В нашем случае сила F, с которой жидкость действует на дно сосуда, равна её весу. Вес жидкости определяется по формуле Р = mg.   (1)

Следовательно, для определения веса жидкости необходимо найти её массу. Для этого воспользуемся формулой m = pV, где р — плотность жидкости, а V — объём жидкости. Для определения объёма необходимо найти произведение площади дна сосуда и высоты столба жидкости: V = Sh.

Следовательно, масса жидкости в сосуде определяется по формуле m = рSh.   (2)

Подставим это выражение в формулу (1) и получим Р = gpSh.    (3)

Теперь для нахождения давления необходимо вес жидкости разделить на площадь сосуда: P = gpSh/S

Сократив в полученном выражении S в числителе и знаменателе, получим формулу для расчёта давления жидкости на дно сосуда: p = pgh. (4)

Давление жидкости на дно сосуда рассчитывают по формуле p = pgh.

РАСЧЁТ ДАВЛЕНИЯ ЖИДКОСТИ НА СТЕНКИ СОСУДА

Так как по закону Паскаля давление внутри жидкости на одном и том же уровне одинаково по всем направлениям, то по формуле (4) можно находить давление жидкости на стенки сосуда на любой глубине.

Из формулы (4) видно, что давление жидкости на дно и стенки сосуда прямо пропорционально высоте столба жидкости и зависит по только от высоты столба жидкости, но и от плотности жидкости р. Чем больше плотность жидкости, тем большее давление она оказывает при условии, что высота столба жидкости остаётся постоянной.

Даже при использовании дыхательных трубок, выступающих над водой, глубина погружения человека не может превышать 1,5 м, так как из-за давления воды у него не хватает сил увеличив объём грудной клетки и вдохнуть воздух. В 1943 г французами Ж. Кусто и Э. Ганьяном был изобретён акваланг специальный аппарат со сжатым воздухом, предназначенный для дыхания под водой и позволяющий находиться под водой от нескольких минут (на глубине около 40 м) до часа и более.

В соответствии с формулой (4) давление жидкости также зависит от ускорения свободного падения g. Значит, если представить себе один и тот же сосуд с жидкостью, помещенный на разные планеты, то давление на дно и стенки сосуда в нем будет различно в зависимости от значения g на планете.

ГИДРОСТАТИЧЕСКИЙ ПАРАДОКС

Из формулы (4) видно, что давление жидкости на дно и стенки сосуда зависит только от плотности и высоты столба жидкости и не зависит от формы сосуда.

Приведённая схема опыта показывает, что сила, с которой жидкость оказывает давление на дно сосудов различной формы, но с одинаковой площадью дна и одинаковой высотой столба жидкости в них, будет одной и той же. Каждый из сосудов снабжён съемным дном, и динамометры показывают именно 3 силу воздействия воды на дно сосудов, но не вес жидкости. Очевидно, что вес жидкости в сосудах будет различным, так как объёмы жидкости в сосудах неодинаковы.

По закону Паскаля давление столба жидкости высотой h равномерно передаётся в любую точку дна каждого из сосудов. Именно поэтому сила, с которой жидкость оказывает давление на дно, больше веса жидкости в сосуде В, но меньше веса жидкости в сосуде С. Несмотря на кажущееся противоречие, ничего парадоксального в этих опытах нет.

ОПЫТ ПАСКАЛЯ

Даже небольшим количеством воды можно создать очень большое давление. В 1648 г. этот факт очень убедительно продемонстрировал В. Паскаль, поразив своих современников. В прочную, наполненную водой и закрытую со всех сторон бочку площадью поверхности 2 м2 была вставлена тоненькая трубочка площадью сечения 1 см2 и высотой 5 м. Затем Паскаль поднялся на балкон второго этажа и влил в эту трубочку всего кружку воды. Из-за малого диаметра трубки вода поднялась до большой высоты, и давление на стенки бочки так возросло, что планки (клёпки) бочки разошлись и вода стала вытекать из бочки.


Вы смотрели Конспект по физике для 7 класса «Расчёт давления жидкости на дно и стенки сосуда»: Что такое гидростатическое давление. Как рассчитать давление жидкости на дно сосуда. Как рассчитать давление жидкости на стенки сосуда.

Вернуться к Списку конспектов по физике (В оглавление).

Понравилась статья? Поделить с друзьями:
  • Как найти скрытый счет в сбербанк онлайн
  • Как графически найти корень квадратный
  • Как найти канал волга
  • Как составить исковое заявление в суд на банкротство
  • Как найти ватсап на телефоне через компьютер