Как найти давление на высоте 6 класс


Цели и задачи:
продолжить формирование
знаний и представлений об атмосфере; разобрать с
учащимися новые понятия и определения;
рассмотреть виды, величину, причины изменения и
способы измерения Ат. Д.; доказать учащимся
существование Ат. Д.; показать интеграцию с
биологией – растения-барометры; формировать
умение обобщать, выделять главное, проводить
аналогию, выявлять причинно-следственные связи;
приобщать к географическим терминам,
формировать сознательную дисциплину.

Форма урока: беседа, демонстрация опыта,
доказывающего существование Ат. Д (лист бумаги и
стакан с водой). Решение практических задач по Ат.
Д.

Тип урока: объяснение нового материала.

Оборудование: барометр-анероид, стакан с
водой, лист бумаги, учебник, атлас для 6 класса.

Термины и понятия: Ат. Д., нормальное
давление, барометр ртутный, барометр-анероид.

Имена: Эванджелист Торричелли

Методы: объяснительно-иллюстративный,
репродуктивный, проблемный.

ХОД УРОКА

1. Организацонный момент.

2. Новая тема после практической работы.

Всякое вещество имеет свой вес и массу и даже
воздух. Воздух оказывает давление на все
предметы, с которыми соприкасается, например,
опыт со стаканом воды и листом бумаги.

Масса 1м3 воздуха над уровнем моря равна 1
кг 300 г

Если взять столб воздуха от земной поверхности
до верхней границы атмосферы, то окажется, что на
1см2 поверхности, воздух давит с такой же
силой, как гиря массой 1 кг 33 г (1 м2=10 000 см2
x 1,33 =13 300 кг (13 т 300 кг)

Давайте попробуем вычислить давление,
оказываемое атмосферой на вашу ладонь.

Площадь ладони равна 60 см2 x 1,33 кг = 79,8 кг

Ребята, а почему мы или другие живые организмы
не ощущаем давление, которое давит на нас? (Т.к.
оно уравновешивается внутренним давлением,
существующим внутри человеческого организма).
Вот мы с вами и подошли к определению –
Атмосферное давление – это сила, с которой
воздух давит на земную поверхность и все
находящиеся на ней предметы (записать
в тетради
).

А кто же измерил и установил что такое
атмосферное давление?

В XVII в. Итальянский учёный Э. Торричелли
доказал, что атмосферное давление существует.

Он провёл такой опыт: Взял трубку высотой 1 м, с
одного конца запаял и налил ртуть (это жидкий
ядовитый металл Нg) перевернул трубку в чашу с
ртутью и открыл, часть ртути вылилась, а часть
осталась в трубке. Если Атм. Д. ослабеет, то ртуть
ещё немного выльется, если повыситься, то столбик
ртути поднимется.

Что же мешало ртути вылиться полностью? (Давление воздуха давит на ртуть в чашке
и не даёт ртути вылиться)
что и показал опыт
со стаканом с водой.

Сейчас обратимся к учебнику стр. 144

Установлено, что нормальным Атм. Д. является 760
мм рт.ст. на уровне моря у параллели 45° (рис. 72) записать в тетрадь.

Чем же измеряют Атм. Д.?

Барометр (ртутный) от греческого барос-тяжесть,
метрео-измеряю. Используется на всех
метеорологических станциях, где помимо ещё
установлен и барограф (графо-пишу).

Анероид (без жидкости) коробочка, из которой
выкачан воздух. Если давление увеличивается,
коробочка сжимается, если уменьшается, коробочка
расширяется, стрелка показывает изменение её
объёма.

Если Атм. Д. понижается – то это к  (к дождю)

Если повышается – то это к  (к ясной
погоде)

Но как же происходит изменение атмосферного
давления?

Давайте ещё раз обратимся к рис. 72

Вывод: значит с высотой
давление будет понижаться
. А через сколько
метров?

С высотой воздух становится менее плотным,
кислород в нём уменьшается, дышать становится
труднее. Поэтому, когда человек поднимается в
горы уже на высоте 300 м, начинает чувствовать себя
плохо – появляется отдышка, головокружение,
кровотечение из носа.

Через каждые 10,5 м Атм. Д. понижается на 1 мм рт.
ст.

Атмосферное давление изменяется и от
температуры
. Тёплый воздух легче
(расширяется) – Атм.Д. – низкое; холодный
воздух тяжелее (сжимается) Атм. Д. – высокое.

В природе существуют растения, которые могут
чувствовать изменение Атм.Д. и предсказывать
погоду (клевер, фиалка, горицвет, полевой вьюнок,
белая кувшинка – “Занимательная биология” стр.
83; репродукции цветов взять у учителя биологии).

Где вам может пригодиться изучаемый сейчас на
уроке материал? (Ответы учеников).

3. Закрепление

Вопрос № 2.

а) холодная погода – повышается Атм. Д.

б) тёплая погода – понижается Атм. Д.

Вопрос № 5. Высота г. Казань по атласу 200 м;
широта 54,5° с.ш. Необходимо узнать какое давление
в г. Казань? 200 м / 10,5 м = 19,04 мм; 760 мм – 19,04 =741 мм
рт.ст.

Задача: У подножия горы на высоте 2300 м над
уровнем океана давление воздуха равно 756 мм, а на
вершине горы в то же самое время 720 мм. Определите
относительную и абсолютную высоту горы?

756 мм – 720 мм = 36мм x 10,5 м = 478 м (относительная
высота)

478 м + 200 м = 678 м (абсолютная высота)

Рисунок №1

Задача: Если у подножия горы давление 760 мм,
то какое давление будет на высоте 336 м?

336 м / 10,5 м = 32 мм;

760 мм – 32 мм = 728 мм рт.ст.

4. Домашнее задание: § 38 вопрос №3; №4

Рассмотрим один интересный опыт.
Поставили на весы две пустые колбы. Одну из них нагрели. Через некоторое
время видно, что та колба, которую нагревали, поднимется вверх, то есть она
станет легче. Это можно объяснить тем, что в колбе был воздух, который при
нагревании расширился и вышел из неё. А, значит, в колбе воздуха стало меньше.
Этот опыт доказывает то, что воздух имеет вес.

Учёные подсчитали, что масса 3
воздуха
на уровне моря равна 1,3 кг. Чем выше находится воздух от земной
поверхности, тем меньше его масса. Так, на высоте 12 км масса воздуха
составляет 310 г, а на высоте 40 км всего лишь 4 г.

Любой предмет на земной поверхности
оказывает давление на нижележащий предмет. Например, лежащий учебник географии
на вашей парте оказывает на неё давление, или стул, на котором вы сидите,
оказывает давление на пол.

Так как воздух имеет вес, то он
тоже оказывает давление.

Сила, с которой воздух давит на все
предметы земной поверхности, называют атмосферным давлением. Воздух
оказывает давление и на вас с нами, только мы его не ощущаем, потому что его
давление равно величине давления, которое существует внутри нас. Но ощутить
атмосферное давление всё-таки можно: при взлёте или посадке самолёта
чувствуется, как воздух давит на наши барабанные перепонки.

Впервые атмосферное давление было измерено
прибором, который называется ртутный барометр. Он был изобретен в
1643 году Еванджелисто Торричелли.

Ртутный барометр представляет собой стеклянную
трубку
, запаянную сверху, а открытым концом помещённую в сосуд с ртутью.
Некоторое количество ртути сначала выливается из трубки, а потом высота
столбика ртути практически не меняется. Наблюдая за этим явлением, Торричелли
в 1643 году
сделал вывод, что на открытый сосуд с ртутью воздух оказывает
давление, которое не даёт ртути вылиться из трубки. А изменение высоты столба
ртути в трубке зависит от изменения атмосферного давления: если атмосферное
давление падает, то и столбик ртути в трубке тоже падает. Если же атмосферное
давление повышается, то вслед за ним поднимается и столб ртути.

В современных ртутных барометрах
стеклянная трубка находится в железном коробе, на котором помещена шкала
в миллиметрах
. По ней и можно судить о величине атмосферного давления в
миллиметрах ртутного столба. Ртутный барометр самый точный прибор для измерения
давления, поэтому им пользуются для измерения давления на метеорологических
станциях. Но таким прибором неудобно пользоваться в полевых условиях. Поэтому
чаще всего в настоящее время для измерения атмосферного давления пользуются барометром-анероидом.

Внутри этого прибора находится металлическая
коробочка
, которая очень чувствительна к любому изменению атмосферного
давления. Так, если атмосферное давление увеличивается, то металлическая
коробочка сжимается, а если, наоборот, давление уменьшается, то
коробочка расширяется. Она соединена со стрелкой на корпусе прибора,
которая указывает на шкале величину атмосферного давления.

Нормальным
принято считать атмосферное давление 760 мм ртутного столба. Оно
определено на уровне моря на широте 450 при температуре 00С.

Если величина атмосферного давление выше
величины 760 мм ртутного столба, то говорят, что давление повышенное.
Если давление ниже 760 мм ртутного столба, то такое давление является пониженным.

Если вы когда-нибудь поднимались в горы,
то, наверное, замечали, что при поднятии на высоту становится всё труднее
дышать. С чем это связано? Всё дело в том, что воздух с высотой
становится менее плотным, а значит, атмосферное давление с
высотой понижается. Подсчитано, что при подъёме на 10,5 м атмосферное
давление падает на 1 мм ртутного столба. Значит, если вы поднялись на
гору высотой в 4000 метров, у подножья которой величина атмосферного
давления составила 760 мм ртутного столба, то на её вершине вы будете
испытывать давление в 380 мм ртутного столба.

Разное давление испытывают и жильцы одного
дома. Например, если вы проживаете на 1 этаже, то испытываете
атмосферное давление равное давлению у поверхности Земли, например, 740 мм
ртутного столба
. А вот ваш сосед с 11 этажа будет испытывать
давление уже 737 мм ртутного столба.

Атмосферное давление изменяется не
только с высотой, но и в течение дня в любом пункте Земли. Это
связано с тем, что на величину давления оказывает влияние температура
воздуха
. Холодный воздух тяжёлый и плотный, а тёплый воздух лёгкий и менее
плотный. Поэтому тёплый воздух оказывает меньшее давление на
земную поверхность, чем холодный.

Именно по этой причине возможно совершать
полёты на воздушных шарах: воздух в шаре нагревается при помощи газовой
горелки, и он поднимается вверх, потому что тёплый воздух лёгкий.

Подведём итоги.

На все предметы, находящиеся на земной
поверхности, воздух оказывает давление. Сила, с которой он давит на все
предметы, находящиеся на Земле, называют атмосферным давлением.

Атмосферное давление измеряют ртутным
барометром
и барометром-анероидом.

За нормальное атмосферное давление
принято давление воздуха на уровне моря на широте 450 при
температуре 00С в 760 мм ртутного столба. Его величина
изменяется с высотой: при подъёме на каждые 10,5 метров давление падает на
1 мм ртутного столба
. Атмосферное давление зависит от температуры воздуха:
чем теплее воздух, тем меньше его давление.

План урока:

Атмосфера. Атмосферное давление

Давление на разных высотах

Давление морских глубин

Путешествие к центру Земли

Атмосфера. Атмосферное давление

Воздухом дышат люди и животные, без него не смогли бы существовать растения на Земле, т.е. жизни без воздуха нет. В этом состоит колоссальное значение воздуха. Вокруг Земли воздух образует оболочку, называют которую атмосферой. Атмосферный воздух – это газовая смесь:

1
Состав воздуха Источник

Больше всего в воздухе азота (78%), на долю кислорода приходится 21%, остальные газы вместе (углекислый газ, водород, озон, водяной пар и др.) входят в 1 %. К сожалению, в воздухе есть и пыль, сажа, «промышленная грязь».

Общая масса всех молекул атмосферного воздуха – это масса атмосферы, равна 5,3 миллиарда тонн (5,3 млрд. т = 5 300 000 000 т = 5,3 ∙ 1012 кг). Движение молекул хаотично, с большими скоростями (самые быстрые молекулы водорода имеют скорость около 1 800 м/с). Но преодолеть силу тяжести молекулам невозможно. Для этого нужна скорость не менее 8 000 м/с (первая космическая скорость). Поэтому многочисленные молекулы воздуха «толпятся» около поверхности Земли и образуют оболочку из газов — атмосферу.

Атмосфера до 2 000 км и выше простирается вверх, дальше размывается в пространство без воздуха (вакуум). Воздух давит на планету, и давление это называется атмосферным.

2
Атмосфера  

Давление окружающего воздуха определяет состояние атмосферы, погоду, которую нужно прогнозировать. Но для этого надо исследовать передвижения огромных масс воздуха, за что как раз и отвечает давление. Как давление атмосферы измерить? Если использовать формулу p = ρgh, то в ней не определена плотность, которая уменьшается с высотой. Чем выше воздушный слой, тем меньше на него давят вышележащие слои, а самое большое давление будет на Земле.

3
Изменение плотности воздуха с высотой Источник

Высота тоже не имеет четкого значения. Граница перехода атмосферы в вакуумное пространство размыта. (В старших классах изучается, что и величина g уменьшается с ростом высоты). Как же быть? Ответ нашел Эванджелиста Торричелли (итальянский ученый 1608-1647г.г.).

4
Опыт Торричелли Источник

Метровую стеклянную трубку ученый запаял с одной стороны, наполнил ртутью и опрокинул ее в плоский сосуд. Ртуть вытекла из трубки не полностью, а остановилась на некоторой высоте. Сверху образовалось пустое пространство. Вес ртути в трубке и сила атмосферы, давящая на ртуть в открытой части сосуда, сравнялись. Получается: атмосферное давление равно давлению ртутного столбика в трубке, которое легко вычисляется по упомянутой формуле p = ρgh. Зафиксировать уровень ртути помогает шкала обыкновенной измерительной линейки, если ее подставить к собранному устройству.

При изменении погоды высота ртутного столбика в приспособлении непостоянна. Атмосферное давление растет, давит на открытую ртуть в сосуде, дальше давление передается по трубке, столбик поднимается до высоты, пока не наступит равновесие. Атмосферное давление уменьшается, меньше давит на открытую ртуть, тогда ртуть из столбика вытекает до равновесия, столбик становится ниже. Положения столбика отмечаются на миллиметровой шкале. Отсюда возникли миллиметры ртутного столба, а устройство со стеклянной трубкой называют ртутным барометром (греч. «барос» — «тяжесть»).

5
Опыт Торричелли с трубками разной формы и разного наклона Источник

В 1647 году Б.Паскаль проделал опыт Торричелли в горах и отметил, что у подножия горы давление атмосферы больше, чем на горе. Паскаль испробовал и водяной барометр вместо ртутного. Плотность воды меньше плотности ртути в 13,6 раза, значит, столбик воды должен быть в 13,6 раза выше, и трубку надо брать более десяти метров длиной.

6
Измерение давления водяным барометром  

Понятно, что пользоваться таким барометром неудобно. Барометры ртутные на практике также не используются из-за опасных для человека паров ртути.

p = 760 мм рт. ст. при t = 0о С считается нормальным атмосферным давлением.

В СИ 1 мм рт. ст. получается следующим образом:

p = ρgh

ρ = 13600 кг/м3 (ртуть), h = 1 мм = 0,001 м – высота, g = 9,8 Н/кг.

p = 13600 кг/м3 ∙ 9,8 Н/кг ∙ 0,001 м ≈ 133,28 Па

760 мм рт.ст. = 101292,8 Па ≈ 101300 Па

Давление атмосферы очень значительно. Это подтверждает опыт, проведенный 8 мая 1654 года, по распоряжению Отто Герике, бургомистра г. Магдебурга. Из медного шара, составленного из двух полушарий, выкачивался воздух. Эти полушария пытались разделить по четыре пары лошадей с каждой стороны. Совместные усилия лошадей ни к чему не привели: они не смогли преодолеть огромную силу атмосферного давления.

7
Опыт с магдебургскими шарами  

Атмосферное давление используется в практической деятельности человека. Если в трубке с помощью поршня создавать безвоздушное пространство, то атмосферное давление будет вдавливать туда жидкость. Например, лекарство поступает в шприц вслед за поршнем, заполняя пустое пространство. Вода поступает вслед за поршнем насоса тоже под действием давления атмосферы.

Присоски из резины удерживаются на стенке за счет атмосферного давления. Нажимая на присоску, из нее удаляют часть воздуха. Давление внутри уменьшается, и атмосферное давление оказывается больше, чем в присоске. Поэтому атмосфера и прижимает присоску к стене.

Атмосферное давление широко учитывается в метеорологической службе для прогнозирования погодных явлений.

Давление на разных высотах

В начале урока возникла проблема: у мальчиков, живущих в одном доме, приборы показывают разные давления. На первом этаже – 760 мм рт. ст., на девятом – 757,5 мм рт. ст.

8
Давление воздуха на разных высотах Источник

Давление воздуха пропорционально зависит от его плотности. Плотность же атмосферного воздуха заметно изменяется с изменением высоты. На уровне моря воздух обладает плотностью примерно 1033 г/м3, на высоте от 5 до 6 км плотность становится 400 г/м3, на высоте 20 км – уже 43 г/м3. Соответственно и атмосферное давление становится меньше.

На высотах, близких к Земле, наблюдается следующая зависимость. Через каждые 12 м атмосферное давление изменяется на 1 мм рт. ст. или на 133,28 Па. На высотах от 2 до 6 км на 1мм рт. ст. давление меняется через каждые 15 м, от 6 до 10 км – каждые 20 м. Это достаточно приближенные значения, так как изменить показатели давления могут бури, циклоны, ветра. На состояние атмосферы оказывает влияние даже время суток и года, географическая широта местности, влияние Солнца. В данных примерах рассматривается атмосфера в нормальных условиях (температура 0о С и давление 760 мм рт. ст.). Но в таком состоянии атмосфера бывает очень редко.

Теперь ясно, почему приборы на разных этажах дома показали неодинаковые давления воздуха. Высота девятого этажа по сравнению с первым около 30 м. Делим 30 м на 12 м (каждые 12 м дают изменение давления на 1 мм рт. ст.). Получается, что давление должно отличаться на 2,5 мм рт. ст. Значит, оба мальчика определили давление правильно.

Интересно, какие приборы они использовали? Атмосферное давление можно измерить ртутным барометром. Использование его небезопасно и неудобно. Чаще применяют барометр – анероид (слово «анероид» означает безжидкостный):

9
Барометр — анероид  

Внешний вид барометров различен. Корпус делают в виде пластмассовых или деревянных коробок, которые имеют разные формы и цвета. Главные же элементы у приборов присутствуют всегда и находятся внутри.

10
Схема устройства барометра — анероида Источник

Принцип работы прибора не сложен. Пустая металлическая коробочка 1 имеет очень тонкие стенки. Ее видно через стекло прибора (чем-то напоминает небольшую консервную банку). Коробочка соединена передаточным механизмом 3 с пружинкой 2 и стрелкой – указателем 4. Стрелка движется над шкалой.

Атмосферное давление, повышаясь, давит на тонкие стенки коробочки. Коробочка слегка сжимается, с помощью передаточного механизма действует на стрелку, заставляя ее поворачиваться и показывать давление на шкале. Пружинка не дает стрелке падать до конца шкалы. Если давление уменьшается, коробочка расширяется, передаточный механизм поворачивает стрелку в обратную сторону. Стрелка указывает на новое значение давления.

Безжидкостный барометр менее точен, чем ртутный, но удобнее в использовании. На больших высотах используются приборы, в которых на основе давления указывается высота над уровнем Земли. Сейчас используются карманные устройства или устройства, похожие на ручные часы.

11Высотомер парашютистов Источник                           Карманный барометр Источник

            

Давление морских глубин

Три четверти земной поверхности занимает вода, образующая гидросферу Земли. Чтобы определить физические характеристики воды на больших глубинах, нужно использовать специальные методы, и вот почему. Погружаясь на большие глубины, слой воды все сильнее и сильнее давит на погружаемое тело. С погружением на 10 метров давление возрастает на 100 000 Па (почти на величину нормального атмосферного давления). Значит, при погружении на глубину 1 км давление воды будет в 100 раз больше атмосферного. Средняя глубина Мирового океана 3704 м. Самая большая глубина 11034 м в Марианской впадине, которая находится в Тихом океане. На таких глубинах существуют огромные давления.

12
Марианская впадина на карте  

Вода малосжимаема, поэтому ее плотность лишь незначительно возрастает по мере погружения. Значит, на расчет давления большее влияние оказывает глубина, т.е. высота столба жидкости.

Интересно, что и на таких глубинах есть жизнь. Светящиеся и необычайные по форме рыбы населяют морское дно. А кашалот, рекордсмен среди животных по нырянию, достигает глубины 3 км.

13
   Красногубый нетопырь[1]                                     Зубатый кит кашалот                                 

Человек может нырять на большие глубины, но лишь опытные ныряльщики – ловцы жемчуга могут достигать глубины порядка 85 м. На больших глубинах давление воды может раздавить грудную клетку человека. Применяя водолазные костюмы, человек может опуститься на глубину 300 м. Водолазы прокладывают по дну подводный кабель или трубопровод, строят мосты, гидроэлектростанции и шлюзы — очень нужная профессия для настоящих мужчин.

Но костюм водолаза замедляет движение человека. С поверхностью корабля он связан тросом и шлангом, по которому поступает воздух. Это также мешает передвижению под водой.

Поэтому исследователь морей француз Кусто изобретает акваланг – новое снаряжение для ныряльщиков. Аквалангисты берут с собой запас воздушной смеси в баллонах. Используя устройство, возможно под водой достигнуть глубин 90 м.

14
Водолаз                                                                      Аквалангист                                                 

По свидетельству историков первым водолазом был Александр Македонский, который в IV веке до нашей эры спускался в море в водолазном колоколе. Лишь в XX веке человечество начало осваивать большие глубины Мирового океана. Для этого используются батисферы и батискафы. Батисферы спускаются с корабля на прочном тросе на глубину более 900 м. Батискафы имеют собственный двигатель и перемещаются около самого дна. Из них наблюдатели исследуют подводный мир. Прочные шарообразные стенки подводных аппаратов выдерживают гигантские давления.

15
Батискаф  

Одна из первых подводных лодок была построена по идеям Ж.Верна (роман «80 000 лье[2] под водой») в 1899 году. Под водой теперь океанские просторы бороздят современные подводные лодки.

16
Подводная лодка  

 

Путешествие к центру Земли

У Земли экваториальный радиус больше полярного радиуса на 21 километр. Поэтому форма нашей планеты – сплюснутый шар со стороны полюсов. Форму такую называют эллипсоидом. Рассматривают обычно средний радиус Земли: 6370 км. Впервые рассчитали его грек Эратосфен в третьем веке до нашей эры и араб Бируни во втором веке до нашей эры.

Землю делят на три основные зоны:

  • ядро (из двух частей);
  • мантию;
  • кору.

17
Строение Земли Источник

Толщина земной коры изменяется от 5 км в области океанов, до нескольких десятков километров в области горных районов. Возраст Земли примерно 4,5 миллиарда лет. Много – много лет назад земные недра находились в расплавленном состоянии, поэтому легкие элементы из глубины всплыли в верхние слои и образовали кору, а тяжелые, оставшись на глубине, образовали ядро. Ниже коры до глубины 2800-2900 км располагается мантия. Плотность мантии с глубиной растет от 3300 кг/м3 до 5000 кг/м3.

Ядро, состоящее из расплавленного железа с примесями других плотных веществ, делится на внешнее и внутренне. Внешнее ядро достигает глубины 5000 км и имеет плотность от 10600 кг/м3 до 11500 кг/м3. Во внутреннем ядре плотность продолжает расти к центру и на глубине 6370 км (средний радиус Земли) достигает максимального значения 12500 кг/м3. Из приведенных цифр видно, что плотность изменяется не планомерно, а скачками на границах кора – мантия и мантия – ядро, что явилось причиной выделения трех зон строения планеты.

18
Слои литосферы Источник

Твердую каменистую (греч. «литос» — камень) оболочку из земной коры и верхней части мантии называют литосферой (более подробно изучается по географии).

При таких глубинах и плотностях нетрудно представить огромные значения давления внутри планеты. Используя современные приборы, рассчитывают, что давление на глубине 50 км в 400 раз больше атмосферного. Человек выносит давление в три раза больше нормального атмосферного. Такое давление есть уже на глубине 9 км. Поэтому без специальных устройств-камер человек не опускается вглубь Земли.

19
На глубине Земли  

Давление в центре Земли 353 ГПа. Это в 350 тысяч раз больше нормального атмосферного давления.

При приближении к центру Земли увеличиваются не только плотность и давление, но и температура. На глубине 10 км около 180о С, на условной границе кора – мантия (примерно 33 км) – 420о С. Температура в центре ядра более 6100о С.

Итак:

  • атмосфера оказывает давление на Землю и тела, находящиеся на ее поверхности и вблизи нее. С высотой давление уменьшается;
  • гидросфера – водная оболочка Земли. С погружением на дно Мирового океана происходит увеличение давления до гигантских значений (несколько десятков миллионов Паскалей);
  • литосфера – твердая оболочка Земли. На больших глубинах давление в сотни раз больше атмосферного.

Словарь

1. Нетопырь – 1) по мифологии славян страшное ночное животное, в котором живет душа злого человека; 2) плосконосая летучая мышь.

2. Лье – (другой вариант «льё») старинная французская мера расстояний; 5557 м — в море, 4445 м – на земле.

Атмосферное давление и его измерение

  1. Опыт Торричелли
  2. Эксперименты Отто фон Герике
  3. Как взвесить воздух в школьной лаборатории?
  4. Измерение атмосферного давления с помощью барометров
  5. Атмосферное давление на различных высотах
  6. Задачи

п.1. Опыт Торричелли

История открытия атмосферного давления тесно связана с объяснением действия насосов.

Простейшие насосы были известны еще со времен Аристотеля, который утверждал, что вода поднимается за поршнем потому, что «природа не терпит пустоты». Однако при сооружении фонтанов во Флоренции в 1638 г. оказалось, что вода поднимается чуть выше 10 м в трубе высотой 12 м и останавливается, сколько бы её ни качали, не заполняя оставшуюся в трубе «пустоту».

Галилео Галилей, к которому обратись за помощью, предложил разобраться с этой проблемой своему ученику – Эванджелиста Торричелли. После серии опытов Торричелли пришел к выводу: вес водяного столба в трубе насоса поддерживается давлением воздуха, действующего на свободную поверхность воды в резервуаре.

Поскольку речь шла о столбе жидкости, возникла замечательная идея: плотность ртути в 13,6 раз больше плотности воды, следовательно, ртутный столб таким же весом будет в 13,6 раз короче и можно перейти от громоздких опытов на стройплощадке к лабораторным исследованиям.

Опыт Торричелли Для опыта понадобились:
1) стеклянная трубка длиной 1 м, запаянная с одного конца; 2) колба с ртутью; 3) широкая чашка.

Описание опыта Торричелли:
Наливаем ртуть в трубку до уровня 85-90 см. Немного ртути наливаем в чашку (высота над дном чашки 2-3 см). Зажимаем пальцем конец трубки, опускаем конец в чашку, под ртуть. Отпускаем палец.
Немного ртути вытекает из трубки в чашку. Столб оставшейся ртути равен примерно 760 мм над уровнем ртути в чашке.

Заметим, что такое неосторожное обращение с опаснейшим веществом вызывает сегодня недоумение. Однако техника безопасности при работе с ртутью была в те времена не на высоте. Вероятно, именно из-за этих опытов Торричелли прожил всего 39 лет.

На основании полученных результатов Торричелли пришел к следующему выводу:
Давление столба ртути уравновешивает атмосферное давление на поверхность ртути в чашке: (p_text{ртути}=p_text{атм}). Поэтому, измеряя высоту ртутного столба, мы узнаем атмосферное давление.

«Мы живем на дне воздушного океана».

Эванджелиста Торричелли (1608-1647),
итальянский математик и физик

Эванджелиста Торричелли

Идеи о том, что планету окружает атмосфера, воздух имеет вес и оказывает давление на поверхность Земли, были достаточно смелыми, и понадобилось некоторое время, чтобы их приняли современники.

п.2. Эксперименты Отто фон Герике

В 1654 году Отто фон Герике провел в Магдебурге масштабный эксперимент для демонстрации силы давления воздуха и изобретенного им воздушного насоса.

Эксперименты Отто фон Герике

Вот как сам Герике описывал этот опыт:

«Я заказал два медных полушария диаметром в три четверти магдебургского локтя. К одному полушарию приделали кран, через который можно было выкачивать воздух с помощью воздушного насоса. К полушариям прикрепили кольца и продели в них канаты, привязанные к упряжи лошадей. Я велел соединить полушария, чтобы образовался шар, и вложить между полушариями кожаное кольцо, пропитанное смесью воска со скипидаром, — оно не пропускало воздух внутрь полушарий.

Когда воздух из полушарий выкачали, давление наружного воздуха прижало их друг к другу так сильно, что 16 лошадей не могли разнять их. Но стоило поворотом крана открыть доступ воздуху внутрь полушарий – и их можно было разнять руками».

Опыт с магдебургскими полушариями стал убедительным доказательством существования, как атмосферы, так и вакуума – безвоздушной «пустоты» внутри полушарий.

В 1657 году Герике построил водяной барометр, с помощью которого в 1660 году предсказал надвигающуюся бурю за 2 часа до её появления. В 1663 году изобрел электростатический генератор, изучал свойства электричества, описал отталкивание одноименно заряженных предметов. Будучи сторонником гелиоцентрической системы, занимался также астрономией.

Герике был выдающимся ученым, инженером, мыслителем и общественным деятелем своей эпохи. Как ученый, он особо подчеркивал важность эксперимента для формирования научного знания.

«Философы, которые держатся исключительно за свои умозрения и аргументы, оставляя в стороне опыт, никогда не могут прийти к достоверным и справедливым выводам относительно явлений внешнего мира, и мы видим немало примеров, что человеческий разум, когда он не обращает внимания на результаты, добытые опытом, оказывается от истины дальше, чем Земля от Солнца».

Отто фон Герике (1602-1686),
немецкий физик, инженер и философ

Отто фон Герике

п.3. Как взвесить воздух в школьной лаборатории?

Опыты Торричелли и Герике являются доказательством того, что воздух имеет вес.

В школьной лаборатории, используя несложное оборудование, можно также взвесить воздух. Для этого понадобятся:

1) прочная стеклянная колба; 2) пробка с трубкой и зажимом; 3) насос; 4) весы

Вывод: Отклонение стрелки весов равно массе откачанного воздуха.

п.4. Измерение атмосферного давления с помощью барометров

Еще в XVII веке, измеряя атмосферное давление по высоте ртутного или водного столба, исследователи заметили, что оно не остается постоянным: перед хорошей погодой давление растет, а перед ненастьем – падает. Значит, по изменению атмосферного давления можно достаточно уверенно предсказывать погоду. В эпоху освоения новых океанов и континентов такое умение было бесценным для моряков и путешественников.

Так появились барометры – приборы для измерения атмосферного давления.

Жидкостные барометры

Жидкостные барометры Самые простые барометры – жидкостные, в которых давление измеряется высотой столба жидкости: $$ p_text{атм}=rho gh $$ Ртутный барометр с трубкой длиной 1 м и миллиметровой шкалой был предложен Торричелли. Носить такой прибор с собой затруднительно из-за его размеров, к тому же ртуть ядовита, а вероятность вытекания высока.
Водные барометры в различных городах строили Герике, Паскаль и многие другие ученые; основным элементом этих приборов была труба длиной 11-12 м. Это были капитальные сооружения, пользоваться которыми можно было только на месте постройки.

Барометры-анероиды

Электронные барометры

Электронные барометры В наше время широко применяются электронные барометры.
В них может быть вмонтирована традиционная гофрированная коробка с дальнейшей обработкой деформаций с помощью микропроцессора.
Выпускаются также электронные барометры без коробки с электронным датчиком давления.
Электронные барометры
Модуль измерения атмосферного давления на основе датчика BMP-280 от BOSCH (цена менее $2)

Результаты измерений выводятся на экран прибора в мм рт.ст. или в гектопаскалях (показания красным цветом на приборе, представленном на рисунке – 1013,9 гПа).
Как правило, электронные барометры исполняются в одном корпусе с другими измерительными приборами (времени, температуры, влажности, освещенности) для создания мини-станций слежения за погодой. Показания таких мини-станций можно получать удаленно на мобильный телефон.

п.5. Атмосферное давление на различных высотах

Воздух имеет массу, следовательно, он имеет вес и оказывает давление на поверхность под ним. Плотность воздуха очень сильно зависит от его температуры и влажности, а также от высоты над уровнем моря.

Как известно, расстояние между молекулами газа в несколько раз больше размера молекул, поэтому газы хорошо сжимаются (см. §16 данного справочника). В результате слои атмосферы у поверхности Земли, сжатые всеми слоями, расположенными выше, имеют большую плотность. Чем больше плотность газа, тем чаще молекулы сталкиваются между собой и различными поверхностями, т.е. тем большее давление газ создаёт.
Получается, что давление атмосферы наибольшее у поверхности Земли и постепенно уменьшается с высотой.

Атмосферное давление на различных высотах над уровнем моря
Атмосферное давление на различных высотах над уровнем моря

У поверхности Земли на уровне моря плотность сухого воздуха при 15°С равна 1,2250 кг/м3.

Масса одного кубометра такого воздуха (m=1,2250 text{кг}), а его вес (P=mgapprox 12 text{Н}).

Давление столба воздуха высотой 1 м: (papprox 12 text{Па}).

Давление столба воздуха высотой 1 км без учета изменения плотности: (p_1approx 12 text{кПа}).

Давление столба воздуха всей атмосферы, измеренное на поверхности Земли: $$ p_text{атм}=101,3 text{кПа} $$

Можем оценить высоту этого столба, не учитывая изменение давления с высотой $$ h=frac{p_text{атм}}{rho g}=frac{101 300}{1,2250cdot 9,8}approx 8400 (text{м})=8,4 (text{км}) $$

Если мы поднимемся на 1 км вверх, давление уменьшится на $$ p_1approx 12 text{кПа}approx 90 text{мм рт.ст.} $$

Эта величина неточная, но она может использоваться для быстрой оценки уменьшения давления с ростом высоты.

С другой стороны, зная более точную зависимость давления от высоты, можно построить прибор, который будет измерять давление, а показывать высоту. Такие приборы называют высотомерами (альтиметрами). Их используют в авиации, космонавтике и для высокогорных экспедиций.

п.6. Задачи

Задача 1. Скольким паскалям равно атмосферное давление в 730 мм рт.ст.? Выразите это давление в гектопаскалях. Какую погоду можно прогнозировать при таком давлении: ясную или пасмурную?

Дано:
(h=730 text{мм}=0,73 text{м})
(rho=13600 text{кг/м}^3)
(g=9,8 text{м/с}^2)
__________________
(p-?)

begin{gather*} p=rho gh,\[7pt] p=13600cdot 9,8cdot 0,73=97294,4 (text{Па})approx (text{гПа}) end{gather*} Это – пониженное давление. Можно прогнозировать пасмурную погоду.
Ответ: 973 гПа; прогноз – пасмурная погода

Задача 2. В эксперименте Отто фон Герике использовались медные полушария диаметром 35 см. Определите, сколько лошадей могут разорвать эти полушария, если один конец закрепить неподвижно на стене, а лошади будут тянуть другой конец с силой тяги (800 text{Н}) каждая. Площадь поверхности шара радиусом (R) рассчитывается по формуле (S=4pi R^2). Давление атмосферы примите равным 760 мм рт.ст. Давление внутри шаров примите равным двум третям атмосферного (удавалось выкачать треть воздуха).
Сколько лошадей понадобится, если лошади будут тянуть с обеих сторон?

Дано:
(D=35 text{см}=0,35 text{м})
(F_0=800 text{Н})
(p=760 text{мм рт.ст.}=101300 text{Па})
(p_text{вн}=frac 23 p)
__________________
(N-?, N’-?)

Площадь поверхности шара через диаметр $$ S=4pi R^2=4picdotleft(frac D2right)^2=pi D^2 $$ Сила давления на шар, составленный из полушарий $$ F=(p-p_text{вн})S=left(p-frac 23 pright)S=frac 13pcdot pi D^2 $$ Если один конец закреплен, то понадобится (N=frac{F}{F_0}) лошадей $$ N=frac{pcdot pi D^2}{3F_0} $$ Получаем $$ N=frac{101300cdot picdot 0,35^2}{3cdot 800}approx 16 $$ Если лошади будут тянуть в оба конца, то их понадобится в 2 раза больше $$ N’=2N=32 $$ Таким образом, используя по 8 лошадей с каждой стороны, даже при несовершенных насосах и изоляции швов в XVII веке, Герике ничем не рисковал.
Ответ: 16; 32

Задача 3. Определите глубину шахты, если на ее дне барометр показывает давление 109 кПа, а на поверхности Земли – 104 кПа. Примите плотность воздуха равной 1,3 кг/м3, g≈10 м/с2.

Дано:
(p=109cdot 10^3 text{Па})
(p_0=104cdot 10^3 text{Па})
(rho=1,3 text{кг/м}^3)
(gapprox 10 text{м/с}^2)
__________________
(h-?)

Давление на дне равно сумме давления на поверхности и давления столба воздуха $$ p=p_0+rho gh $$ Высота столба воздуха begin{gather*} h=frac{p-p_0}{rho g} end{gather*} Получаем: $$ h=frac{(109-104)cdot 10^3}{1,3cdot 10}approx 385 (text{м}) $$ Ответ: 385 м

Задача 4. Какова высота небоскреба, если у его входа барометр показывает 760 мм рт.ст., а на крыше – 740 мм рт.ст. Примите плотность воздуха равной 1,29 кг/м3.

Дано:
(h_1=760 text{мм}=0,76 text{м})
(h_2=740 text{мм}=0,74 text{м})
(rho_text{рт}=13600 text{кг/м}^3)
(rho=1,29 text{кг/м}^3)
__________________
(H-?)

Давление на входе $$ p_1=rho_text{рт}gh_1, $$ давление на крыше $$ p_2=rho_text{рт}gh_2. $$ Давление на входе равно сумме давления на крыше и давления столба воздуха высотой (H). $$ p_1=p_2+rho gH $$ Высота небоскреба begin{gather*} H=frac{p_1-p_2}{rho g}=frac{rho_text{рт}gh_1-rho_text{рт}gh_2}{rho g}\[7pt] H=frac{rho_text{рт}}{rho}(h_1-h_2) end{gather*} Получаем $$ H=frac{13600}{1,29}(0,76-0,74)approx 211 (text{м}) $$ Ответ: 211 м

Задача 5*. В трубке, запаянной с верхнего конца, удерживается столбик ртути высотой 20 см. Атмосферное давление – 760 мм рт.ст. Каково давление воздуха в верхней части трубки? Выразите ответ в мм рт.ст. и гектопаскалях.
Примите g=9,8 м/c2

Задача 5*

Дано:
(h=20 text{см}=0,2 text{м})
(h_0=760 text{мм}=76 text{см})
(rho=13600 text{кг/м}^3)
(g=9,8 text{м/с}^2)
__________________
(p-?)

Если бы в верхней части не было воздуха, то высота столбика ртути определялась бы атмосферным давлением и равнялась бы 760 мм = 76 см.
В данном случае давление атмосферы уравновешивается суммой давления столбика ртути и давления воздуха вверху $$ p_text{атм}=rho gh+p $$ Давление воздуха вверху $$ p=p_text{атм}-rho gh=rho gh_0-rho gh=rho g(h_0-h) $$ В миллиметрах ртутного столба $$ p=h_0-h=760-200=560 text{мм рт.ст.} $$ В гектопаскалях $$ p=13600cdot 9,8cdot 0,56=74636,8 (text{Па})approx 746 (text{гПа}) $$ Ответ: 560 мм рт.ст.; 746 гПа

Определение атмосферного давления весьма просто – это давление атмосферы на объекты, что находятся в ней, и на поверхность планеты. Другими словами, атмосферное давление – это давление отдельно взятого столба воздуха, что находится сверху, с площадью 1 метр квадратный.

Измерение атмосферного давления

Единицами измерения давления являются паскали, бары и миллиметры ртутного столба. Последнее применяется в барометрах (специальных измерительных приборах) и очень понятно обычным людям, поскольку барометрами пользуются многие. Многие знают, что 760 мм ртутного столба является нормальным давлением (таково атмосферное давление на уровне моря, потому оно и принято за норму). Только стоит добавить, что нормальным оно считается при температуре 0 °C.

Другая популярная единица измерения, часто применяемая в физике – паскали. Значение в 101325 Па называется нормальным давлением и эквивалентно 760 мм ртутного столба. Ну а последняя единица измерения – бары.

1 бар = 100000 Па. В таком случае нормальным считается давление в 1,01325 бар.

Для упрощения подсчётов, в химии используется понятие стандартное атмосферное давление. Оно почти равно нормальному – 100000 Па (100 кПа) или 1 бар.

[custom_ads_shortcode1]

Нормальное атмосферное давление

760 мм ртутного столба барометра при температуре 0 °C – это нормальное давление. Именно такие значения выдаёт прибор на уровне моря. Именно от этого значения обычно и отталкиваются, приняв его за стандарт.

Кто-то слышал выражение одна атмосфера или три атмосферы, к примеру? Так вот, атмосферой в данном случае называют нормальное давление (то, о котором мы говорили выше). А вот давление, равное трём атмосферам, уже никак нормальным не назовёшь, ведь оно в три раза превышает норму.

[custom_ads_shortcode2]

Влияние атмосферного давления на погоду

Благодаря колебаниям атмосферного давления можно делать выводы о том, какая погода ожидается в ближайшем будущем. Правда, подобные прогнозы не могут похвастаться абсолютной точностью, поскольку зависит погода от многих параметров. К тому же, для разных регионов Земли характерно разное давление, из-за чего точный прогноз затруднителен.

Однако, определить ожидаемую погоду по показателям давления может любой человек. Так, если давление опускается ниже нормы, следует ожидать пасмурную, дождливую погоду. А если атмосферное давление поднимается выше нормы, следует ожидать солнечную погоду. Всё просто, не правда ли?

Правда, стоит понимать, что зимой ситуация несколько иная. Понижение давления говорит о повышенной влажности (возможно, будет снег), ожидается потепление. А повышение давления сулит нам ясную погоду, из-за чего стоит ожидать похолодания.

Для того, чтобы узнать, сколько в паскале атмосфер, необходимо воспользоваться простым онлайн калькулятором. Введите в левое поле интересующее вас количество паскалей, которое вы хотите конвертировать. В поле справа вы увидите результат вычисления. Если необходимо перевести паскали или атмосферы в другие единицы измерения, просто кликните по соответствующей ссылке.

[custom_ads_shortcode3]

Что такое «паскаль»

Единица измерения из системы СИ – паскаль (Па, Pa), равен давлению при равномерном приложении силы в 1 ньютон к ровной поверхности площадью 1 кв.

Норма атмосферного давления для человека в паскалях. Давление ртутного столба.

м. В паскалях измеряют также механическое напряжение, модули упругости, модуль Юнга, предел текучести, предел пропорциональности, сопротивление разрыву и срезу, звуковое и осмотическое давление, летучесть. Названа единица в честь французского физика и математика Блеза Паскаля в 1961 году.

[custom_ads_shortcode1]

Что такое «атмосфера»

Внесистемная единица измерения давления, приблизительно соответствующая атмосферному давлению на уровне мирового океана.

Равноправно существуют две единицы – техническая атмосфера (ат, at) и нормальная, стандартная или физическая атмосфера (атм, atm). Одна техническая атмосфера – это равномерное перпендикулярное давление силы в 1 кгс на ровную поверхность площадью 1 см².

атмосферное давление воздуха

1 ат = 98 066,5 Па.

[custom_ads_shortcode2]

Как перевести давление в Паскали

Стандартная атмосфера – это давление ртутного столба высотой 760 мм при плотности ртути 13 595,04 кг/м³ и нулевой температуре. 1 атм = 101 325 Па = 1,033233 ат. В РФ используется только техническая атмосфера. В прошлом для абсолютного и избыточного давления употребляли термины «ата» и «ати».

Избыточное давление – разница между абсолютным и атмосферным давлением, когда абсолютное больше атмосферного. Разница между атмосферным и абсолютным давлением, когда абсолютное давление ниже атмосферного, называется разрежением (вакуумом).

[custom_ads_shortcode3]

Атмосферное давление

Паска́ль (русское обозначение: Па, международное: Pa) — единица измерениядавления (механического напряжения) в Международной системе единиц (СИ)[1]. Паскаль равен давлению, вызываемому силой, равной одному ньютону, равномерно распределённой по нормальной к ней поверхности площадью один квадратный метр: 1 Па = 1 Н·м−2.

[custom_ads_shortcode1]

Атмосферное давление: перевод мегапаскалей (МПа) в атмосферы

С основными единицами СИ паскаль связан следующим образом: 1 Па = 1 кг·м−1·с−2. В СИ паскаль также является единицей измерения механического напряжения, модулей упругости, модуля Юнга, объёмного модуля упругости, предела текучести, предела пропорциональности, сопротивления разрыву, сопротивления срезу, звукового давления, осмотического давления, летучести (фугитивности)[2]. В соответствии с общими правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы паскаль пишется со строчной буквы, а её обозначение — с заглавной.

Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием паскаля. Например, обозначение единицы динамической вязкости записывается как Па·с. Единица названа в честь французскогофизика и математикаБлеза Паскаля. Впервые наименование было введено во Франции декретом о единицах в 1961 году[2][3].

Норма атмосферного давления для человека в паскалях. Давление ртутного столба.

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ. На практике применяют приближённые значения: 1 атм = 0,1 МПа и 1 МПа = 10 атм. 1 мм водяного столба примерно равен 10 Па, 1 мм ртутного столба равен приблизительно 133 Па. Нормальное атмосферное давление принято считать равным 760 мм ртутного столба, или 101 325 Па (101 кПа). Размерность единицы давления (Н/м²) совпадает с размерностью единицы плотности энергии (Дж/м³), но с точки зрения физики эти единицы не эквивалентны, так как описывают разные физические свойства.

В связи с этим некорректно использовать Паскали для измерения плотности энергии, а давление записывать как Дж/м³.

[custom_ads_shortcode2]

Сколько атмосферы в 1 бар?

Название единицы давления в баре происходит от греческого слова для веса. Производная этой единицы, миллибар, широко используется в метеорологии. Бар относится к категории единиц, определяемых силами силы и площади. Есть две единицы с тем же именем, называемые линией. Одним из них является единица измерения давления, принятая в физической системе единиц CGS (сантиметр, грамм, другая). Этот блок определяется как 1 dyne / cm2, где 1 dyne — это единица силы, используемая в системе.

Кроме того, под 1 баром находится внесистемная система, метеорологическая единица, также называемая стандартной атмосферой. Соотношение между двумя полосами составляет 1 бар или 1 стандартная атмосфера составляет 106 дин / см2.

В дополнение к стандартной атмосфере, техническая (метрическая) атмосфера и физическая (нормальная) атмосфера используются на практике. Техническая или метрическая атмосфера используется в технической системе подразделений МКГСС. Он также обозначается как кгс / см2. Техническая атмосфера определяется как давление, создаваемое силой 1 кгс, направленное перпендикулярно и равномерно распределенное на плоскую поверхность 1 см2.

Соотношение стержня к технической атмосфере составляет 1 бар = 10197 кгс / см2. Нормальная атмосфера — дополнительный системный блок, такое же давление на поверхности Земли. Он определяется как давление, контролируемое 760 мм ртути при 0 градусах Цельсия, нормальная плотность ртути и нормальное ускорение веса. Связь между полосой и нормальной или физической атмосферой — 1 бар = 0,98692 атм.

Норма атмосферного давления для человека в паскалях. Давление ртутного столба.

Часто быстрый и удобный расчет не требует высокой точности. Поэтому приведенные выше значения могут быть округлены в зависимости от того, какие ошибки вы готовы принять в измерениях.

[custom_ads_shortcode3]

Атмосферное нормальное и стандартное давление

Если ошибка составляет 0,5%, вы можете взять 1 бар, что равно 0,98 атм. или 1,02 кгс / см2. Если мы проигнорируем разницу между технической атмосферой и баром (стандартная атмосфера), то ошибка составляет 2%. И, допустив ошибку 3%, мы можем принять во внимание физическую и стандартную атмосферу, которая эквивалентна друг другу.

По материалам сайта http://otvet.mail.ru.

атмосферное давление в паскалях

Давление — это физическая величина, показывающей действующую силу на единицу площади поверхности перпендикулярно этой поверхности. Давление определяется, как P = F / S, где P – давление, F – сила давления, S – площадь поверхности. Из этой формулы видно, что давление зависит от площади  поверхности тело действующего с некой  силой. Чем меньше площадь поверхности, тем больше давление.

Единицей измерения давления является ньютон на квадратный метр (H/м). Также мы можем перевести единицы давления Н/м в паскали, – единицы измерения, названные в честь французского ученого Блеза Паскаля, который вывел, так называемый, Закон Паскаля. 1 Н/м = 1 Па.

Что такое ? ? ?

Давления газов и жидкостей – манометром, дифманометром, вакумметро, датчиком давления. Атмосферного давления – барометром. Артериального давления – тонометром.

И так, еще раз давление определяется, как P = F / S. Сила в гравитационном поле равно весу – F= m * g, где m – масса тело; g – ускорение свободного падения. Тогда давление –
P = m * g / S. Используя данную формулу, можно определить давление оказываемое телом на поверхность. Например, человеком на землю.

Атмосферное давление с высотой убывает. Зависимость атмосферного давления от высоты определяется барометрической формулой
P = Po*exp(- μgh/RT). Где, μ = 0,029 кг/м3 – молекулярная масса газа (воздуха); g = 9.81 м/с2 – ускорение свободного падения; h – ho– разность высоты над уровнем моря и высотой принятой начало отчета (h=ho); R = 8,31 – Дж/моль К– газовая постоянная; Ро – атмосферное давление на высоте , принятой за начало отсчета; Т- температура по Кельвину. Опытным путем установлено, что атмосферное давление на уровне моря составляет примерно 760 мм рт. ст. Стандартное атмосферное давление принято равным 760 мм рт. ст., или 101 325 Па, отсюда вытекает определение миллиметра ртутного столба 101 325/760 Па = 133,322 368, т.е. 1 мм рт. ст. = 133,322 Па.

Давление.

Па.

мм.рт.ст.

Нормальное атмосферное давление
На высоте Останкинской телебашни в Москве (540м)
В пассажирской кабине самолета Ан-10 при полете на высоте 8 км*
В колбе газонаполненной электрической лампы
Наименьшее давление, допускаемое в гермитических кабинах самолетов**
На высочайшей горной вершине (пик Коммунизма, высота 7495 м)
На наибольшей высоте суши над уровнем моря (вершина горы Эверест, высота 8848 м)
На высоте 8 км***
На высоте 9 км***
На высоте 10 км***
На высотк 11 км***
В камере бытового пылесоса 11 000 – 12 100
В пространстве между двойными стенками сосуда Дьюара 10 – 10 10 – 10
в колбе вакуумной электрической лампы накаливания 10 – 10 10 – 10
В кольбе ренгетовской трубки 10 – 10 10 – 10
на высоте 250 км**** 3x 10 3x 10
В колбе радио лампы 10 10
В вакуумной камере современного ускорителя заряженных частиц 10- 10 10 – 10
В камере установки для термоядерных реакций до 10 до 10

* Соответствует давлению воздуха на высоте 1400 м над Землей.** Соотвествует давлению воздуха на высоте 2400 м над Землей.*** Высота, на которой совершается обычно полеты турбовинтовыхи турбореактивных пассажирских самолетов. **** Средняя высота полета космического корабля “Восток”

[custom_ads_shortcode1]

Давление атмосферы на различной высоте над Землей

h, км.

P.

h, км.

P.

Па.

мм рт. ст.

Па.

мм рт. ст.

3,19 *10 2,4*10
2,67*10 2,0-10

[custom_ads_shortcode2]

Таблица. Перевод миллиметров ртутного столба в Паскали

мм рт. ст.

мм рт. ст.

Па.

13198,9. Примеры.

  1. 43 мм рт. ст.=5732,85 Па.
  2. 0,51 мм рт. ст. = 51 мм рт. ст. * 10 = 6799,42 * 10 Па = 67,9942 Па ≈68 Па
  3. 182 мм рт. ст. = 180 мм рт. ст. + 2 мм рт. ст. = 18 мм рт. ст. * 10 + 2 мм рт. ст. = 2399,8 Па * 10 + 266,64 Па = 24264,64 Па ≈ 24,3 кПа
  4. 1055 мм рт. ст.=1000 мм рт. ст. + 55 мм рт. ст .= 10 мм рт. ст. * 100 + 55 мм рт. ст. = 1333,22 Па * 100 + 7332,71 Па = 133322 Па + 7332,71 Па = 140654,71 Па ≈  140,7 кПа.

[custom_ads_shortcode3]

Давления

Объект, среда.

Давление.

кПа.

кгс/см

Газы.

Воздух в баллонах акваланга
Воздух в пневмаматических инструментах
Природный газ в магистральном газопроводе
Атмосфера на поверхности планеты Венера (по измерениям советских межпланетных станций “Венера-9” и “Венера-10”)
Пороховые газы на канале современного ствола до 390 000 до 4000
Газы в центре взрыва термоядерной бомбы до 1011 до 109

Жидкости.

Масло в магистрали смазки автомобилей и траторов
Максимально допустимое давление масла в школьном гидравлической прессе
Внутреннее  молекулярное давление в воде
Внутреннее молекулярное давление в ртути

Твердые тела.

Гусенечные траторы с уширенными гусеницами на почву
Гусеничные траторы на почву
Колеса легкового автомобиля на почву
Колеса железнодорожного вагона на рельсы

[custom_ads_shortcode1]

Единицы давления

Паскаль (Pa, Па) Бар (bar, бар) Техническая атмосфера (at, ат) Физическая атмосфера (atm, атм) Миллиметр ртутного столба (мм рт. ст., Hg, Torr, торр) Метр водянного солба (м вод. ст., m HO) Фунт-сила на кв. дюйм (psi)
1 Па 1 Н/м 10 10,197х10 9,8692х10 7,5006х10 1,0197х10 145,04х10
1 бар 10 1х10дин/см
1 ат 1 кгс/см
1 атм 1 атм
1 мм рт.ст. 1,3332х10 1,3595х10 1,3158х10 1 мм рт. ст. 13,595х10 19,337х10
1 м вод. ст 9,80665х10 1 м вод. ст.
1 psi 68,948х10 70,307х10 68,046х10 1 ibf/in

Продолжение будет …

Наша Земля имеет атмосферу, оказывающую давление на все, что пребывает внутри нее. В 1634 году итальянский ученый Торричелли первым определил величину, которой равно атмосферное давление . Воздействие на человечка его изменений изучают ученые самых различных профессий.

Как угодило, атмосферное давление зависит от температуры, плотности воздуха, возвышенности, силы тяготения, широты местности.

Оно подвержено вечным колебаниям.

P1018000 Уравнение статики выражает закон изменения давления с вышиной: – p = gz, где: p – давление , g – ускорение свободного падения, – плотность воздуха, z – толщина пласта. Из главного уравнения статики следует, что при наращивании высоты (z > 0) изменение давления отрицательное, то есть давление уменьшается. Сурово говоря, основное уравнение статики справедливо только для больно высокого (бесконечно высокого) пласта воздуха z.

Однако на практике оно употребляемо, когда изменение высоты довольно немного по взаимоотношению к примерной толщине атмосферы.

Что значит НОРМАЛЬНОЕ АТМОСФЕРНОЕ ДАВЛЕНИЕ ДЛЯ ЗАДАННОЙ ВЫСОТЫ? Нормальное атмосферное давление – давление всего столба атмосферы на уровне моря и географической широте 45 град. За нормальное давление принимают 760 мм рт.

столба (1013 мбар, 101. 3 кН/кПа). При расчетах в динамической метеорологии за нормальное давление традиционно принимается 1000 мбар.

. . Это значит, что на уровне моря у широты 45° при температуре 0°С атмосферное давление равно весу столбика ртути в 760 мм или 1013 мбар, что принято за нормальное атмосферное давление земного шарика.

Норма атмосферного давления для человека в паскалях. Давление ртутного столба.

ВСЁ! Ну, если Вы второе желали спросить.

Атмосферное давление уменьшается по мере увеличения высоты, поскольку оно создаётся лишь вышележащим слоем атмосферы.

Зависимость.

давления

от высоты описывается.

Или вот – табличка. . .

На квадратный сантиметр тела нормальное давление действует подобно весу, равный 1, 033 кг, но мы его не замечаем. Это потому, что газы воздуха растворены в тканевых жидкостях.

Они совершенно уравновешивают давление атмосферы.

Нарушение равновесия при переменах погоды воспринимается подобно ухудшению самочувствия. Какое атмосферное давление считается нормальным ?

Наверное, то, которое не оказывает негативного воздействия на организм. По словам медиков, оно равно 750 мм. рт. ст.

атмосферное давление физика

Гипотония уже успешно лечится По особой новейшей безмедикаментозной методике Фролова. Прорыв в медицине! lotus.

infodvd°€‘partner. ru Есть противопоказания. Посовещайтесь с доктором.

Эндометриоз. Действенное лечение. Как скоро освободиться от недуга не глядя из дома, уделяя по 15 мин.

за день mirdravi. ru Есть противопоказания. Посовещайтесь с доктором.

Нужно призвать удачу и обилие? Практический фен – шуй. Сделайте следующий возраст мировым возрастом в Вашей жизни!

vladimirzakharov.comДля того, чтобы узнать, сколько в миллиметре ртутного столба атмосфер, необходимо воспользоваться простым онлайн калькулятором. Введите в левое поле интересующее вас количество миллиметров ртутного столба, которое вы хотите конвертировать. В поле справа вы увидите результат вычисления. Если необходимо перевести или атмосферы в другие единицы измерения, просто кликните по соответствующей ссылке.

[custom_ads_shortcode2]

Что такое «миллиметр ртутного столба»

Внесистемная единица миллиметр ртутного столба (мм рт. ст.; mm Hg), иногда называемая «торр», равна 101 325 / 760 ≈ 133,322 368 4 Па. Атмосферное давление измеряли барометром со столбиком ртути, отсюда и пошло название этой единицы измерения. На уровне моря атмосферное давление примерно равно 760 мм рт. ст. или 101 325 Па, отсюда значение – 101 325/760 Па. Данная единица традиционно используется в вакуумной технике, при измерении кровяного давления и в метеосводках. В некоторых приборах измерения производят по миллиметрам водяного столба (1 мм рт. ст. = 13,5951 мм вод. ст.), а в США и Канаде встречается также «дюйм ртутного столба» (inHg) = 3,386389 кПа при 0°C.

[custom_ads_shortcode3]

Что такое «атмосфера»

Внесистемная единица измерения давления, приблизительно соответствующая атмосферному давлению на уровне мирового океана. Равноправно существуют две единицы – техническая атмосфера (ат, at) и нормальная, стандартная или физическая атмосфера (атм, atm). Одна техническая атмосфера – это равномерное перпендикулярное давление силы в 1 кгс на ровную поверхность площадью 1 см². 1 ат = 98 066,5 Па. Стандартная атмосфера – это давление ртутного столба высотой 760 мм при плотности ртути 13 595,04 кг/м³ и нулевой температуре. 1 атм = 101 325 Па = 1,033233 ат. В РФ используется только техническая атмосфера.

В прошлом для абсолютного и избыточного давления употребляли термины «ата» и «ати». Избыточное давление – разница между абсолютным и атмосферным давлением, когда абсолютное больше атмосферного. Разница между атмосферным и абсолютным давлением, когда абсолютное давление ниже атмосферного, называется разрежением (вакуумом).

измерение давления в паскалях

Атмосфера – газовое скопление, окружающее Землю. Вес воздуха, высота столба которого превосходит 900 км, оказывает массивное воздействие на обитателей нашей планетки. Мы не чувствуем этого, воспринимая жизнь на деньке воздушного океана как само собой разумеющееся.

Дискомфорт человек чувствует, поднимаясь высоко в горы. Недочет кислорода провоцирует резвую утомляемость. При всем этом значимым образом меняется атмосферное давление.

Физика рассматривает атмосферное давление, его конфигурации и воздействие на поверхность Земли.

Норма атмосферного давления для человека в паскалях. Давление ртутного столба.

В курсе физики средней школы исследованию деяния атмосферы уделяется существенное внимание. Особенности определения, зависимость от высоты, воздействие на процессы, протекающие в быту либо в природе, объясняются на основании познаний о действии атмосферы.

Когда начинают учить атмосферное давление? 6 класс – время знакомства с особенностями атмосферы. Длится этот процесс в профильных классах старшей школы.

[custom_ads_shortcode1]

История исследования

1-ые пробы установить атмосферное давление воздуха предприняли в 1643 г. по предложению итальянца Эванджелиста Торричелли. Стеклянная запаянная с 1-го конца трубка была заполнена ртутью.

единица атмосферного давления

Закрыв с другой стороны, ее опустили в ртуть. В высшей части трубки вследствие частичного вытекания ртути образовалось пустое место, получившее последующее заглавие: «торричеллиева пустота».

К этому времени в естествознании властвовала теория Аристотеля, считавшего, что «природа опасается пустоты». Согласно его мнениям, пустого, не заполненного веществом места быть не может. Потому наличие пустоты в стеклянной трубке длительно пробовали объяснить другими материями.

В том, что это пустое место, колебаний нет, оно ничем не может быть заполнено, ведь ртуть к началу опыта стопроцентно заполняла цилиндр. И, вытекая, не позволила другим субстанциям заполнить освободившееся место. Но почему вся ртуть не вылилась в сосуд, ведь препятствий этому также нет?

нормальное атмосферное давление в паскалях

Вывод навязывается сам: ртуть в трубке, как в сообщающихся сосудах, делает такое же давление на ртуть в сосуде, как и нечто снаружи. На том же уровне с поверхностью ртути соприкасается только атмосфера. Конкретно ее давление держит вещество от выливания под действием силы тяжести.

Газ, как понятно, делает однообразное действие во всех направлениях. Его воздействию подвергается ртутная поверхность в сосуде.

Высота ртутного цилиндра приблизительно равна 76 см. Увидено, что этот показатель варьируется со временем, как следует, давление атмосферы изменяется. Его можно определять в см ртутного столба (либо в миллиметрах).

[custom_ads_shortcode2]

Какие единицы использовать?

Интернациональная система единиц является международной, потому не подразумевает использования мм рт. ст. при определении давления.

Единица атмосферного давления устанавливается аналогично тому, как это происходит в жестких телах и жидкостях. Измерение давления в паскалях принято в СИ.

За 1 Па принято такое давление, которое создается силой 1 Н, приходящейся на участок в 1 м 2 . Определим, как связаны единицы измерения. Давление столба воды устанавливаем по последующей формуле: p = ρgh.

атмосферное давление 6 класс

Плотность ртути ρ = 13600 кг/м 3 . За точку отсчета возьмем столбик ртути длиной 760 мм. Отсюда:

р = 13600 кг/м 3 ×9,83 Н/кг×0,76 м = 101292,8 ПаЧтоб записать атмосферное давление в паскалях, учитываем: 1 мм рт.ст. = 133,3 Па.

[custom_ads_shortcode3]

Пример решения задач

Обусловьте силу, с которой атмосфера действует на поверхность крыши размерами 10х20 м. Давление атмосферы считать равным 740 мм рт. ст.

р = 740 мм рт. ст. , a = 10 м, b = 20 м.

[custom_ads_shortcode1]

Анализ

Для определения силы деяния нужно установить атмосферное давление в паскалях. С учетом того, что 1 мм рт.ст. равен 133,3 Па, имеем последующее: р = 98642 Па.

[custom_ads_shortcode2]

Решение

Воспользуемся формулой определения давления: Так как площадь крыши не дана, представим, что она имеет форму прямоугольника. Площадь этой фигуры определим по формуле:

Норма атмосферного давления для человека в паскалях. Давление ртутного столба.

Подставим значение площади в расчетную формулу: p = F/(ab), откуда:

Вычислим: F = 98642 Па×10 м×20 м = 19728400 Н = 1,97 МН. Ответ: сила давления атмосферы на крышу дома равна 1,97 МН.

[custom_ads_shortcode3]

Методы измерения

Экспериментальное определение давления атмосферы можно делать, используя столб ртути. Если рядом с ним закрепить шкалу, то возникает возможность фиксировать конфигурации. Это самый обычный ртутный барометр. С удивлением отметил конфигурации деяния атмосферы конкретно Эванджелиста Торричелли, связав этот процесс с теплом и холодом.

Хорошим было названо давление атмосферы на уровне поверхности моря при 0 градусов по Цельсию. Это значение составляет 760 мм рт.ст. Обычное атмосферное давление в паскалях принято считать равным 10 5 Па.

Понятно, что ртуть довольно вредоносна для людского здоровья. Вследствие этого открытые ртутные барометры использовать нельзя. Другие воды имеют плотность существенно меньше, потому трубка, заполненная жидкостью, должна быть довольно длинноватой.

Например, аква столб, сделанный Блезом Паскалем, должен быть порядка 10 м в высоту. Неудобство разумеется.

[custom_ads_shortcode1]

Безжидкостный барометр

Восхитительным шагом вперед можно именовать идею отступить от воды при разработке барометров. Возможность сделать прибор для определения давления атмосферы реализована в барометрах-анероидах.

Основная деталь этого измерителя – плоская коробка, из которой откачан воздух. Чтоб ее не сдавило атмосферой, поверхность делают гофрированной. Системой пружин коробка соединена со стрелкой, указывающей значение давления на шкале. Последнюю можно проградуировать в всех единицах. Определять атмосферное давление в паскалях можно при соответственной измерительной шкале.

[custom_ads_shortcode2]

Высота подъема и давление атмосферы

Изменение плотности атмосферы по мере подъема ввысь приводит к уменьшению давления. Неоднородность газовой оболочки не позволяет ввести линейный закон конфигурации, так как с повышением высоты степень снижения давления миниатюризируется. У поверхности Земли по мере подъема на каждые 12 метров действие атмосферы падает на 1 мм рт.

ст. В тропосфере аналогичное изменение происходит на каждых 10,5 м.

Поблизости поверхности Земли, на высоте полета самолета, анероид, снабженный специальной шкалой, может определять высоту по атмосферному давлению. Этот прибор именуется альтиметром. Особое устройство на поверхности Земли позволяет установить показания альтиметра на нуле, чтоб в предстоящем использовать его для определения высоты подъема.

[custom_ads_shortcode3]

Пример решения задачки

У подножья горы барометр показал атмосферное давление в 756 мм рт. ст. Какое значение будет на высоте 2500 метров над уровнем моря?

Требуется записать атмосферное давление в паскалях. р 1 = 756 мм рт. ст.

[custom_ads_shortcode1]

Решение

Чтоб найти показания барометра на высоте Н, учтем, что давление падает на 1 мм рт. ст. каждые 12 метров.

Как следует: (р 1 – р 2)×12 м = Н×1 мм рт. ст. , откуда:

р 2 = р 1 – Н×1 мм рт. ст. /12 м = 756 мм рт.

ст. – 2500 м×1 мм рт. ст.

/12 м = 546 мм рт. ст. Чтоб записать приобретенное атмосферное давление в паскалях, выполним последующие деяния:

р 2 = 546×133,3 Па = 72619 ПаОтвет: 72619 Па.

[custom_ads_shortcode2]

Атмосферное давление и погода

Движение воздушных атмосферных слоев поблизости поверхности Земли и неоднородный прогрев воздуха на разных участках приводят к изменению погодных критерий на всех участках планетки. Давление может варьироваться на 20-35 мм рт. ст.

в продолжительном периоде и на 2-4 мм рт. ст. в течение денька.

Атмосферное давление, значение которого ниже обычного и нередко изменяется, показывает на циклон, накрывший определенный. Нередко это явление сопровождается облачностью и осадками. Низкое давление не всегда является признаком дождливой погоды. Ненастье больше находится в зависимости от постепенного понижения рассматриваемого показателя.

Резкое снижение давления до 74 см рт.ст. и ниже угрожает бурей, ливнями, которые продлятся даже тогда, когда показатель уже начинает подниматься.

Изменение погоды к наилучшему можно найти по последующим признакам:

  • после долгого периода ненастья наблюдается постепенный и неуклонный рост атмосферного давления;
  • в туманную слякотную погоду увеличивается давление;
  • в период южных ветров рассматриваемый показатель подымается некоторое количество дней попорядку;
  • возрастание атмосферного давления при ветреной погоде – признак установления комфортабельной погоды.

Источники:

  • naturae.ru
  • vipstylelife.ru
  • www.kilomol.ru
  • digitaljournals.ru

Понравилась статья? Поделить с друзьями:
  • Ошибка при статическом анализе пакета как исправить
  • Как найти обрыв в проводке под штукатуркой
  • Как тебя найти в фейсбуке перевод
  • Как райдер нашел щенков мультик
  • Как найти частного инвестора в оренбурге