Как найти давление жидкости в цилиндре

Формула давления жидкости отличается от формулы, с помощью которой можно рассчитать давление твердого тела. Потому, что давление жидкости не зависит от площади поверхности, на которую жидкость давит.

Закон Паскаля

Французский физик, Блез Паскаль, в 1653 году сформулировал закон: «Давление, которое мы оказываем на жидкость (или газ), она без изменения передаст в любую точку и во всех направлениях».

Мы немного упростим формулировку:

Жидкость (или газ) передает давление, оказанное на нее, одинаково и без изменений во все стороны.

Это значит, что на одной и той же глубине жидкость будет одинаково давить и на дно, и на стенки сосуда.

С ростом глубины растет и давление жидкости, но в любой точке жидкость передает это давление во все стороны одинаково

Рис. 1. Чем глубже, тем больше давление жидкости, но в любой точке жидкость передает это давление одинаково во все стороны

На рисунке 1 изображен сосуд, наполненный жидкостью. Высоту столбика жидкости – то есть, глубину, отсчитываем от поверхности жидкости.

Видно, что на разных глубинах давление отличается.

[ large begin{cases} h_{1}  < h_{2} < h_{3} \ P_{1}  < P_{2} < P_{3} end{cases} ]

Чем глубже, тем больше давление жидкости. Но в любой точке оно одинаково передается во все стороны.

Формула давления жидкости

Формула, по которой можно посчитать давление жидкости:

[ large boxed{ P = rho_{text{ж}} cdot g cdot h }]

( P left(text{Па}right) )​ – давление жидкости;

( displaystyle rho_{text{ж}} left(frac{text{кг}}{text{м}^3} right) )​ – плотность жидкости;

( displaystyle g left(frac{text{м}}{c^{2}} right) )​ – ускорение свободного падения;

Для большинства школьных задач можно принимать ​( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) )​;

( h left(text{м}right) )​ – высота столбика жидкости.

В формулу для давления жидкости не входит площадь S поверхности, на которую эта жидкость давит.

Поэтому, давление жидкости не зависит от площади. А давление твердого тела рассчитывают по другой формуле.

В некоторых задачах указывают объем используемой жидкости. И иногда просят рассчитать силу давления. Чтобы получить правильный ответ для таких задач, нужно уметь переводить площади и объемы в единицы системы СИ.

Сообщающиеся сосуды

Сообщающиеся сосуды – это емкости, расположенные на плоской горизонтальной поверхности, у дна они соединяются трубками.

Если в один из сосудов начать наливать жидкость, то она будет распределяться по всем сосудам, так, что ее уровень будет одинаковым во всех сосудах (рис. 2).

Жидкость в сообщающихся сосудах находится на одинаковом уровне

Рис. 2. В сообщающихся сосудах уровень жидкости будет одинаковым

Неважно, какую форму имеет сосуд. Давление жидкости во всех сосудах будет одинаковым. Поэтому одинаковой будет высота h столбика жидкости во всех сосудах.

U-образное колено – это два сообщающихся сосуда, диаметры сосудов одинаковые.

Жидкости, которые заливают в колено, не должны смешиваться (рис. 3). Например, можно залить в оду трубку воду, а в другую — масло.

U-образное колено образовано двумя сообщающимися сосудами одинакового диаметра

Рис. 3. Два сообщающихся сосуда одинакового диаметра образуют U-образное колено

Запишем формулы для расчета давления в левом (P_{1}) и правом (P_{2}) частях колена.

[ large boxed{begin{cases} P_{1} = rho_{1} cdot g cdot h_{1} \ P_{2} = rho_{2} cdot g cdot h_{2} end{cases}} ]

Чем больше разница плотностей двух жидкостей, тем больше отличаются высоты их столбиков.

При решении задач общую нижнюю часть колена не учитываем. На рисунке 3 она отделена от верхней части горизонтальной линией.

Давление столбиков, оставшихся в верхней части, будет одинаковым.

( P_{1} ) – давление жидкости в левой части колена;

( P_{2} ) – давление жидкости в правой части колена.

[ large begin{cases} P_{1} = P_{2} \  rho_{1} cdot g cdot h_{1} = rho_{2} cdot g cdot h_{2} end{cases} ]

Обе части последнего уравнения разделим на ускорение свободно падения. Тогда получим соотношение для высот столбиков жидкости и их плотностей:

[ large boxed{ rho_{1} cdot h_{1} = rho_{2} cdot h_{2} }]

Высоты столбиков можно измерить линейкой. Зная плотность одной из жидкостей, можно найти плотность второй жидкости.

Примечание: Давление жидкостей часто измеряют в миллиметрах ртутного столба или метрах водяного столба. Переходите по ссылке, чтобы узнать, как связаны эти единицы измерения и как давление переводить в систему СИ.

Гидравлический пресс

Молекулы жидкости плотно упакованы, они прилегают друг к другу. Поэтому жидкости не сжимаемы! Это свойство жидкостей используют в гидравлическом прессе.

Гидравлический пресс – это два сообщающихся сосуда. Их называют цилиндрами. Диаметры цилиндров отличаются. Внутри каждого цилиндра вверх и вниз может свободно перемещаться поршень (рис. 4). Поршень плотно прилегает к стенкам цилиндра, чтобы жидкость из цилиндра не просачивалась наружу.

Два сообщающихся сосуда различных диаметров, по которым могут без трения перемещаться поршни, образуют гидравлический пресс

Рис. 4. Гидравлический пресс – это два сообщающихся сосуда различных диаметров, по сосудам могут без трения перемещаться поршни

Перемещаясь, поршень из цилиндра вытесняет жидкость в соседний цилиндр. Объем жидкости, вытесненной из одного цилиндра, совпадает с объемом, перешедшим в другой цилиндр, так как жидкость не проливается наружу.

[ large Delta V_{1} = Delta V_{2} ]

( Delta V_{1} left(text{м}^{3}right) )  – объем жидкости, вытесненной из первого цилиндра;

( Delta V_{2} left(text{м}^{3}right) )  – объем жидкости, перешедшей во второй цилиндр.

Из геометрии известно, объем цилиндрической фигуры можно найти по формуле:

[ large boxed{ Delta V = Delta h cdot S }]

( Delta h left(text{м}right) )  – высота столбика вытесненной жидкости;

( S left(text{м}^{2}right) )  – площадь поршня (или основания цилиндра);

Так как объемы вытесненной и перешедшей в другой цилиндр жидкостей равны, можем записать

[ large Delta h_{1} cdot S_{1} = Delta h_{2} cdot S_{2} ]

То есть, высоты столбиков отличаются во столько же раз, во сколько отличаются площади поршней.

Площадь поверхности поршня и его диаметр связаны соотношением:

[ large boxed{ S_{text{круга}} = pi cdot frac{d^{2}}{4} }]

( S left(text{м}^{2}right) )  – площадь поршня;

( d left(text{м}right) )  – диаметр поршня;

Давления в цилиндрах будут равны.

[ large P_{text{общ.лев}} = P_{text{общ.прав}} ]

Поршни в цилиндрах не двигаются – т. е. находятся в равновесии. Запишем условия равновесия для поршней:

[ large boxed{ frac{F_{1}}{S_{1}} + rho_{1} cdot g cdot h_{1} = frac{F_{2}}{S_{2}} + rho_{2} cdot g cdot h_{2} } ]

Здесь дробью вида (displaystylelarge frac{F}{S}) обозначено давление твердого тела (ссылка) — поршня.

Назовем цилиндр большого диаметра большим цилиндром, а цилиндр малого диаметра – малым. Сформулируем принцип действия гидравлического пресса:

С помощью малой силы в малом цилиндре мы можем создавать большую силу в большом цилиндре.

Главная страница

Содержание

Введение

Основы гидростатики

Основы гидродинамики

Гидравлические сопротивления

Истечние жидкости из отверстий, насадков и из-под затворов

Гидравлический расчет простых трубопроводов

Гидравлические машины

Лекция 2. ОСНОВЫ ГИДРОСТАТИКИ

Гидравлика делится на два раздела: гидростатика и гидродинамика. Гидродинамика является более обширным
разделом и будет рассмотрена в последующих лекциях. В этой лекции будет рассмотрена гидростатика.

Гидростатикой называется раздел гидравлики, в котором рассматриваются законы равновесия жидкости
и их практическое применение.

В покоящейся жидкости всегда присутствует сила давления, которая называется гидростатическим давлением.
Жидкость оказывает силовое воздействие на дно и стенки сосуда. Частицы жидкости, расположенные в верхних
слоях водоема, испытывают меньшие силы сжатия, чем частицы жидкости, находящиеся у дна.

Рассмотрим резервуар с плоскими вертикальными стенками, наполненный жидкостью (рис.2.1, а). На дно
резервуара действует сила P равная весу налитой жидкости G = γ V, т.е. P = G.

Если эту силу P разделить на площадь дна Sabcd, то мы получим среднее гидростатическое
давление
, действующее на дно резервуара.

Гидростатическое давление обладает свойствами.

Свойство 1. В любой точке жидкости гидростатическое давление перпендикулярно площадке
касательной к выделенному объему и действует внутрь рассматриваемого объема жидкости.

Для доказательства этого утверждения вернемся к рис.2.1, а. Выделим на боковой стенке резервуара
площадку Sбок (заштриховано). Гидростатическое давление действует на эту площадку в виде
распределенной силы, которую можно заменить одной равнодействующей, которую обозначим P. Предположим,
что равнодействующая гидростатического давления P, действующая на эту площадку, приложена в точке
А и направлена к ней под углом φ (на рис. 2.1 обозначена штриховым отрезком со
стрелкой). Тогда сила реакции стенки R на жидкость будет иметь ту же самую величину, но
противоположное направление (сплошной отрезок со стрелкой). Указанный вектор R можно разложить на
два составляющих вектора: нормальный Rn (перпендикулярный к заштрихованной площадке) и
касательный Rτ к стенке.

Рис. 2.1. Схема, иллюстрирующая свойства гидростатического давления
а — первое свойство; б — второе свойство

Сила нормального давления Rn вызывает в жидкости напряжения сжатия. Этим напряжениям
жидкость легко противостоит. Сила Rτ действующая на жидкость вдоль
стенки, должна была бы вызвать в жидкости касательные напряжения вдоль стенки и частицы должны были бы
перемещаться вниз. Но так как жидкость в резервуаре находится в состоянии покоя, то составляющая
Rτ отсутствует. Отсюда можно сделать вывод первого свойства
гидростатического давления.

Свойство 2. Гидростатическое давление неизменно во всех направлениях.

В жидкости, заполняющей какой-то резервуар, выделим элементарный кубик с очень малыми сторонами
Δx, Δy, Δz (рис.2.1, б). На каждую из боковых поверхностей будет
давить сила гидростатического давления, равная произведению соответствующего давления Px,
Py , Pz на элементарные площади. Обозначим вектора давлений,
действующие в положительном направлении (согласно указанным координатам) как P’x,
P’y, P’z, а вектора давлений, действующие в обратном направлении
соответственно x, y, z. Поскольку кубик
находится в равновесии, то можно записать равенства

P’xΔyΔz=xΔyΔz
P’yΔxΔz = yΔxΔz
P’zΔxΔy + γΔx, Δy, Δz = zΔxΔy

где γ — удельный вес жидкости;
Δx, Δy, Δz — объем кубика.

Сократив полученные равенства, найдем, что

P’x = P»x; P’y = P»y; P’z + γΔz = z

Членом третьего уравнения γΔz, как бесконечно малым по сравнению с P’z
и z, можно пренебречь и тогда окончательно

P’x = P»x; P’y = P»y; P’z=P»z

Вследствие того, что кубик не деформируется (не вытягивается вдоль одной из осей), надо полагать, что
давления по различным осям одинаковы, т.е.

P’x = P»x = P’y = P»y = P’z=P»z

Это доказывает второй свойство гидростатического давления.

Свойство 3. Гидростатическое давление в точке зависит от ее координат в пространстве.

Это положение не требует специального доказательства, так как ясно, что по мере увеличения погружения точки
давление в ней будет возрастать, а по мере уменьшения погружения уменьшаться. Третье свойство гидростатического
давления может быть записано в виде

P=f(x, y, z)

Рассмотрим распространенный случай равновесия жидкости, когда на нее действует только одна массовая сила —
сила тяжести, и получим уравнение, позволяющее находить гидростатическое давление в любой точке
рассматриваемого объема жидкости. Это уравнение называется основным уравнением гидростатики.

Пусть жидкость содержится в сосуде (рис.2.2) и на ее свободную поверхность действует давление P0
. Найдем гидростатическое давление P в произвольно взятой точке М, расположенной на
глубине h. Выделим около точки М элементарную горизонтальную площадку dS и построим на
ней вертикальный цилиндрический объем жидкости высотой h. Рассмотрим условие равновесия указанного
объема жидкости, выделенного из общей массы жидкости. Давление жидкости на нижнее основание цилиндра теперь
будет внешним и направлено по нормали внутрь объема, т.е. вверх.

Рис. 2.2. Схема для вывода основного уравнения гидростатики

Запишем сумму сил, действующих на рассматриваемый объем в проекции на вертикальную ось:

PdS — P0 dS — ρghdS = 0

Последний член уравнения представляет собой вес жидкости, заключенный в рассматриваемом вертикальном цилиндре
объемом hdS. Силы давления по боковой поверхности цилиндра в уравнение не входят, т.к. они
перпендикулярны к этой поверхности и их проекции на вертикальную ось равны нулю. Сократив выражение на
dS и перегруппировав члены, найдем

P = P0 + ρgh = P0 + hγ

Полученное уравнение называют основным уравнением гидростатики. По нему можно посчитать давление в любой
точке покоящейся жидкости. Это давление, как видно из уравнения, складывается из двух величин: давления
P0 на внешней поверхности жидкости и давления, обусловленного весом вышележащих слоев
жидкости.

Из основного уравнения гидростатики видно, что какую бы точку в объеме всего сосуда мы не взяли, на нее
всегда будет действовать давление, приложенное к внешней поверхности P0. Другими словами
давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем
направлениям одинаково. Это положение известно под названием закона Паскаля.

Поверхность, во всех точках которой давление одинаково, называется поверхностью уровня (подробно рассмотрим
в п.2.6). В обычных условиях поверхности уровня представляют собой горизонтальные плоскости.

Пусть мы имеем резервуар с наклонной правой стенкой, заполненный жидкостью с удельным весом γ. Ширина
стенки в направлении, перпендикулярном плоскости чертежа (от читателя), равна b
(рис.2.3). Стенка условно показана развернутой относительно оси АВ и заштрихована на рисунке. Построим
график изменения избыточного гидростатического давления на стенку АВ.

Так как избыточное гидростатическое давление изменяется по линейному закон P=γgh,
то для построения графика, называемого эпюрой давления, достаточно найти давление в двух точках, например
А и B.

Рис. 2.3. Схема к определению равнодействующей гидростатического давления на плоскую
поверхность

Избыточное гидростатическое давление в точке А будет равно

PA = γh = γ·0 = 0

Соответственно давление в точке В:

PB = γh = γH

где H — глубина жидкости в резервуаре.

Согласно первому свойству гидростатического давления, оно всегда направлено по нормали к ограждающей
поверхности. Следовательно, гидростатическое давление в точке В, величина которого равна γH,
надо направлять перпендикулярно к стенке АВ. Соединив точку А с концом
отрезка γH, получим треугольную эпюру распределения давления АВС с прямым
углом в точке В. Среднее значение давления будет равно

Если площадь наклонной стенки S=bL, то равнодействующая гидростатического давления равна

где hc = Н/2 — глубина погружения центра тяжести плоской поверхности под уровень жидкости.

Однако точка приложения равнодействующей гидростатического давления ц.д. не всегда будет совпадать
с центром тяжести плоской поверхности. Эта точка находится на расстоянии l от центра тяжести и равна
отношению момента инерции площадки относительно центральной оси к статическому моменту этой же площадки.

где JАx — момент инерции площади S относительно центральной оси, параллельной
Аx.

В частном случае, когда стенка имеет форму прямоугольника размерами bL и одна из его сторон лежит
на свободной поверхности с атмосферным давлением, центр давления ц.д. находится на расстоянии b/3
от нижней стороны.

Пусть жидкость заполняет резервуар, правая стенка которого представляет собой цилиндрическую криволинейную
поверхность АВС (рис.2.4), простирающуюся в направлении читателя на ширину b. Восстановим из
точки А перпендикуляр АО к свободной поверхности жидкости. Объем жидкости в отсеке АОСВ
находится в равновесии. Это значит, что силы, действующие на поверхности выделенного объема V, и
силы веса взаимно уравновешиваются.

Рис. 2.4. Схема к определению равнодействующей гидростатического давления на
цилиндрическую поверхность

Представим, что выделенный объем V представляет собой твердое тело того же удельного веса, что и
жидкость (этот объем на рис.2.4 заштрихован). Левая поверхность этого объема (на чертеже вертикальная
стенка АО) имеет площадь Sx = bH, являющуюся проекцией криволинейной поверхности АВС на
плоскость yOz.

Cила гидростатического давления на площадь Sx равна Fx = γ
Sxhc.

С правой стороны на отсек будет действовать реакция R цилиндрической поверхности. Пусть точка
приложения и направление этой реакции будут таковы, как показано на рис.2.4. Реакцию R разложим на
две составляющие Rx и Rz.

Из действующих поверхностных сил осталось учесть только давление на свободной поверхности
Р0. Если резервуар открыт, то естественно, что давление Р0 одинаково
со всех сторон и поэтому взаимно уравновешивается.

На отсек АВСО будет действовать сила собственного веса G = γV, направленная вниз.

Спроецируем все силы на ось Ох:

Fx — Rx = 0 откуда Fx = Rx = γSxhc

Теперь спроецируем все силы на ось Оz:

Rx — G = 0 откуда Rx = G = γV

Составляющая силы гидростатического давления по оси Oy обращается в нуль, значит Ry = Fy = 0.

Таким образом, реакция цилиндрической поверхности в общем случае равна

а поскольку реакция цилиндрической поверхности равна равнодействующей гидростатического давления R=F,
то делаем вывод, что

Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление,
направленное снизу вверх и равное весу жидкости в объеме погруженной части тела.

Pвыт = ρжgVпогр

Для однородного тела плавающего на поверхности справедливо соотношение

где: V — объем плавающего тела;
ρm — плотность тела.

Существующая теория плавающего тела довольно обширна, поэтому мы ограничимся рассмотрением лишь
гидравлической сущности этой теории.

Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние
называется устойчивостью. Вес жидкости, взятой в объеме погруженной части судна называют
водоизмещением, а точку приложения равнодействующей давления (т.е. центр давления) — центром
водоизмещения
. При нормальном положении судна центр тяжести С и центр водоизмещения d лежат
на одной вертикальной прямой O’-O», представляющей ось симметрии судна и называемой осью плавания
(рис.2.5).

Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна
KLM вышла из жидкости, а часть K’L’M’, наоборот, погрузилось в нее. При этом получили новое
положении центра водоизмещения d’. Приложим к точке d’ подъемную силу R и линию ее
действия продолжим до пересечения с осью симметрии O’-O». Полученная точка m называется
метацентром, а отрезок mC = h называется метацентрической высотой. Будем считать h
положительным, если точка m лежит выше точки C, и отрицательным — в противном случае.

Рис. 2.5. Поперечный профиль судна

Теперь рассмотрим условия равновесия судна:

1) если h > 0, то судно возвращается в первоначальное положение;
2) если h = 0, то это случай безразличного равновесия;
3) если h<0, то это случай неостойчивого равновесия, при котором продолжается дальнейшее
опрокидывание судна.

Следовательно, чем ниже расположен центр тяжести и, чем больше метацентрическая высота, тем больше
будет остойчивость судна.

Как уже отмечалось выше, поверхность, во всех точках которой давление одинаково, называется поверхностью
уровня
или поверхностью равного давления. При неравномерном или непрямолинейном движении на частицы
жидкости кроме силы тяжести действуют еще и силы инерции, причем если они постоянны по времени, то жидкость
принимает новое положение равновесия. Такое равновесие жидкости называется относительным покоем.

Рассмотрим два примера такого относительного покоя.

В первом примере определим поверхности уровня в жидкости, находящейся в цистерне, в то время как цистерна
движется по горизонтальному пути с постоянным ускорением a (рис.2.6).

Рис. 2.6. Движение цистерны с ускорением

К каждой частице жидкости массы m должны быть в этом случае приложены ее вес G = mg и сила
инерции Pu, равная по величине ma. Равнодействующая
этих сил направлена к вертикали под углом α, тангенс которого равен

Так как свободная поверхность, как поверхность равного давления, должна быть нормальна к указанной
равнодействующей, то она в данном случае представит собой уже не горизонтальную плоскость, а наклонную,
составляющую угол α с горизонтом. Учитывая, что величина этого угла зависит только от
ускорений, приходим к выводу, что положение свободной поверхности не будет зависеть от рода находящейся в
цистерне жидкости. Любая другая поверхность уровня в жидкости также будет плоскостью, наклоненной к горизонту
под углом α. Если бы движение цистерны было не равноускоренным, а равнозамедленным,
направление ускорения изменилось бы на обратное, и наклон свободной поверхности обратился бы в другую сторону
(см. рис.2.6, пунктир).

В качестве второго примера рассмотрим часто встречающийся в практике случай относительного покоя жидкости
во вращающихся сосудах (например, в сепараторах и центрифугах, применяемых для разделения жидкостей). В этом
случае (рис.2.7) на любую частицу жидкости при ее относительном равновесии действуют массовые силы: сила
тяжести G = mg и центробежная сила Pu = mω2r, где r
— расстояние частицы от оси вращения, а ω — угловая скорость вращения сосуда.

Рис. 2.7. Вращение сосуда с жидкостью

Поверхность жидкости также должна быть нормальна в каждой точке к равнодействующей этих сил R и
представит собой параболоид вращения. Из чертежа находим

С другой стороны:

где z — координата рассматриваемой точки. Таким образом, получаем:

откуда

или после интегрирования

В точке пересечения кривой АОВ с осью вращения r = 0, z = h = C, поэтому окончательно будем
иметь

т.е. кривая АОВ является параболой, а свободная поверхность жидкости параболоидом. Такую же форму
имеют и другие поверхности уровня.

Для определения закона изменения давления во вращающейся жидкости в функции радиуса и высоты выделим
вертикальный цилиндрический объем жидкости с основанием в виде элементарной горизонтальной площадки dS
(точка М) на произвольном радиусе r и высоте z и запишем условие его равновесия в
вертикальном направлении. С учетом уравнения (2.11) будем иметь

После сокращений получим

Это значит, что давление возрастает пропорционально радиусу r и уменьшается пропорционально
высоте z.

Проверить себя ( Тест )

Наверх страницы

4. Гидростатическое давление и его свойства

Общие дифференциальные уравнения равновесия жидкости — уравнения Л. Эйлера для гидростатики.

Если взять цилиндр с жидкостью (покоящейся) и провести через него линию раздела, то получим жидкость в цилиндре из двух частей. Если теперь приложить некоторое усилие к одной части, то оно будет передаваться другой через разделяющую плоскость сечения цилиндра: обозначим эту плоскость S = w.

Если саму силу обозначить как то взаимодействие, передаваемое от одной части к другой через сечение Δw, и есть гидростатическое давление.

Если оценить среднее значение этой силы,

Рассмотрев точку А как предельный случай w, определяем:

Если перейти к пределу, то Δw переходит в точку А.

Поэтому Δpx→ Δpn. В конечном результате px = pn, точно так же можно получить py = pn, pz = pn.

Следовательно,

py = pn, pz = pn.

Мы доказали, что во всех трех направлениях (их мы выбрали произвольно) скалярное значение сил одно и то же, то есть не зависит от ориентации сечения Δw.

Вот это скалярное значение приложенных сил и есть гидростатическое давление, о котором говорили выше: именно это значение, сумма всех составляющих, передается через Δw.

Другое дело, что в сумме (px + py + pz) какая-то составляющая окажется равной нулю.

Как мы в дальнейшем убедимся, в определенных условиях гидростатическое давление все же может быть неодинаково в различных точках одной и той же покоящейся жидкости, т. е.

p = f(x, y, z).

Свойства гидростатического давления.

1. Гидростатическое давление всегда направлено по нормали к поверхности и его величина не зависит от ориентации поверхности.

2. Внутри покоящейся жидкости в любой точке гидростатическое давление направлено по внутренней нормали к площадке, проходящей через эту точку.

Причем px = py = pz = pn.

3. Для любых двух точек одного и того же объема однородной несжимаемой жидкости (ρ = const)

ρ1 + ρП1 = ρ2 + ρП1

где ρ — плотность жидкости;

П1, П2 — значение поле массовых сил в этих точках.

Поверхность, для любых двух точек которой давление одно и то же, называется поверхностью равного давления.

Давление жидкости


Давление жидкости

4.7

Средняя оценка: 4.7

Всего получено оценок: 111.

Обновлено 28 Июля, 2021

4.7

Средняя оценка: 4.7

Всего получено оценок: 111.

Обновлено 28 Июля, 2021

Давление — это мера распределения силы на некоторой площади. Давление может создаваться не только твёрдыми телами, но и жидкими или газообразными. Использование этой физической величины для жидкостей имеет некоторые особенности, которые изучают на уроках физики в 7 классе. Рассмотрим их подробнее, выведем формулу давления жидкости.

Распределение давления в жидкости

Давление подразумевает действие некоторой силы. Для жидкостей такая сила может иметь два источника. И первый возможный источник — это внешняя сила.

Представим себе вертикальный цилиндр с поршнем в верхней части, полностью заполненный жидкостью. Теперь, если со стороны поршня на молекулы жидкости начнёт действовать сила, то ближайшие к поршню молекулы жидкости начнут смещаться вниз. При этом они встретят на пути противодействие молекул более глубоких слоёв и начнут передавать усилие им. Молекулы более глубоких слоёв в свою очередь будут передавать усилия ещё более глубоким слоям, и так далее, до самого дна поршня.

Напомним, что молекулы в жидкости связаны друг с другом слабо и совершают хаотичные тепловые движения. Если на молекулу действует сила со стороны вышележащего слоя, а вниз её «не пускает» нижележащий слой, то молекула начинает смещение вбок. Получается, что усилие поршня, направленное вниз, будет передаваться в жидкости не только вниз, но и в стороны. При этом за счёт хаотичного движения молекул «траектория передачи силы» может быть любой, сколь угодно извилистой — сила будет передаваться по этому пути через жидкость и создавать давление в любой точке.

Давление, производимое на жидкость, передаётся в любую точку жидкости без изменения во всех направлениях. Данный закон был открыт Б. Паскалем, и носит его имя. В честь этого физика также была названа единица измерения давления.

Закон Паскаля

Рис. 1. Закон Паскаля.

Давление в глубине жидкости

Вторым источником давления жидкости является её собственный вес.

Вес тела

Рис. 2. Вес тела

Этот вес будет распределён по площади дна ёмкости, содержащей жидкость, и мера этого распределения характеризуется давлением.

Если сосуд имеет площадь дна $S$, и столб жидкости в нём будет иметь высоту $h$, то объём этой жидкости будет равен:

$$V=Sh$$

Если плотность жидкости равна $rho$, то масса жидкости равна:

$$m=rho V=rho Sh$$

Вес покоящегося тела равен силе тяжести. То есть:

$$P=mmathrm{g} =rho Sh mathrm{g}$$

Этот вес распределён по площади дна $S$. Следовательно, давление на дне сосуда будет равно:

$$p={Pover S}={ rho Sh mathrm{g}over S} $$

Сокращая значение площади, получаем формулу давления жидкости на глубине $h$:

$$p = rho mathrm{g} h$$

В данную формулу не входит площадь дна сосуда. Сосуд может иметь любую форму, давление жидкости на его дно будет определяться только высотой столба жидкости и её плотностью. По этой же формуле определяется давление в любой точке жидкости, не только на дне.

Давление столба жидкости

Рис. 3. Давление столба жидкости

Заключение

Что мы узнали?

Давление в жидкости распространяется во все стороны без изменений. Источником этого давления может являться внешняя сила или вес самой жидкости. В последнем случае давление жидкости зависит только от плотности этой жидкости и от глубины точки измерения.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Дамир Хамзин

    5/5

Оценка доклада

4.7

Средняя оценка: 4.7

Всего получено оценок: 111.


А какая ваша оценка?

Статика жидкостей и газов.

  • Гидростатическое давление.

  • Закон Паскаля.

  • Гидравлический пресс.

  • Закон Архимеда.

  • Плавание тел.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: давление жидкости, закон Паскаля, закон Архимеда, условия плавания тел.

В гидро- и аэростатике рассматриваются два вопроса: 1) равновесие жидкостей и газов под действием приложенных к ним сил; 2) равновесие твёрдых тел в жидкостях и газах.

Многие из обсуждаемых далее фактов относятся равным образом как к жидкостям, так и к газам. В таких случаях мы будем называть жидкость и газ средой.

При сжатии среды в ней возникают силы упругости, называемые силами давления. Силы давления действуют между соприкасающимися слоями среды, на погружённые в среду твёрдые тела, а также на дно и стенки сосуда.

Сила давления среды обладает двумя характерными свойствами.

1. Сила давления действует перпендикулярно поверхности выделенного элемента среды или твёрдого тела. Это объясняется текучестью среды: силы упругости не возникают в ней при относительном сдвиге слоёв, поэтому отсутствуют силы упругости, касательные к поверхности.

2. Cила давления равномерно распределена по той поверхности, на которую она действует.

Естественной величиной, возникающей в процессе изучения сил давления среды, является давление.

Пусть на поверхность площади S действует сила F, которая перпендикулярна поверхности и равномерно распределена по ней. Давлением называется величина

p=frac{displaystyle F}{displaystyle S}.

Единицей измерения давления служит паскаль (Па). 1 Па — это давление, производимое силой 1 Н на поверхность площадью 1 м ^{2}.

Полезно помнить приближённое значение нормального атмосферного давления: p_{0}=10^{5}Па.

к оглавлению ▴

Гидростатическое давление.

Гидростатическим называется давление неподвижной жидкости, вызванное силой тяжести. Найдём формулу для гидростатического давления столба жидкости.

Предположим, что в сосуд с площадью дна S налита жидкость до высоты h (рис. 1). Плотность жидкости равна rho

Рис. 1. Гидростатическое давление

Объём жидкости равен Sh, поэтому масса жидкости m=rho Sh. Сила F давления жидкости на дно сосуда — это вес жидкости. Так как жидкость неподвижна, её вес равен силе тяжести:

F=mg=rho Shg.

Разделив силу F на площадь S, получим давление жидкости:

p=rho gh.

Это и есть формула гидростатического давления.

Так, на глубине 10 м вода оказывает давление p=1000 cdot 10 cdot 9,8=98000Па, примерно равное атмосферному. Можно сказать, что атмосферное давление приблизительно равно 10 м водного столба.

Для практики столь большая высота столба жидкости неудобна, и реальные жидкостные манометры — ртутные. Посмотрим, какую высоту должен иметь столб ртути (rho=13600 кг/м^{3}), чтобы создать аналогичное давление:

h=frac{p}{rho g}=frac{10^{5}}{13600cdot 9,8}=0.75 м = 750 мм.

Вот почему для измерения атмосферного давления широко используется миллиметр ртутного столба (мм рт. ст.).

к оглавлению ▴

Закон Паскаля.

Если поставить гвоздь вертикально и ударить по нему молотком, то гвоздь передаст действие молотка по вертикали, но не вбок. Твёрдые тела из-за наличия кристаллической решётки передают производимое на них давление только в направлении действия силы.

Жидкости и газы (напомним, что мы называем их средами) ведут себя иначе. В средах справедлив закон Паскаля.

Закон Паскаля. Давление, оказываемое на жидкость или газ, передаётся в любую точку этой среды без изменения по всем направлениям.

(В частности, на площадку, помещённую внутри жидкости на фиксированной глубине, действует одна и та же сила давления, как эту площадку ни поворачивай.)

Например, ныряльщик на глубине h испытывает давление p=p_{0}+rho gh. Почему? Согласно закону Паскаля вода передаёт давление атмосферы p_{0} без изменения на глубину h , где оно прибавляется к гидростатическому давлению водяного столба rho gh.

Отличной иллюстрацией закона Паскаля служит опыт с шаром Паскаля. Это шар с множеством отверстий, соединённый с цилиндрическим сосудом (рис. 2)

Рис. 2. Шар Паскаля

Если налить в сосуд воду и двинуть поршень, то вода брызнет из всех отверстий. Это как раз и означает, что вода передаёт внешнее давление по всем направлениям.

То же самое наблюдается и для газа: если сосуд наполнить дымом, то при движении поршня струйки дыма пойдут опять-таки из всех отверстий сразу. Стало быть, газ также передаёт давление по всем направлениям.

Вы ежедневно пользуетесь законом Паскаля, когда выдавливаете зубную пасту из тюбика. А именно, вы сжимаете тюбик в поперечном направлении, а паста двигается перпендикулярно вашему усилию — в продольном направлении. Почему? Ваше давление передаётся внутри тюбика по всем направлениям, в частности — в сторону отверстия тюбика. Туда-то паста и выходит.

к оглавлению ▴

Гидравлический пресс.

Гидравлический пресс — это устройство, дающее выигрыш в силе. То есть, прикладывая сравнительно небольшую силу в одном месте устройства, оказывается возможным получить значительно большее усилие в другом его месте.

Гидравлический пресс изображён на рис. 3. Он состоит из двух сообщающихся сосудов, имеющих разную площадь поперечного сечения и закрытых поршнями. В сосудах между поршнями находится жидкость.

Рис. 3. Гидравлический пресс

Принцип действия гидравлического пресса очень прост и основан на законе Паскаля.

Пусть S_{1} — площадь малого поршня, S_{2} — площадь большого поршня. Надавим на малый
поршень с силой F_{1}. Тогда под малым поршнем в жидкости возникнет давление:

p=frac{displaystyle F_{displaystyle 1}}{displaystyle S_{displaystyle 1}}.

Согласно закону Паскаля это давление будет передано без изменения по всем направлениям в любую точку жидкости, в частности — под большой поршень. Следовательно, на большой поршень со стороны жидкости будет действовать сила:

F_{displaystyle 2}=pS_{displaystyle 2}=F_{displaystyle 1}frac{displaystyle S_{displaystyle 2}}{displaystyle S_{displaystyle 1}}.

Полученное соотношение можно переписать и так:

frac{displaystyle F_{displaystyle 2}}{displaystyle F_{displaystyle 1}}=frac{displaystyle S_{displaystyle 2}}{displaystyle S_{displaystyle 1}}.

Мы видим, что F_{2} больше F_{1} во столько раз, во сколько S_{2} больше S_{1}. Например, если площадь большого поршня в 100 раз превышает площадь малого поршня, то усилие на большом поршне окажется в 100 раз больше усилия на малом поршне. Вот каким образом гидравлический пресс даёт выигрыш в силе.

к оглавлению ▴

Закон Архимеда.

Мы знаем, что дерево в воде не тонет. Следовательно, сила тяжести уравновешивается какой-то другой силой, действующей на кусок дерева со стороны воды вертикально вверх. Эта сила называется
выталкивающей или архимедовой силой. Она действует на всякое тело, погружённое в жидкость или газ.

Выясним причину возникновения архимедовой силы. Рассмотрим цилиндр площадью поперечного сечения S и высотой h, погружённый в жидкость плотности rho . Основания цилиндра горизонтальны. Верхнее основание находится на глубине h_{1} , нижнее — на глубине h_{2}=h_{1}+h (рис. 4).

На боковую поверхность цилиндра действуют силы давления, которые приводят лишь к сжатию цилиндра. Эти силы можно не принимать во внимание.

На уровне верхнего основания цилиндра давление жидкости равно p_{1}=rho g h_{1}. На верхнее основание действует сила давления F_{1}=p_{1}S=rho g h_{1}S, направленная вертикально вниз.

На уровне нижнего основания цилиндра давление жидкости равно p_{2}=rho g h_{2}. На нижнее основание действует сила давления F_{2}=p_{2}S=rho g h_{2}S, направленная вертикально вверх (закон Паскаля!).

Так как h_{2}>h_{1}, то F_{2}>F_{1}, и поэтому возникает равнодействующая сил давления, направленная вверх. Это и есть архимедова сила F_{A}. Имеем:

F_{A}=F_{2}-F_{1}=rho g h_{2}S-rho g h_{1}S=rho g S(h_{2}-h_{1})=rho gSh.

Но произведение Sh равно объёму цилиндра V. Получаем окончательно:

F_{A}=rho gV. (1)

Это и есть формула для архимедовой силы. Возникает архимедова сила вследствие того, что давление жидкости на нижнее основание цилиндра больше, чем на верхнее.

Формулу (1) можно интерпретировать следующим образом. Произведение rho V — это масса
жидкости m, объём которой равен V : rho V=m. Но тогда rho gV=mg=P, где P — вес жидкости, взятой в объёме V. Поэтому наряду с (1) имеем:

F_{A}=P. (2)

Иными словами, архимедова сила, действующая на цилиндр, равна весу жидкости, объём которой совпадает с объёмом цилиндра.

Формулы (1) и (2) справедливы и в общем случае, когда погружённое в жидкость или газ тело объёма V имеет любую форму, а не только форму цилиндра (конечно, в случае газа rho — это плотность газа). Поясним, почему так получается.

Выделим мысленно в среде некоторый объём V произвольной формы. Этот объём находится в равновесии: не тонет и не всплывает. Следовательно, сила тяжести, действующая на среду, находящуюся внутри выделенного нами объёма, уравновешена силами давления на поверхность нашего объёма со стороны остальной среды — ведь на нижние элементы поверхности приходится большее давление, чем на верхние.

Иными словами, равнодействующая сил гидростатического давления на поверхность выделенного объёма — архимедова сила — направлена вертикально вверх и равна весу среды в этом объёме.

Сила тяжести, действующая на наш объём, приложена к его центру тяжести. Значит, и архимедова сила должна быть приложена к центру тяжести выделенного объёма. В противном случае сила тяжести и архимедова сила образуют пару сил, которая вызовет вращение нашего объёма (а он находится в равновесии).

А теперь заменим выделенный объём среды твёрдым телом того же объёма V и той же самой формы. Ясно, что силы давления среды на поверхность тела не изменятся, так как неизменной осталась конфигурация среды, окружающей тело. Поэтому архимедова сила попрежнему будет направлена вертикально вверх и равна весу среды, взятой в объёме V. Точкой приложения архимедовой силы будет центр тяжести тела.

Закон Архимеда. На погружённое в жидкость или газ тело действует выталкивающая сила, направленная вертикально вверх и равная весу среды, объём которой равен объёму тела.

Таким образом, архимедова сила всегда находится по формуле (1). Заметим, что в эту формулу не входят ни плотность тела, ни какие-либо его геометрические характеристики — при фиксированном объёме величина архимедовой силы не зависит от вещества и формы тела.

До сих пор мы рассматривали случай полного погружения тела. Чему равна архимедова сила при частичном погружении? На ту часть тела, которая находится над поверхностью жидкости, никакая выталкивающая сила не действует. Если эту часть мысленно срезать, то величина архимедовой силы не изменится. Но тогда мы получим целиком погружённое тело, объём которого равен объёму погружённой части исходного тела.

Значит, на частично погружённое в жидкость тело действует выталкивающая сила, равная весу жидкости, объём которой равен объёму погружённой части тела. Формула (1) справедлива и в этом случае, только объём всего тела V нужно заменить на объём погружённой части Vпогр:

F_{A}=rho gVпогр.

Архимед обнаружил, что целиком погружённое в воду тело вытесняет объём воды, равный собственному объёму. Тот же факт имеет место для других жидкостей и газов. Поэтому можно сказать, что на всякое тело, погружённое в жидкость или газ, действует выталкивающая сила, равная весу вытесненной телом среды.

к оглавлению ▴

Плавание тел.

Рассмотрим тело плотности rho и жидкость плотности rho_{0} . Допустим, что тело полностью погрузили в жидкость и отпустили.

С этого момента на тело действуют лишь сила тяжести mg и архимедова сила F_{A}. Если объём тела равен V, то

mg=rho gV, F_{A}=rho_{0}gV.

Имеются три возможности дальнейшего движения тела.

1. Сила тяжести больше архимедовой силы: mg > F_{A}, или rho > rho_{0}. В этом случае тело тонет.

2. Сила тяжести равна архимедовой силе: mg = F_{A}, или rho = rho_{0}. В этом случае тело остаётся неподвижным в состоянии безразличного равновесия.

3. Сила тяжести меньше архимедовой силы: mg < F_{A}, или rho < rho_{0}. В этом случае тело всплывает, достигая поверхности жидкости. При дальнейшем всплытии начнёт уменьшаться объём погружённой части тела, а вместе с ним и архимедова сила. В какой-то момент архимедова сила сравняется с силой тяжести (положение равновесия). Тело по инерции всплывёт дальше, остановится, снова начнёт погружаться. . . Возникнут затухающие колебания, после которых тело останется плавать в положении равновесия (mg = F_{A}), частично погрузившись в жидкость.

Таким образом, условие плавания тела можно записать в виде неравенства: rho leq rho_{0}.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Статика жидкостей и газов.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
07.05.2023

Понравилась статья? Поделить с друзьями:
  • Как исправить ошибку 184 при установке драйверов амд
  • Мой skype как его найти
  • Как найти своего родственника воевавшего на войне
  • Как исправить курсовую работу
  • Как найти массу вещества зная количество частиц