Как найти действительное изображение

Тонкие линзы. Построение изображений.

  • Собирающая линза: действительное изображение точки.

  • Собирающая линза: действительное изображение предмета.

  • Собирающая линза: мнимое изображение точки.

  • Собирающая линза: мнимое изображение предмета.

  • Собирающая линза: предмет в фокальной плоскости.

  • Рассеивающая линза: мнимое изображение точки.

  • Рассеивающая линза: мнимое изображение предмета.

 

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: построение изображений в линзах, формула тонкой линзы.

Правила хода лучей в тонких линзах, сформулированные в предыдущей теме, приводят нас к важнейшему утверждению.

Теорема об изображении. Если перед линзой находится светящаяся точка S, то после преломления в линзе все лучи (или их продолжения) пересекаются в одной точке S{}.

Напомним ещё раз, что это касается не вообще всех лучей, а только параксиальных, то есть образующих малые углы с главной оптической осью. В предыдущей теме мы договорились, что рассматриваем только параксиальные лучи. Лишь для них работают наши правила хода лучей сквозь тонкие линзы.

Точка S{} называется изображением точки S.

Если в точке S{} пересекаются сами преломлённые лучи, то изображение называется действительным. Оно может быть получено на экране, так как в точке S{} концентрируется энергия световых лучей.

Если же в точке S{} пересекаются не сами преломлённые лучи, а их продолжения (так бывает, когда преломлённые лучи расходятся после линзы), то изображение называется мнимым. Его нельзя получить на экране, поскольку в точке S{} не сосредоточено никакой энергии. Мнимое изображение, напомним, возникает благодаря особенности нашего мозга — достраивать расходящиеся лучи до их мнимого пересечения и видеть в этом пересечении светящуюся точку.Мнимое изображение существует лишь в нашем сознании.

Теорема об изображении служит основой построения изображений в тонких линзах. Мы докажем эту теорему как для собирающей, так и для рассеивающей линзы.

к оглавлению ▴

Собирающая линза: действительное изображение точки.

Сперва рассмотрим собирающую линзу. Пусть a — расстояние от точки S до линзы, f — фокусное расстояние линзы. Имеются два принципиально разных случая: a>f и a<f (а также промежуточный случай a=f). Мы разберём эти случаи поочерёдно; в каждом из них мы
обсудим свойства изображений точечного источника и протяжённого объекта.

Первый случай: a>f. Точечный источник света S расположен дальше от линзы, чем левая фокальная плоскость (рис. 1).

Рис. 1. Случай a>f: действительное изображение точки S

Луч SO, идущий через оптический центр, не преломляется. Мы возьмём произвольный луч SX, построим точку S{}, в которой преломлённый луч пересекается с лучом SO, а затем покажем, что положение точки S{} не зависит от выбора луча SX (иными словами, точка S{} является одной и той же для всевозможных лучей SX ). Тем самым окажется, что все лучи, исходящие из точки S, после преломления в линзе пересекаются в точке S{} и теорема об изображении будет доказана для рассматриваемого случая a>f.

Точку S{} мы найдём, построив дальнейший ход луча SX. Делать это мы умеем: параллельно лучу SX проводим побочную оптическую ось OP до пересечения с фокальной плоскостью в побочном фокусе P, после чего проводим преломлённый луч XP до пересечения с лучом SO в точке S{}.

Теперь будем искать расстояние b от точки S{} до линзы. Мы покажем, что это расстояние выражается только через a и f, т. е. определяется лишь положением источника и свойствами линзы, и не зависит тем самым от конкретного луча SX.

Опустим перпендикуляры SA и S{} на главную оптическую ось. Проведём также SK параллельно главной оптической оси, т. е. перпендикулярно линзе. Получим три пары подобных треугольников:

triangle SAO sim triangle S{}, (1)
triangle SXS{}, (2)
triangle SXK sim triangle OPF. (3)

В результате имеем следующую цепочку равенств (номер формулы над знаком равенства указывает, из какой пары подобных треугольников данное равенство получено).

frac{displaystyle AO}{displaystyle OA{} (4)

Но AO=SK=a, OA{}, так что соотношение (4) переписывается в виде:

frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f}-1. (5)

Отсюда находим искомое расстояние от точки S{} до линзы:

b=frac{displaystyle af}{displaystyle a-displaystyle f}. (6)

Как видим, оно и в самом деле не зависит от выбора луча SX. Следовательно, любой луч SX после преломления в линзе пройдёт через построенную нами точку S{}, и эта точка будет действительным изображением источника S

Теорема об изображении в данном случае доказана.

Практическая важность теоремы об изображении состоит вот в чём. Коль скоро все лучи источника S пересекаются после линзы в одной точке — его изображении S{} — то для построения изображения достаточно взять два наиболее удобных луча. Какие именно?

Если источник S не лежит на главной оптической оси, то в качестве удобных лучей годятся следующие:

— луч, идущий через оптический центр линзы — он не преломляется;
— луч, параллельный главной оптической оси — после преломления он идёт через фокус.

Построение изображения с помощью этих лучей показано на рис. 2.

Рис. 2. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка S лежит на главной оптической оси, то удобный луч остаётся лишь один — идущий вдоль главной оптической оси. В качестве второго луча приходится брать «неудобный» (рис. 3).

Рис. 3. Построение изображения точки S, лежащей на главной оптической оси

Посмотрим ещё раз на выражение ( 5). Его можно записать в несколько ином виде, более симпатичном и запоминающемся. Перенесём сначала единицу влево:

1+frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f}.

Теперь разделим обе части этого равенства на a:

frac{displaystyle 1}{displaystyle a}+frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f}. (7)

Соотношение (7) называется формулой тонкой линзы (или просто формулой линзы). Пока что формула линзы получена для случая собирающей линзы и для a>f. В дальнейшем мы выведем модификации этой формулы для остальных случаев.

Теперь вернёмся к соотношению (6). Его важность не исчерпывается тем, что оно доказывает теорему об изображении. Мы видим также, что b не зависит от расстояния SA (рис. 1, 2) между источником S и главной оптической осью!

Это означает, что какую бы точку M отрезка SA мы ни взяли, её изображение будет находиться на одном и том же расстоянии b от линзы. Оно будет лежать на отрезке S{} — а именно, на пересечении отрезка S{} с лучом MO, который пойдёт сквозь линзу без преломления. В частности, изображением точки A будет точка A{}.

Тем самым мы установили важный факт: изображением отрезка SA лужит отрезок S{}. Отныне исходный отрезок, изображение которого нас интересует, мы называем предметом и обозначаем на рисунках красной стрелочкой. Направление стрелки нам понадобится для того, чтобы следить — прямым или перевёрнутым получается изображение.

к оглавлению ▴

Перейдём к рассмотрению изображений предметов. Напомним, что пока мы находимся в рамках случая a>f. Здесь можно выделить три характерных ситуации.

1. f<a<2f. Изображение предмета является действительным, перевёрнутым, увеличенным (рис. 4; двойной фокус обозначен 2F). Из формулы линзы следует, что в этом случае будет b>2f (почему?).

Такая ситуация реализуется, например, в диапроекторах и киноаппаратах — эти оптические приборы дают на экране увеличенное изображение того, что находится на плёнке. Если вам доводилось показывать слайды, то вы знаете, что слайд нужно вставлять в проектор перевёрнутым — чтобы изображение на экране выглядело правильно, а не получилось вверх ногами.

Отношение размера изображения к размеру предмета называется линейным увеличением линзы и обозначается Г — (это заглавная греческая «гамма»):

Gamma =frac{displaystyle A{}.

Из подобия треугольников triangle ABO и triangle A{} получим:

Gamma =frac{displaystyle A{}. (8)

Формула (8) применяется во многих задачах, где фигурирует линейное увеличение линзы.

2. a=2f. В этом случае из формулы (6) находим, что и b=2f. Линейное увеличение линзы согласно (8) равно единице, т. е. размер изображения равен размеру предмета (рис. 5).

Рис. 5.a=2f: размер изображения равен размеру предмета

3. a>2f. В этом случае из формулы линзы следует, что b<2f (почему?). Линейное увеличение линзы будет меньше единицы — изображение действительное, перевёрнутое, уменьшенное (рис. 6).

Рис. 6.a>2f: изображение действительное, перевёрнутое, уменьшенное

Данная ситуация является обычной для многих оптических приборов: фотоаппаратов, биноклей, телескопов — словом, тех, в которых получают изображения удалённых объектов. По мере удаления предмета от линзы его изображение уменьшается в размерах и приближается к фокальной плоскости.

Рассмотрение первого случая a>2f нами полностью закончено. Переходим ко второму случаю. Он уже не будет столь объёмным.

к оглавлению ▴

Собирающая линза: мнимое изображение точки.

Второй случай: a<f. Точечный источник света S расположен между линзой и фокальной плоскостью (рис. 7).

Рис. 7. Случай a < f: мнимое изображение точки

Наряду с лучом SO, идущим без преломления, мы снова рассматриваем произвольный луч SX. Однако теперь на выходе из линзы получаются два расходящихся луча OE и XP. Наш глаз продолжит эти лучи до пересечения в точке S{}.

Теорема об изображении утверждает, что точка S{} будет одной и той же для всех лучей SX, исходящих из точки S. Мы опять докажем это с помощью трёх пар подобных треугольников:

triangle SAOsim triangle S{}

Снова обозначая через b расстояние от S{} до линзы, имеем соответствующую цепочку равенств (вы уже без труда в ней разберётесь):

frac{displaystyle a}{displaystyle b}=frac{displaystyle AO}{displaystyle A{}. (9)

Отсюда

b=frac{displaystyle fa}{displaystyle f-displaystyle a}. (10)

Величина b не зависит от луча SX, что и доказывает теорему об изображении для нашего случая a<f. Итак, S{} — мнимое изображение источника S. Если точка S не лежит на главной оптической оси, то для построения изображения S{} удобнее всего брать луч, идущий через оптический центр, и луч, параллельный главной оптической оси (рис. 8).

Рис. 8. Построение изображения точки S, не лежащей на главной оптической оси

Ну а если точка S лежит на главной оптической оси, то деваться некуда — придётся довольствоваться лучом, падающим на линзу наклонно (рис. 9).

Рис. 9. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (9) приводит нас к варианту формулы линзы для рассматриваемого случая a<f. Сначала переписываем это соотношение в виде:

1-frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f},

а затем делим обе части полученного равенства на a:

frac{displaystyle 1}{displaystyle a}-frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f}. (11)

Сравнивая (7) и (11), мы видим небольшую разницу: перед слагаемым 1/b стоит знак плюс, если изображение действительное, и знак минус, если изображение мнимое.

Величина b, вычисляемая по формуле (10), не зависит также от расстояния SA между точкой S и главной оптической осью. Как и выше (вспомните рассуждение с точкой M), это означает, что изображением отрезка SA на рис. 9 будет отрезок S{}.

к оглавлению ▴

Учитывая это, мы легко строим изображение предмета, находящегося между линзой и фокальной плоскостью (рис. 10). Оно получается мнимым, прямым и увеличенным.

Такое изображение вы наблюдаете, когда разглядываете мелкий предмет в увеличительное стекло — лупу. Случай a<f полностью разобран. Как видите, он качественно отличается от нашего первого случая a>f. Это не удивительно — ведь между ними лежит промежуточный «катастрофический» случай a=f.

к оглавлению ▴

Собирающая линза: предмет в фокальной плоскости.

Промежуточный случай:a=f. Источник света S расположен в фокальной плоскости линзы (рис. 11).

Как мы помним из предыдущего раздела, лучи параллельного пучка после преломления в собирающей линзе пересекутся в фокальной плоскости — а именно, в главном фокусе, если пучок падает перпендикулярно линзе, и в побочном фокусе при наклонном падении пучка. Воспользовавшись обратимостью хода лучей, мы заключаем, что все лучи источника S, расположенного в фокальной плоскости, после выхода из линзы пойдут параллельно друг другу.

Рис. 11. a=f: изображение отсутствует

Где же изображение точки S? Изображения нет. Впрочем, никто не запрещает нам считать, что параллельные лучи пересекаются в бесконечно удалённой точке. Тогда теорема об изображении сохраняет свою силу и в данном случае — изображение S{} находится на бесконечности.

Соответственно, если предмет целиком расположен в фокальной плоскости, изображение этого предмета будет находиться на бесконечности (или, что то же самое, будет отсутствовать).

Итак, мы полностью рассмотрели построение изображений в собирающей линзе.

к оглавлению ▴

Рассеивающая линза: мнимое изображение точки.

К счастью, здесь нет такого разнообразия ситуаций, как для собирающей линзы. Характер изображения не зависит от того, на каком расстоянии предмет находится от рассеивающей линзы, так что случай тут будет один-единственный.

Снова берём луч SO и произвольный луч SX (рис. 12). На выходе из линзы имеем два расходящихся луча OE и XY, которые наш глаз достраивает до пересечения в точке S{}.

Рис. 12. Мнимое изображение точки S в рассеивающей линзе

Нам снова предстоит доказать теорему об изображении — о том, что точка S{} будет одной и той же для всех лучей SX. Действуем с помощью всё тех же трёх пар подобных треугольников:

triangle SAOsim triangle S{}.

Имеем:

frac{displaystyle a}{displaystyle b}= frac{displaystyle AO}{displaystyle A{} (12)

Отсюда

b=frac{displaystyle af}{displaystyle a+displaystyle f}. (13)

Величина b не зависит от луча span
SX, поэтому продолжения всех преломлённых лучей span
XY пересекутся в точке S{} — мнимом изображении точки S. Теорема об изображении тем самым полностью доказана.

Вспомним, что для собирающей линзы мы получили аналогичные формулы (6) и (10). В случае a=f их знаменатель обращался в нуль (изображение уходило на бесконечность), и поэтому данный случай разграничивал принципиально разные ситуации a>f и a<f.

А вот у формулы (13) знаменатель не обращается в нуль ни при каком a. Стало быть, для рассеивающей линзы не существует качественно разных ситуаций расположения источника — случай тут, как мы и сказали выше, имеется только один.

Если точка S не лежит на главной оптической оси, то для построения её изображения удобны два луча: один идёт через оптический центр, другой — параллельно главной оптической оси (рис. 13).

Рис. 13. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка S лежит на главной оптической оси, то второй луч приходится брать произвольным (рис. 14).

Рис. 14. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (13) даёт нам ещё один вариант формулы линзы. Сначала перепишем:

1-frac{displaystyle a}{displaystyle b}=-frac{displaystyle a}{displaystyle f},

а потом разделим обе части полученного равенства на a:

frac{displaystyle 1}{displaystyle a}-frac{displaystyle 1}{displaystyle b}=-frac{displaystyle 1}{displaystyle f}. (14)

Так выглядит формула линзы для рассеивающей линзы.

Три формулы линзы (7), (11) и (14) можно записать единообразно:

frac{displaystyle 1}{displaystyle a}+frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f},

если соблюдать следующую договорённость о знаках:

— для мнимого изображения величина b считается отрицательной;
— для рассеивающей линзы величина f считается отрицательной.

Это очень удобно и охватывает все рассмотренные случаи.

к оглавлению ▴

Величина b , вычисляемая по формуле (13), опять-таки не зависит от расстояния SA между точкой S и главной оптической осью. Это снова даёт нам возможность построить изображение предмета AB, которое на сей раз получается мнимым, прямым и уменьшенным (рис. 15).

Рис. 15. Изображение мнимое, прямое, уменьшенное

Разберем задачи ЕГЭ по теме: Тонкие линзы. Построение изображений.

1. Тонкая собирающая линза с фокусным расстоянием F находится между двумя точечными источниками света на расстоянии d=15 см от одного из них. Источники расположены на главной оптической оси на расстоянии L=22,5 см друг от друга. Найдите фокусное расстояние линзы, если их изображения получились в одной точке. Ответ выразите в сантиметрах.
Дано:
d_1 = 15 см = 0,15 м
L = 22,5 см=0,225 м
Найти:
Фокусное расстояние F — ?

Решение:
Тонкая собирающая линза дает различные виды изображений: увеличенные (уменьшенные), прямые (обратные), действительные (мнимые). Характеристика изображения зависит от расстояния от предмета до линзы, т.е. от соотношения d и F.
Так как в задаче говорится о получении изображений в одной точке, то один из точечных источников должен находиться за фокусом линзы – он дает действительное изображение. Второй точечный источник должен находиться перед фокусом – он дает мнимое изображение.

На рис. 1 представлено получение изображения для точечного источника света S_1, находящегося на расстоянии больше фокусного, S_1 — изображение точечного источника света S_1.

На рис. 2 представлено получение изображения для точечного источника света S_2, находящегося на расстоянии меньше фокусного, S_2— изображение точечного источника света S_2.
После создания модели, поясняющей условие этой задачи, можно переходить к её решению. Для этого надо применить формулу тонкой линзы для двух случаев. С учетом правила знаков f_1>0,f_2<0, так как изображение в первом случае действительное, во втором – мнимое.

frac{1}{d_1}+frac{1}{f_1}=frac{1}{F} (1)

frac{1}{d_2}-frac{1}{f_2}=frac{1}{F} (2)

Сложим эти два уравнения и учтем, что frac{1}{f_1}+left(-frac{1}{f_2}right)=0. Так как изображения в двух случаях получались в одной точке, то f_1=f_2.

frac{1}{d_1}+frac{1}{d_2}=frac{2}{F}

frac{d_1+d_2}{d_1cdot d_2}=frac{2}{F}

F=frac{2d_1cdot d_2}{d_1+d_2}

Определим, что d_2=L-d_1; d_2=0,225-0,15=0,075 (м).

F=frac{2cdot 0,15cdot 0,075}{0,15+0,075}=0,1 (м) =10 (см).

Ответ: 10

2. Какая из точек (1, 2, 3 или 4) является изображением точки S, созданным тонкой собирающей линзой с фокусным расстоянием F (см. рисунок)?

Решение:

Для получения изображения точечного источника S необходимо осуществить построение двух любых лучей, исходящих от этого источника. Самым «удобным» лучом является луч, проходящий через оптический центр линзы. Такие лучи, после прохождения через линзу, не меняют своего направления. На рисунке таким лучом является луч 1-1ʹ.
Второй и третий лучи от точечного источника S попадают на линзу произвольно. Дальнейший ход таких лучей определяется следующим алгоритмом:

  1. необходимо построить побочные оптические оси, параллельные падающим лучам (на рисунке они проведены пунктирной линией);
  2. провести фокальную плоскость и найти точки пересечения этой плоскости с побочными оптическими осями;
  3. продолжить ход световых лучей после прохождения через линзу (на рисунке это лучи 2ʹ и 3ʹ).

Поэтому изображением точечного источника S (точки S) будет являться точка 2.
При решении этой задачи мы рассмотрели ход трех лучей сквозь линзу, для получения ответа достаточно взять любую комбинацию лучей (1-1ʹ и 2 — 2ʹ) или (1-1ʹ и 3 — 3ʹ ).
Ответ: 2

3. Спираль лампочки расположена вблизи главной оптической оси тонкой рассеивающей линзы на расстоянии а от неё перпендикулярно этой оси, причем F < a < 2F, где F – модуль фокусного расстояния линзы. Затем рассеивающую линзу заменили на собирающую с фокусным расстоянием F. Установите соответствие между видом линзы, использованной в опыте, и свойствами даваемого ею изображения.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Виды линз Свойства изображения
А) линза рассеивающая 1) мнимое, прямое, уменьшенное
Б) линза собирающая 2) мнимое, перевёрнутое, увеличенное
3) действительное, перевёрнутое, увеличенное
4) действительное, прямое, увеличенное

Решение
Решение подобных задач опирается на умение строить изображения протяженных (имеющих размеры) предметов при прохождении лучей через линзу.

Рис.1

На рис.1 выполнено построение изображения предмета АВ в тонкой собирающей линзе. Для этого применялись следующие лучи:
1-1ʹ — луч, проходящий через оптический центр, не преломляется;
2 — 2ʹ — луч, падающий на линзу параллельно главной оптической оси, после преломления идет через фокус, расположенный за линзой .
Полученное изображение АʹВʹ имеет следующие характеристики:
увеличенное (размер изображения превышает размер предмета),
перевернутое (направления стрелок АВ и АʹВʹ противоположны),
действительное (предмет и его изображения находятся по разные стороны от линзы).

Рис.2

На рис.2 выполнено построение изображения предмета АВ в тонкой рассеивающей линзе. Для этого применялись следующие лучи:
1-1ʹ — луч, проходящий через оптический центр, не преломляется;
2 — 2ʹ — луч, падающий на линзу параллельно главной оптической оси, после преломления идет через фокус, расположенный перед линзой .
Полученное изображение АʹВʹ имеет следующие характеристики:
уменьшенное (размер изображения меньше размера предмета),
прямое (направления стрелок АВ и АʹВʹ совпадают),
мнимое (предмет и его изображения находятся с одной стороны от линзы).
Полученные изображения и их характеристики приводят к следующему ответу:

4. На рисунке показан ход лучей от точечного источника света S через тонкую линзу. Какова оптическая сила этой линзы? (Ответ дать в диоптриях.)

Решение:

На рисунке представлен ход световых лучей от точечного источника света S. Луч, проходящий через оптический центр, не меняет своего направления. Второй луч, идущий параллельно главной оптической оси, после преломления идет через фокус. Это позволяет определить фокусное расстояние линзы. Согласно рисунку, оно равно двум клеткам. С учётом указанного масштаба, длина одной клетки равна 4 см. Таким образом, фокусное расстояние этой линзы F=8 см = 0,08 м.

Так как оптическая сила линзы D=frac{1}{F}=frac{1}{0,08}=12,5 (дптр).

Ответ: 12,5

Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн
 

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Тонкие линзы. Построение изображений.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
07.05.2023

Свойства тонкой линзы определяются главным образом расположением ее главных фокусов. Поэтому, зная расстояние от источника света до линзы, а также ее фокусное расстояние (положение фокусов), мы можем определить расстояние до изображения, опустив описание хода лучей внутри самой линзы. Поэтому в изображении на чертеже точного вида сферических поверхностей линзы необходимость отсутствует.

Схематически тонкие линзы обозначают отрезком со стрелками на конце. Они смотрят от центра в противоположные стороны, если линза собирающая, и они направлены к центру отрезка, если линза рассеивающая.

Внимание!

Напомним, что линзы могут давать действительные и мнительные изображения. Причем, собирающая линза может давать как действительные, так и мнимые изображения. Рассеивающая линза всегда дает только мнимые изображения.

Способ построения изображений, а также вид самих изображений в линзе зависит от того, где расположен изображаемый предмет. Он может располагаться за двойным фокусным расстоянием, в фокальной плоскости второго фокуса, между вторым и первым фокусом, в фокальной плоскости главного фокуса и на расстоянии меньше фокусного расстояния линзы.

Определение

Вторым фокусом называют точку, которая расположена на главной оптической оси от главного фокуса на расстоянии, равном фокусному расстоянию линзы. Относительно линзы он располагается на расстоянии, равном двойному фокусному расстоянию линзы.

Построение изображения в собирающей линзе

Предметы схематично изображаются в виде стрелки. Чтобы построить изображение предмета в собирающей линзе, нужно найти положение верхней и нижней точки этого изображения. Сначала находят положение точки изображения, соответствующей верхней точки предмета (точки А). Для этого из этой точки нужно пустить два луча:

Два вида лучей при построении изображений в линзе

Первый луч проходит из верхней точки предмета (точки А) параллельно главной оптической оси. На линзе (в точке С) луч преломляется и проходит через точку фокуса (точку F).

Второй луч необходимо направить из верхней точки предмета (точки А) через оптический центр линзы (точку О). Он пройдет, не преломившись.

На пересечении двух лучей обозначаем точку А1. Это и будет изображение верхней точки предмета. Таким же образом нужно поступить с нижней точкой предмета. Но на пересечении вышедших из линзы лучей нужно поставить точку В1. Изображение предмета при этом — А1 В1.

В зависимости от того, где расположен предмет, изображение может получиться действительным или мнимым, увеличенным или уменьшенным, перевернутым или прямым. Построим изображения для каждого из таких случаев.

Схема построения изображения Расположение предмета относительно линзы + характеристика изображение
Если предмет располагается за двойным фокусом Предмет располагается за двойным фокусом.

Изображение:

  • уменьшенное;
  • перевернутое;
  • действительное.
Если предмет располагается в точке двойного фокуса Предмет располагается в фокальной плоскости второго фокуса.

Изображение:

  • перевернутое;
  • действительное.
Если предмет располагается в пространстве между фокусом и двойным фокусом Предмет располагается в пространстве между фокусом и двойным фокусом.

Изображение:

  • увеличенное;
  • перевернутое;
  • действительное.
Если предмет находится в фокальной плоскости Предмет находится в фокальной плоскости.

Изображения нет, поскольку лучи идут параллельно друг другу и не пересекаются.

https://static-interneturok.cdnvideo.ru/content/konspekt_image/72857/a744ac20_1bd0_0131_9837_12313b01b931.jpg Предмет располагается между линзой и фокусом.

Изображение:

  • увеличенное;
  • прямое;
  • мнимое.

Пример №1. Построить изображение предмета, изображенного на рисунке. Определить тип изображения.

Чтобы построить изображение предмета, достаточно определить его положение одной точки — верхней. Поскольку предмет расположен параллельно линзе, для построения изображения, достаточно будет соединить найденную точку изображения для верхней точки предмета перпендикуляром, проведенным к главной оптической оси.

Чтобы построить изображение верхней точки, пустим от нее два луча — побочную оптическую ось через оптический центр и перпендикуляр к линзе. Затем найдем пересечение побочной оптической оси с преломленным лучом. Теперь пустим перпендикуляр к главной оптической оси и получим изображение. Оно является действительным, увеличенным и перевернутым.

Частный случай — построение изображения точки

Положение изображения точки можно найти тем же способом, описанным выше. Нужно лишь построить два луча и найти их пересечение после выхода из линзы (см. рисунок ниже). Так, изображению точки S соответствует точка S´.

Тонкие линзы. Построение изображений - материалы для подготовки к ЕГЭ по Физике | ЕГЭ

Особую сложность составляет случай, когда точка расположена на главной оптической оси. Сложность заключается в том, что все лучи, которые можно построить, будут совпадать с главной оптической осью. Поэтому возникает необходимость в определении хода произвольного луча. Направим луч от точки S (луч SB) к собирающей линзе. Затем построим побочную оптическую ось PQ такую, которая будет параллельна лучу SB. После этого построим фокальную плоскость и найдем точку пересечения (точка С) фокальной плоскости с побочной оптической осью. Теперь соединим полученную точку С с точкой В. Это будет преломленный луч. Продолжим его до пересечения с главной оптической осью. Точка пересечения с ней и будет изображением точки S. В данном случае оно является мнимым.

Министерство образования и науки РФ Федеральное государственное авт

Пример №2. Построить изображение точки, расположенной на главной оптической оси.

Чтобы построить изображение, пустим произвольный луч к линзе. Затем построим параллельную ему побочную оптическую ось и фокальную плоскость. Из места пересечения этой оси с фокальной плоскостью пустим луч, также проходящий через точку пересечения линзы с произвольным лучом. Построим продолжение луча до получения точки пересечения с главной оптической осью. Отметим точку пересечения — она является действительным изображением точки.

Построение изображения в рассеивающей линзе

Чтобы построить изображение предмета в рассеивающей линзе, нужно определить положения точек изображения, соответствующих верхней и нижней точкам предмета. Вот как определить положение точки изображения для верхней точки предмета:

  1. Нужно пустить луч, перпендикулярный главной оптической оси. Этот луч после преломления отклонится. Но его продолжение обязательно пересечет главный фокус линзы.
  2. Нужно пустить луч от верхней точки предмета через оптический центр линзы (построить побочную оптическую ось).
  3. Точку пересечения продолжения луча, полученного в шаге 1, с побочной оптической осью, нужно обозначить за изображение верхней точки предмета (на рисунке это точка А´).

Точно такие же действия нужно выполнить для нижней точки предмета. В результате получится точка пересечения, соответствующая изображению нижней точки предмета (на рисунке это точка А´´).

График рассеивающей линзы

Внимание! Независимо от расположения предмета относительно рассеивающей линзы, изображение всегда получается прямым, уменьшенным, мнимым.

Пример №3. Построить изображение предмета в рассеивающей линзе.

Чтобы построить изображение, пустим от верхней точки предмета побочную оптическую ось через оптический центр и проведем перпендикуляр к линзе. Затем из точки главного фокуса проведем луч через точку пересечения линзы с перпендикуляром. Пересечение этого луча с побочной оптической осью есть изображение верхней точки предмета. Теперь проведем от нее перпендикуляр к главной оптической оси. Это и будет являться изображением предмета. Оно является мнимым, уменьшенным и прямым.

Построение изображений в плоском зеркале

Определение

Плоское зеркало — это плоская поверхность, зеркально отражающая свет.

Построение изображения в зеркалах основывается на законах прямолинейного распространения и отражения света. Продемонстрируем это с помощью рисунка ниже.

http://www.physbook.ru/images/thumb/8/8c/Aksen-16.10.jpg/300px-Aksen-16.10.jpg

Построим изображение точечного источника S. От точечного источника света лучи распространяются во все стороны. На зеркало падает пучок света ASB, и изображение создается всем пучком сразу. Но для построения изображения достаточно взять любые два луча из этого пучка. Пусть это будут лучи SO и SC.  Луч SO падает перпендикулярно поверхности зеркала АВ. Поскольку угол между ним и перпендикуляром, восстановленным в точке падения, равен 0, то угол падения принимаем равным за 0. поэтому отраженный пойдет в обратном направлении OS. Луч SC отразится под углом γ=α. Отраженные лучи OS и СК расходятся и не пересекаются, но если они попадают в глаз человека, то человек увидит изображение S1, которое представляет собой точку пересечения продолжения отраженных лучей.

Таким образом, чтобы получить изображение в плоском зеркале, нужно:

  • Пустить от источника света луч, перпендикулярный к плоскости зеркала (падающий луч совпадает с отраженным лучом).
  • Пустить от источника света к плоскости зеркала еще один луч под произвольным углом.
  • Построить отраженный луч от падающего луча, построенного в шаге 2, используя закон отражения света.
  • Найти пересечение продолжений отраженных от зеркала лучей (пущенного под прямым углом и произвольным углом).

Внимание!

Изображение в зеркале всегда является мнимым. Это связано с тем, что изображение строится на пересечении продолжении лучей, а не на самих лучах.

Изображение в плоском зеркале находится от зеркала на таком же расстоянии, как предмет от этого зеркала. Это легко доказать тем, что треугольники SOC и S1OC равны по стороне и двум углам. Следовательно SO = S1O. Отсюда делаем вывод, что для построения изображения точечного источника света достаточно знать расстояние, на котором он находится от зеркала. Останется только провести к зеркалу перпендикулярную прямую и отложить на ней точку на нужном расстоянии.

При построении изображения какого-либо предмета последний представляют как совокупность точечных источников света. Поэтому достаточно найти изображение крайних точек предмета. Так, изображение А1В1 соответствует предмету АВ.

Изображение и сам предмет всегда симметричны относительно зеркала.

Пример №4. Построить изображение треугольника ABC в плоском зеркале.

Чтобы построить изображение, пустим к плоскому зеркалу перпендикулярные прямые. Затем измерим расстояние от каждой точки до зеркала и отложим их по перпендикуляру от зеркала в обратную сторону. Так для точки А мы находим точку А´, для В — В´, для С — С´.

Видно, что треугольник отразился зеркально (изображение и предмет симметричны друг другу). Так и должно быть в случае с зеркалом.

Задание EF17760

Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет AC лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла C лежит ближе к центру линзы, чем вершина острого угла A. Расстояние от центра линзы до точки A равно удвоенному фокусному расстоянию линзы, AC = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Сделать рисунок — построить изображение в линзе.

3.Записать формулу для нахождения площади полученной фигуры.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Оптическая сила линзы: D = 2,5 дптр.

 Сторона треугольника AC = 4 см.

4 см = 0,04 м

Построим изображение в линзе. Для этого достаточно построить изображение точки В. Сначала пустим луч, параллельный главной оптической оси, к плоскости линзы. Он будет преломляться, после чего пройдет через фокус. Затем пустим луч через оптический центр. На месте пересечения двух лучей поставим точку и обозначим ее за B´.

Так как точки B и C предмета лежат на одной прямой, перпендикулярной главной оптической оси, для нахождения точки изображения C´ достаточно пустить перпендикуляр от B´ этой оси. На месте пересечения поставим точку и обозначим ее C´.

Рассматривать ход лучей для построения точки A´ тоже не будем. Точка A лежит в плоскости второго фокуса. Значит, она будет находиться в этой же точке и с противоположной стороны линзы. Это легко доказать с помощью формулы тонкой линзы:

1d+1f=1F

Если расстояние от предмета до линзы равно 2F, то и расстояние от линзы до его изображения будет 2F:

12F+1f=1F

1f=1F12F=212F=12F

f=2F

Теперь соединим все найденные точки и получим треугольник A´ B´ C´. Найдем его площадь. Поскольку это прямоугольный треугольник, его площадь будет равна половине произведения двух катетов — B´ C´и A´ C´:

S=AC·BC2

Из формулы оптической силы линзы найдем фокусное расстояние:

F=1D=12,5=0,4 (м)

Известно, что точка A находится в точке двойного фокусного расстояния. И ее изображение тоже находится на таком же расстоянии от линзы. Следовательно, чтобы найти длину катета A´ C´, нужно найти расстояние от точки C до ее изображения. Расстояние от этой точки до линзы равно разности двойного фокусного расстояния и длины отрезка AC:

dC=2FAC=2·0,40,04=0,76 (м)

Используя формулу тонкой линзы, вычислим расстояние от линзы до изображения этой точки:

10,76+1f=1F

1fC=1F10,76=0,76F0,76F=0,760,40,76·0,4

fC=0,76·0,40,760,4=0,844 (м)

Тогда длина катета A´ C´ будет равна:

AC=fCfA=fC2F=0,8440,4·2=0,044 (м)

Треугольники BCO и B´ C´O подобны по 3 углам. Углы O равны как вертикальные. Углы C и C´ как прямые, а B и B´ как накрест лежащие (полученные при пересечении секущей в виде луча через оптический центр и параллельных фокальных плоскостей). Следовательно BC относится к B´ C´ так же, как OC относится к C´O:

BCBC=ACAC

Треугольник ABC равнобедренный, поэтому BC = AС. Тогда:

ACBC=ACAC

Следовательно:

BC=AC

Отсюда площадь треугольника равна:

S=AC·AC2=(0,044)22=0,000968 (м2)=9,68 (см2)

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18181

Предмет S отражается в плоском зеркале ab. На каком рисунке верно показано изображение S1 этого предмета?

Ответ:


Алгоритм решения

  1. Записать, какое изображение дает плоское зеркало.
  2. Выбрать изображение, которое соответствует типу описанного изображения.

Решение

Зеркало дает мнимое изображение предмета без увеличения в зеркальном отражении. Это значит, что предмет и его изображение должны быть симметричны относительно плоскости зеркала. Симметричными являются только предмет и его изображение на последнем рисунке — Г.

Ответ: Г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18876

Какая точка является изображением точки S (см. рисунок), создаваемым тонкой собирающей линзой с фокусным расстоянием F?


Алгоритм решения

1.Построить изображение точки.

Решение

Построим изображение точки с учетом того, что линза собирающая. Для этого пустим из этой точки луч света, параллельный главной оптической оси. После прохождения через линзу луч преломится и пройдет через фокус. Затем пустим луч от этой точки через оптический центр линзы. Точка, в которой оба луча пересекутся, будет искомой. В данном случае это точка 4.

Ответ: 4

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 32.4k

Содержание

  • 1 Действительное и мнимое изображения
  • 2 Линза

    • 2.1 Построение в линзах

      • 2.1.1 Виды изображения
    • 2.2 Дополнительные лучи при построении
    • 2.3 Оптическая сила линзы
    • 2.4 Формула тонкой линзы
    • 2.5 Увеличение линзы
  • 3 Оптические приборы

    • 3.1 Лупа
    • 3.2 Глаз

Действительное и мнимое изображения

Пусть падающие на оптическую систему лучи после преломления выходят сходящимся пучком лучей, пересекающихся в точке S1 (рис. 1 а, оптическая система изображена прямоугольником). В этом случае S1 – это действительное изображение.

Если из оптической системы вышел расходящийся пучок лучей и продолжения этих лучей пересекаются в точке S1 (рис. 1 б), то S1 – это мнимое изображение.

  • а

  • б

Рис. 1

Линза

  • Линза будет собирающей, если луч, преломляясь, отклоняется от первоначального направления к главной оптической оси, и рассеивающей, если луч отклоняется от оси.
  • для получения изображения необходимо не менее двух лучей.

При решении задач с системой линз задача разбивается на несколько частей (по числу линз):

1 часть – рассматривается только первая к предмету линза (все остальные линзы не рассматриваются и никак не влияют на решение);
2 часть – рассматривается только вторая линза, а предметом для нее служит изображение от первой линзы и т.д.

Построение в линзах

При построении изображения точек выбирают любые два из трех стандартных лучей.

Для собирающей линзы (рис. 2)

  1. луч, параллельный главной оптической оси, после преломления проходит через главный фокус;
  2. луч, совпадающий с побочной оптической осью, проходит без преломления через центр линзы;
  3. луч, проходящий через главный фокус перед линзой, после преломления идет параллельно главной оптической оси.

Рис. 2

Для рассеивающей линзы (рис. 3)

  1. луч, параллельный главной оптической оси, после преломления направлен так, что его продолжение проходит через главный фокус перед линзой;
  2. луч, совпадающий с побочной оптической осью, проходит без преломления через центр линзы;
  3. луч, направленный на главный фокус за линзой, после преломления идет параллельно главной оптической оси.

Рис. 3

  • Для построения изображения отрезка АВ необходимо построить изображения А1 и В1. Полученный отрезок А1В1 и будет изображением отрезка АВ.

Виды изображения

Виды изображения:

1) действительное или мнимое;

2) прямое или перевернутое;

3) увеличенное или уменьшенное.

Некоторые свойства изображений:

  • если предмет перпендикулярен главной оптической оси, то его изображение также будет перпендикулярным этой оси;
  • если точка лежит на главной оптической оси, то ее изображение также будет лежать на этой оси;
  • мнимое изображение получается в рассеивающих линзах во всех случаях, и в собирающей линзе, если расстояние от предмета до линзы меньше фокусного.

Дополнительные лучи при построении

При построении можно воспользоваться следующим свойством:

все лучи света, направленные параллельно побочной оптической оси, после преломления собираются в побочном фокусе (рис. 4).

  • Все побочные фокусы лежат на фокальной плоскости, проходящей перпендикулярно главной оптической оси.
  • В собирающей линзе пересекаются в фокальной плоскости преломленные лучи (поэтому рассматривают фокальную плоскость, лежащую за линзой).
  • В рассеивающей линзе пересекаются в фокальной плоскости продолжения преломленных лучей (фокальная плоскость, лежащей перед линзой).
  • а

  • б

Рис. 4

Оптическая сила линзы

(~D = frac{1}{F}) ,

где F – фокус линзы (м); D – оптическая сила линзы (дптр). ОБРАТИТЕ ВНИМАНИЕ, что в некоторой физической литературе учитывают знаки в величинах, тогда:

  • если линза собирающая, то F > 0, D > 0;
  • если линза рассеивающая, то F < 0, D < 0.

В данном пособии знаки будем учитывать в формулах при помощи правила знаков. Тогда в условиях будем учитывать только значения величин.

(~D_0 = pm D_1 pm D_2 pm ldots pm D_N) ,

где D0 – оптическая сила системы вплотную сложенных N тонких линз (дптр); D1, D2, …, DN – оптические силы тонких линз системы (дптр).

Правило знаков:

  • знак «+» ставится, если линза собирающая;
  • знак «–» – линза рассеивающая.

Формула тонкой линзы

(~pm frac{1}{F} = pm frac{1}{d} pm frac{1}{f}) ,где

Правило знаков:

F – фокусное расстояние линзы (м).

  • знак «+» ставится, если линза собирающая;
  • знак «–» – линза рассеивающая;

d – расстояние от предмета до линзы (м),

  • знак «+» ставится, если предмет действительный (лучи, падающие на линзу, расходящиеся);
  • знак «–» – предмет мнимый (лучи сходящиеся);

f – расстояние от изображения до линзы (м),

  • знак «+» ставится, если изображение действительное;
  • знак «–» – изображение мнимое (изображение получатся пересечением продолжения лучей).

Пусть на оптическую систему падает расходящийся пучок лучей, пересекающихся в точке S (рис. 5 а, оптическая система изображена прямоугольником). В этом случае S – это действительный источник (предмет).

Если на оптическую систему падает сходящийся пучок лучей и продолжения этих лучей пересекаются в точке S (рис. 5 б), то S – это мнимый источник (предмет).

  • а

  • б

Рис. 5

Увеличение линзы

(~Gamma = frac{H}{h}) ,

где Г – увеличение линзы; H – высота изображения (м); h – высота предмета (м).

(~Gamma = frac{f}{d}) ,

где Г – увеличение линзы; f – расстояние от изображения до линзы (м); d – расстояние от предмета до линзы (м).

Оптические приборы

Лупа

(~Gamma_l = frac{d_0}{F}) ,

где Гl – увеличение лупы; d0 – расстояние наилучшего зрения (для нормального глаза), равное 0,25 м; F – фокусное расстояние лупы (м).

  • Лупа – собирающая линза и дает мнимое изображение.
  • Изображение предмета в линзе получается на расстоянии наилучшего зрения от оптического центра лупы, т.е. f = d0 = 25 см.
  • Эта формула верна, если предмет помещают в фокальную плоскость, т.е. d = F. В этом случае лучи из любой точки предмета после выхода из линзы образуют параллельные лучи, которые пересекаются на хрусталике глаза. Тогда изображение на сетчатке получается без напряжения глаза (аккомодация на бесконечность).

Глаз

Для нормального (здорового) глаза расстояние наилучшего зрения равно d0 = 25 см.

Ближний предел аккомодации – это наименьшее расстояние, на которое можно рассматривать предметы, максимально напрягая мышцы глаз.

Изображение
в линзе точек, лежащих на главной
оп­тической оси. Формула линзы.

Пусть точечный источник света находится
в точке S
на главной оптической оси линзы, на
расстоянии а
от
ее оптического центра О
(рис. 197). Рас­смотрим, как будет
преломляться в линзе узкий пучок лучей,
примыкающий к прямой SO,
являющейся
осью этого пучка *).

Пусть
один из лучей (SM)
светового
пучка падает на первую преломляющую
поверхность линзы в
точке
М,
находящейся на высоте h
над
осью. То обстоятельство, что мы
ограничиваемся узким пучком лучей,
означает, что h
мало
по сравнению с расстоянием а
от
источника до линзы. С другой стороны,
так же как и в § 88, будем считать, что h
мало
по сравнению с f‘,
а следовательно, и по сравнению с
радиусами R1
и
R2
ограничивающих линзу поверхностей.
Угол, образуемый лучом SM
с
осью, обозначим .
Так
как h
мало,
то и угол 
мал.
Преломленный луч пойдет по на­правлению
ММ’
и,
преломившись снова на второй ограни­чивающей
линзу поверхности, выйдет из линзы по
направ­лению MS‘,
составляющему
с осью угол ‘.
Обозначим
через а’
расстояние
от оптического центра линзы до точки
S,
в которой преломленный луч пересекает
главную ось.

*)
Такие пучки обычно называют параксиальными
(приосевыми).

Как
и в предыдущем параграфе, проведем через
точ­ки М
и
М’
плоскости,
касательные к преломляющим по­верхностям
линзы. Эти плоскости образуют тонкую
призму ВАВ’
с
преломляющим углом .
Вместо того чтобы рас­сматривать
преломление луча SMMS
в
линзе, будем рас­сматривать преломление
того же луча в тонкой призме ВАВ’.

Выбранный
нами луч после преломления отклонится
от первоначального направления на угол
а, который по фор­муле тонкой призмы
равен


(89.1)

где
n

показатель преломления вещества, из
которого сделана линза.

Рассмотрим
также луч РМ,
идущий
параллельно глав­ной оси и падающий
на линзу в точке М.
Преломление
та­кого луча уже рассмотрено в § 88
(условие малости h
здесь
соблюдено). Мы знаем, что после преломления
в линзе этот луч выйдет из точки М»
под
углом 
к оси и пройдет через главный фокус F
на
расстоянии f
от оптического центра.

Рис.
197. Преломление в линзе луча
SM,
выходящего из точки
S
на оси. Угол ВАВ’ и толщина линзы сильно
преувеличены

Точки
М’
и
М»
очень
близки друг к другу, так что призмы,
образованные касательными в точке М
и
точках М’
или
М»,
практически
не различаются и имеют один и тот же
прелом­ляющий угол .
Угол ’,
на который отклонится этот луч от
первоначального направления после
преломления в тон­кой призме, равен
опять (n—1),
т. е. равен углу .
С дру­гой стороны, этот угол ’
равен, очевидно, углу 
(рис. 197).

Таким
образом, получаем

(89.2)

Но
угол а как внешний угол в треугольнике
SNS
равен
сумме +’.
Итак, имеем

(89.3)

Лучи
SM,
MS
и
M«F
идут
под небольшими углами к оси, т. е. углы
,
’
и

малы. Заменяя, как и в предыдущем
параграфе, синусы малых углов самими
углами и прене­брегая толщиной линзы
и разницей в высоте точек М,
М’
и
М»
над
осью, можно приближенно написать:

(89.4)

Подставляя
эти приближенные равенства в формулу
(89.3), находим

(89.5)

или,
сокращая на общий множитель h,

(89.6)

В
правой части полученного выражения
стоит величина 1/f‘,
которая,
как мы видели в предыдущем параграфе,
за­висит только от свойств линзы —
от пока­зателя преломления вещества,
из которого сделана линза, и от радиусов
кривизны ее преломляющих поверхностей.

То
обстоятельство, что в формулу (89.6) не
входит вели­чина h,
позволяет
сделать очень важные выводы, а именно,
что не только луч SM,
но
и всякий другой луч, выходящий из точки
S,
пройдет
после преломления в линзе через одну и
ту же точку S‘,
хотя
каждый из этих лучей падает на линзу на
разной высоте над осью. Единственное,
но весьма существенное ограничение,
кото­рое мы накладываем на рассматриваемые
лучи, состоит в том, что все они составляют
с осью линзы малые углы.

Таким
образом, все лучи узкого пучка, выходящие
из точки S,
соберутся
после преломления в линзе снова в одной
точке S‘,
являющейся
изображением
точки
S.
Мы
доказали, следовательно, что образующееся
в тонкой линзе изобра­жение
точечного источника, лежащего на главной
оси линзы, полученное с помощью достаточно
узкого пучка лучей, явля­ется точкой.

Изображения,
при получении которых выполнено ус­ловие
передачи каждой точки объекта одной
точкой изображения, носят название
стигматических.
Изображения,
у которых это условие не соблюдено,
носят название астигматических
*).

Отметим,
что в силу закона обратимости световых
лучей (§ 82) положения источника света S
и
его изображения S
обратимы,
т. е., поместив источник в S‘,
мы
полу­чим его изображение в точке S.
Точки
S
и S
называются
сопряженными.

В
геометрической оптике особое значение
имеет задача получения стигматических
изображений. Степень стигматичности
изображений определяет качество служащих
для их получения оптических систем.
Нарушение оптической системой
стигматичности падающих на нее световых
пучков ведет к расплывчатости изображения.
В дальнейшем при изучении простейших
оптических систем мы будем уделять
большое внимание вопросу о стигматичности
даваемых ими изображений.

Полученная
нами формула (89.6) связывает между собой
расстояния от оптического центра трех
точек, находящихся на главной оси линзы:
источника S,
его
изображения S
и
фокуса F‘.
Это
основная
формула тонкой линзы.

§
90. Применения формулы тонкой линзы.

Действительные и мнимые изображения.
Предположим, что светящаяся точка S,
лежащая
на главной оси линзы, удаляется от лин­зы
на очень большое расстояние. В этом
случае лучи, па­дающие на линзу, будут
стремиться стать параллельными ее
главной оси. Мы видели в §88, что после
преломления в линзе эти лучи соберутся
в фокусе F
линзы.
В формуле (89.6) при удалении источника
на очень большое расстояние величина
На
стремится
к нулю, и мы получаем

т.
е. можно сказать, что фокус F
есть
изображение «беско­нечно удаленной»
точки.

Примером
практически бесконечно удаленного
источника может служить любое небесное
тело. Следовательно, изоб­ражения
звезд, Солнца и т. д. будут находиться в
фокусе линзы. Достаточно далекие от
линзы земные источники света также дают
изображение в ее фокусе.

*)
Стигма значит по-гречески точка,
стигматический — точеч­ный, частица
«а» впереди слова — знак отрицания.
Астигматический значит неточечный

Предположим
теперь, что изображение некоторой точки
удалено на очень большое расстояние,
т. е. из линзы вы­ходит пучок световых
лучей, параллельных главной оси. В этом
случае, как мы видели в § 88, источник
должен нахо­диться в переднем фокусе
линзы F
(рис.
196). Этот вывод следует и из формулы
(89.6). Действительно, полагая, что
изображение находится в бесконечности,
получаем 1/а‘=0;
при этом расстояние источника от линзы
равно фокусному расстоянию: а=f=f‘.

Различные
линзы отличаются одна от другой
располо­жением центров образующих
их сферических поверхностей,

Рис.
198. Различные типы линз. Если материал
линз преломляет силь­нее, чем окружающая
среда, то ти­пы а, б, в — собирающие;
типы г, д, е — рассеивающие

их
радиусами и показателями преломления
вещества, из которого сделаны линзы. На
рис. 198 представлены шесть основных
типов линз.

Если
параллельные лучи после преломления в
линзе сходятся, действительно пересекаясь
в некоторой точ­ке, лежащей по другую
сторону линзы, то линза называется
собирающей
или
положительной
(рис.
199, а).
Если же

Рис.
199. Действительный фокус собирающей
линзы (а) и мнимый фокус рассеивающей
линзы (б)

параллельные
лучи после преломления в линзе становятся
расходящимися (рис. 199, б),
то
линза называется рассеивающей
или
отрицательной.
В
случае рассеивающей линзы в фокусе
пересекаются не преломленные лучи, а
их воображаемые продолжения; при этом
фокус лежит с той же стороны от линзы,
с которой падает на линзу параллель­ный
пучок лучей. Фокусы в этом случае
называются мни­мыми
(рис.
199, б).

Обычно
материал линзы преломляет сильнее, чем
окру­жающая среда (например, стеклянная
линза в воздухе). Тогда собирающими
линзами являются линзы, утолща­ющиеся
от краев к середине,— двояковыпуклая
и плоско­выпуклая линзы и положительный
мениск (вогнуто-выпук­лая линза; рис.
198, ав).
Рассеивающими
линзами являются линзы, становящиеся
тоньше к середине: двояко­вогнутая,
плосковогнутая линзы и отрицательный
мениск

Рис.
200. Двояковыпуклые линзы: а) стеклянная
в воздухе — собираю­щая; б) воздушная
в воде — рассеивающая

(выпукло-вогнутая
линза; 198, г

д).
Если материал линзы преломляет слабее,
чем окружающая среда, т. е. относи­тельный
показатель преломления n<1,
то,
наоборот, линзы а,
б, в
(рис.
198) будут рассеивающими, а линзы г,
д, е

собирающими. Такие линзы можно получить,
например, образовав в воде двумя часовыми
стеклами, склеенными вос­ком, воздушную
полость соответствующей формы (рис.
200). Перейдем к рассмотрению светящихся
точек, находящих­ся на конечном
расстоянии от линзы. Будем всегда считать
источники расположенными слева от
линзы. Что касается изображений, то в
зависимости от вида линзы и положения
источника относительно нее изображение
S
может
находиться как справа, так и слева от
линзы. Если изображение лежит справа
от линзы, то это означает, что оно
образовано сходящимся пучком лучей
(рис. 201, а),
т.
е. лучей, которые действительно проходят
через точку S‘.
Изображение
в этом случае называется действительным.
Оно
может быть получено на экране, фотопластинке
и т. п. Восстановив ход лучей, приведших
к образованию изоб­ражения, мы можем
всегда найти местоположение источника,
хотя практически это обычно связано с
не­которыми трудностями.

Предположим
теперь, что изображение лежит слева от
линзы, т. е. с той же стороны от нее, как
и источник. Это означает, что пучок
лучей, расходящихся от источника, после
преломления в линзе становится еще
более расходя­щимся, и в точке S
пересекаются
лишь воображаемые про­должения
преломленных лучей (рис. 201, б).
Изобра­жение
в этом случае называется мнимым.

Рис.
201. Источник и действительное изображение
лежат с разных сто­рон от линзы (а);
мнимое изображение находится с той же
стороны от линзы, что и источник (б)

Укоренившийся
в оптике термин «мнимое изображение»
может привести к некоторым недоразумениям.
В действитель­ности ничего «мнимого»
в этом случае, конечно, нет. Осо­бенностью
мнимых изображений является то, что их
нельзя получить непосредственно на
экране, фотопластинке и т. п.
Например,
если поместить в точке S
(рис. 201, б)
очень
маленький экран, не мешающий попаданию
основной части лучей на линзу, то мы не
получим на нем светящейся точки. Однако
расходящийся пучок лучей, вооб­ражаемые
продолжения которых пересекаются в
мнимом изображении, сам по себе не имеет
ничего «мнимого». Этот пучок можно
превратить в сходящийся пучок, если на
пути его поставить надлежащим образом
выбранную собирающую линзу. Тогда на
экране или фотопластинке мы будем иметь
реальное изображение S»
светящейся
точки S
(рис. 202), которое в то же время можно
рассматривать как изображе­ние «мнимой
точки» S‘.

Роль
подобной собирающей линзы выполняет
также глаз человека; на светочувствительной
оболочке глаза — сетчатке — собираются
расходящиеся от источников света лучи.
Пучок расходящихся лучей, исходят ли
они от реального точечного источника
S
или от его мнимого изобра­жения S‘,
может
быть собран оптической системой глаза
в одну точку на сетчатке. В повседневной
жизни наблюдатель приобретает привычку
автоматически восстанавливать ход
лучей, давших изображение на сетчатке,
и определять ме­стоположение источника.
Когда в глаз попадает расходя­щийся
пучок лучей (с вершиной в S),
изображенный
на

Рис.
202. Превращение расходящегося пучка
лучей в сходящийся с помощью вспомогательной
собирающей линзы (например, глаза)

рис.
202, то, «восстанавливая» место, откуда
вышли эти лучи, мы видим в точке S
источник, хотя в действи­тельности в
данной точке источника нет. Этот-то
вообра­жаемый источник мы и называем
«мнимым» изображением точки S.

Пользуясь
формулой (89.6), нетрудно проследить, как
меняется положение изображения по мере
перемещения источника вдоль главной
оптической оси (см. упражнения 31, 32 в
конце этой главы),

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как составить график работы в шестидневку
  • Как можно найти игрока в майнкрафте
  • Как исправить ошибку с кодом 0x80070002
  • Как найти количество фотонов через энергию
  • Как найти формулу высшего оксида элемента