Как найти действительную часть выражения

Как найти действительную и мнимую части уравнений

. Вы вводите его по ссылке решение уравнений онлайн , указываете, что i — это комплексная единица (после того как ввели уравнение и нажали кнопку «решить»), нажимаете кнопку под формой «Обновить» и получаете ответ как здесь. Если в ответе присутствуют корни из комплексных чисел, то можно воспользоваться калькулятором по упрощению комлексных чисел по ссылке

© Контрольная работа РУ — примеры решения задач

Функции комплексной переменной.
Дифференцирование функций комплексной переменной.
Условия Коши-Римана

Данная статья открывает серию уроков, на которых я рассмотрю типовые задачи, связанные с теорией функций комплексной переменной. Для успешного освоения примеров необходимо обладать базовыми знаниями о комплексных числах. В целях закрепления и повторения материала достаточно посетить страницу Комплексные числа для чайников. Также потребуются навыки нахождения частных производных второго порядка. Вот они какие, эти частные производные… даже сам сейчас немного удивился, насколько часто встречаются…

Тема, которую мы начинаем разбирать, не представляет особых сложностей, и в функциях комплексной переменной, в принципе, всё понятно и доступно. Главное, придерживаться основного правила, которое выведено мной опытным путём. Читайте дальше!

Понятие функции комплексной переменной

Сначала освежим знания о школьной функции одной переменной:

Функция одной переменной – это правило, по которому каждому значению независимой переменной (из области определения) соответствует одно и только одно значение функции . Естественно, «икс» и «игрек» – действительные числа.

В комплексном случае функциональная зависимость задается аналогично:

Однозначная функция комплексной переменной – это правило, по которому каждому комплексному значению независимой переменной (из области определения) соответствует одно и только одно комплексное значение функции . В теории рассматриваются также многозначные и некоторые другие типы функций, но для простоты я остановлюсь на одном определении.

Чем отличается функция комплексной переменной?

Главное отличие: числа комплексные. Я не иронизирую. От таких вопросов нередко впадают в ступор, в конце статьи историю прикольную расскажу. На уроке Комплексные числа для чайников мы рассматривали комплексное число в виде . Поскольку сейчас буква «зет» стала переменной, то её мы будем обозначать следующим образом: , при этом «икс» и «игрек» могут принимать различные действительные значения. Грубо говоря, функция комплексной переменной зависит от переменных и , которые принимают «обычные» значения. Из данного факта логично вытекает следующий пункт:

Действительная и мнимая часть функции комплексной переменной

Функцию комплексной переменной можно записать в виде:
, где и – две функции двух действительных переменных.

Функция называется действительной частью функции .
Функция называется мнимой частью функции .

То есть, функция комплексной переменной зависит от двух действительных функций и . Чтобы окончательно всё прояснить рассмотрим практические примеры:

Найти действительную и мнимую часть функции

Решение: Независимая переменная «зет», как вы помните, записывается в виде , поэтому:

(1) В исходную функцию подставили .

(2) Для первого слагаемого использовали формулу сокращенного умножения . В слагаемом – раскрыли скобки.

(3) Аккуратно возвели в квадрат , не забывая, что

(4) Перегруппировка слагаемых: сначала переписываем слагаемые, в которых нет мнимой единицы (первая группа), затем слагаемые, где есть (вторая группа). Следует отметить, что перетасовывать слагаемые не обязательно, и данный этап можно пропустить (фактически выполнив его устно).

(5) У второй группы выносим за скобки.

В результате наша функция оказалась представлена в виде

Ответ:
– действительная часть функции .
– мнимая часть функции .

Что это получились за функции? Самые что ни на есть обыкновенные функции двух переменных, от которых можно найти такие популярные частные производные. Без пощады – находить будем. Но чуть позже.

Кратко алгоритм прорешанной задачи можно записать так: в исходную функцию подставляем , проводим упрощения и делим все слагаемые на две группы – без мнимой единицы (действительная часть) и с мнимой единицей (мнимая часть).

Найти действительную и мнимую часть функции

Это пример для самостоятельного решения. Перед тем как с шашками наголо броситься в бой на комплексной плоскости, позвольте дать самый важный совет по теме:

БУДЬТЕ ВНИМАТЕЛЬНЫ! Внимательным нужно быть, конечно, везде, но в комплексных числах следует быть внимательным, как никогда! Помните, что , аккуратно раскрывайте скобки, ничего не теряйте. По моим наблюдениям, самой распространенной ошибкой является потеря знака. Не спешите!

Полное решение и ответ в конце урока.

Чтобы дальше легче жилось, обратим внимание на пару полезных формул. В Примере 1 было выяснено, что .

Теперь куб. Используя формулу сокращенного умножения , выведем:
.

Рекомендую переписать в тетрадь две рабочие формулы:

Формулы очень удобно использовать на практике, поскольку они значительно ускоряют процесс решения.

Дифференцирование функций комплексной переменной.
Условия Коши-Римана

У меня есть две новости: хорошая и плохая. Начну с хорошей. Для функции комплексной переменной справедливы правила дифференцирования и таблица производных элементарных функций. Таким образом, производная берётся точно так же, как и в случае функции действительной переменной .

Плохая новость состоит в том, что для многих функций комплексной переменной производной не существует вообще, и приходится выяснять, дифференцируема ли та или иная функция. А «выяснять», как чует ваше сердце, связано с дополнительными заморочками.

Рассмотрим функцию комплексной переменной . Для того, чтобы данная функция была дифференцируема необходимо и достаточно:

1) Чтобы существовали частные производные первого порядка . Об этих обозначениях сразу забудьте, поскольку в теории функции комплексного переменного традиционно используется другой вариант записи: .

2) Чтобы выполнялись так называемые условия Коши-Римана:

Только в этом случае будет существовать производная!

Определить действительную и мнимую часть функции . Проверить выполнение условий Коши-Римана. В случае выполнения условий Коши-Римана, найти производную функции.

Решение раскладывается на три последовательных этапа:

1) Найдём действительную и мнимую часть функции. Данное задание было разобрано в предыдущих примерах, поэтому запишу без комментариев:

Так как , то:

Таким образом:
– действительная часть функции ;
– мнимая часть функции .

Остановлюсь еще на одном техническом моменте: в каком порядке записывать слагаемые в действительной и мнимой частях? Да, в принципе, без разницы. Например, действительную часть можно записать так: , а мнимую – так: .

2) Проверим выполнение условий Коши-Римана. Их два.

Начнем с проверки условия . Находим частные производные:

Таким образом, условие выполнено.

Несомненно, приятная новость – частные производные почти всегда очень простые.

Проверяем выполнение второго условия :

Получилось одно и то же, но с противоположными знаками, то есть, условие также выполнено.

Условия Коши-Римана выполнены, следовательно, функция дифференцируема.

3) Найдём производную функции. Производная тоже очень простая и находится по обычным правилам:

Мнимая единица при дифференцировании считается константой.

Ответ: – действительная часть, – мнимая часть.
Условия Коши-Римана выполнены, .

Существуют еще два способа нахождения производной, они, конечно, применяются реже, но информация будет полезна для понимания второго урока – Как найти функцию комплексной переменной?

Производную можно найти по формуле:

В данном случае:

Таким образом

Предстоит решить обратную задачу – в полученном выражении нужно вычленить . Для того, чтобы это сделать, необходимо в слагаемых и вынести за скобку:

Обратное действие, как многие заметили, выполнять несколько труднее, для проверки всегда лучше взять выражение и на черновике либо устно раскрыть обратно скобки, убедившись, что получится именно

Зеркальная формула для нахождения производной:

В данном случае: , поэтому:

Определить действительную и мнимую часть функции . Проверить выполнение условий Коши-Римана. В случае выполнения условий Коши-Римана, найти производную функции.

Краткое решение и примерный образец чистового оформления в конце урока.

Всегда ли выполняются условия Коши-Римана? Теоретически они чаще не выполняются, чем выполняются. Но в практических примерах я не припомню случая, чтобы они не выполнялись =) Таким образом, если у вас «не сошлись» частные производные, то с очень большой вероятностью можно сказать, что вы где-то допустили ошибку.

Усложним наши функции:

Определить действительную и мнимую часть функции . Проверить выполнение условий Коши-Римана. Вычислить

Решение: Алгоритм решения полностью сохраняется, но в конце добавится новый пунктик: нахождение производной в точке. Для куба нужная формула уже выведена:

Определим действительную и мнимую часть данной функции:

Внимание и еще раз внимание!

Так как , то:


Таким образом:
– действительная часть функции ;
– мнимая часть функции .

Проверим выполнение условий Коши-Римана:

Проверка второго условия:

Получилось одно и то же, но с противоположными знаками, то есть условие также выполнено.

Условия Коши-Римана выполнены, следовательно, функция является дифференцируемой:

Вычислим значение производной в требуемой точке:

Ответ: , , условия Коши-Римана выполнены,

Функции с кубами встречаются часто, поэтому пример для закрепления:

Определить действительную и мнимую часть функции . Проверить выполнение условий Коши-Римана. Вычислить .

Решение и образец чистового оформления в конце урока.

В теории комплексного анализа определены и другие функции комплексного аргумента: экспонента, синус, косинус и т.д. Данные функции обладают необычными и даже причудливыми свойствами – и это действительно интересно! Очень хочется рассказать, но здесь, так уж получилось, не справочник или учебник, а решебник, поэтому я рассмотрю ту же задачу с некоторыми распространенными функциями.

Сначала о так называемых формулах Эйлера:

Формулы Эйлера

Для любого действительного числа справедливы следующие формулы:

Тоже можете переписать в тетрадь в качестве справочного материала.

Строго говоря, формула всего одна, но обычно для удобства пишут и частный случай с минусом в показателе. Параметр не обязан быть одинокой буковкой, в качестве может выступать сложное выражение, функция, важно лишь, чтобы они принимали только действительные значения. Собственно, мы это увидим прямо сейчас:

Определить действительную и мнимую часть функции . Проверить выполнение условий Коши-Римана. Найти производную.

Решение: Генеральная линия партии остаётся непоколебимой – необходимо выделить действительную и мнимую часть функции. Приведу подробное решение, и ниже закомментирую каждый шаг:

Поскольку , то:

(1) Подставляем вместо «зет».

(2) После подстановки нужно выделить действительную и мнимую часть сначала в показателе экспоненты. Для этого раскрываем скобки.

(3) Группируем мнимую часть показателя, вынося мнимую единицу за скобки.

(4) Используем школьное действие со степенями.

(5) Для множителя используем формулу Эйлера , при этом .

(6) Раскрываем скобки, в результате:

– действительная часть функции ;
– мнимая часть функции .

Дальнейшие действия стандартны, проверим выполнение условий Коши-Римана:

Частные производные опять не очень сложные, но на всякий пожарный расписал их максимально подробно. Проверяем второе условие:

Условия Коши-Римана выполнены, найдём производную:

Ответ: , , условия Коши-Римана выполнены,

На вторую формулу Эйлера задание для самостоятельного решения:

Определить действительную и мнимую часть функции . Проверить выполнение условий Коши-Римана, найти производную.

Полное решение и ответ в конце урока.
! Внимание! Знак «минус» в формуле Эйлера относится к мнимой части, то есть . Терять минус нельзя!

Непосредственно из формул Эйлера можно вывести формулу разложения синуса и косинуса на действительную и мнимую часть. Сам вывод достаточно занудный, вот он, кстати, у меня в учебнике перед глазами (Бохан, Математический анализ, том 2). Поэтому сразу приведу готовый результат, который опять полезно переписать к себе в справочник:

Параметры «альфа» и «бета» принимают только действительные значения, в том числе они могут быть сложными выражениями, функциями действительной переменной.

Кроме того, в формуле нарисовались гиперболические функции, при дифференцировании они превращаются друг в друга, не случайно я включил их в таблицу производных.

Определить действительную и мнимую часть функции . Проверить выполнение условий Коши-Римана. Производную, так и быть, находить не станем.

Решение: Алгоритм решения очень похож на предыдущие два примера, но есть очень важные моменты, поэтому начальный этап я опять закомментирую пошагово:

Поскольку , то:

1) Подставляем вместо «зет».

(2) Сначала выделяем действительную и мнимую часть внутри синуса. В этих целях раскрываем скобки.

(3) Используем формулу , при этом .

(4) Используем чётность гиперболического косинуса: и нечётность гиперболического синуса: . Гиперболики, хоть и не от мира сего, но во многом напоминают аналогичные тригонометрические функции.

В итоге:
– действительная часть функции ;
– мнимая часть функции .

Внимание! Знак «минус» относится к мнимой части, и его ни в коем случае не теряем! Для наглядной иллюстрации полученный выше результат можно переписать так:

Проверим выполнение условий Коши-Римана:

Условия Коши-Римана выполнены.

Ответ: , , условия Коши-Римана выполнены.

С косинусом, дамы и господа, разбираемся самостоятельно:

Определить действительную и мнимую часть функции . Проверить выполнение условий Коши-Римана.

Я специально подобрал примеры посложнее, поскольку с чем-нибудь вроде все справятся, как с очищенным арахисом. Заодно внимание потренируете! Орехокол в конце урока.

Ну и в заключение рассмотрю ещё один интересный пример, когда комплексный аргумент находится в знаменателе. Пару раз в практике встречалось, разберём что-нибудь простое. Эх, старею…

Определить действительную и мнимую часть функции . Проверить выполнение условий Коши-Римана.

Решение: Снова необходимо выделить действительную и мнимую часть функции.
Если , то

Возникает вопрос, что же делать, когда «зет» находится в знаменателе?

Всё бесхитростно – поможет стандартный приём умножения числителя и знаменателя на сопряженное выражение, он уже применялся в примерах урока Комплексные числа для чайников. Вспоминаем школьную формулу . В знаменателе у нас уже есть , значит, сопряженным выражением будет . Таким образом, нужно умножить числитель и знаменатель на :

Вот и всё, а вы боялись:
– действительная часть функции ;
– мнимая часть функции .

Повторюсь в третий раз – не теряем минус у мнимой части.

Проверим выполнения условий Коши-Римана. Надо сказать, частные производные здесь не то чтобы о-го-го, но уже не из простейших:

Условия Коши-Римана выполнены.

Ответ: , , условия Коши-Римана выполнены.

В качестве эпилога короткая история про ступор, или о том, какие вопросы преподавателей являются самыми сложными. Самые сложные вопросы, как ни странно – это вопросы с очевидными ответами. А история такова: сдаёт человек экзамен по алгебре, тема билета: «Следствие основной теоремы алгебры». Экзаменатор слушает-слушает, а потом вдруг спрашивает: «А откуда это следует?». Вот это был ступор, так ступор. Вся аудитория уже угорала, но студент так и не сказал правильного ответа: «из основной теоремы алгебры».

Вспоминаю историю и из личного опыта, сдаю физику, что-то там про давление жидкости, что уже не помню, но рисунок остался в памяти навсегда – изогнутая труба, по которой текла жидкость. Ответил я билет «на отлично», причем даже сам понял, что ответил. И вот преподаватель напоследок спрашивает: «Где здесь трубка тока?». Крутил-вертел я этот чертёж с изогнутой трубой минут пять, высказывал самые дикие версии, пилил трубу, рисовал какие-то проекции. А ответ был прост, трубка тока – это вся труба.

Неплохо разгрузились, до встречи на уроке Как найти функцию комплексной переменной? Там разобрана обратная задача.

Иногда очевидное – это самое сложное, всем желаю не тормозить!

Решения и ответы:

Пример 2: Решение: так как , то:

Ответ: – действительная часть, – мнимая часть.

Пример 4: Решение: Так как , то:

Таким образом:
– действительная часть функции ;
– мнимая часть функции .
Проверим выполнение условий Коши-Римана:

Условие выполнено.

Условие также выполнено.
Условия Коши-Римана выполнены, найдём производную:

Ответ: – действительная часть, – мнимая часть.
Условия Коши-Римана выполнены, .

Пример 6: Решение: определим действительную и мнимую часть данной функции.
Так как , то:

Таким образом:
– действительная часть функции ;
– мнимая часть функции .
Проверим выполнение условий Коши-Римана:


Условия Коши-Римана выполнены.


Ответ: , , условия Коши-Римана выполнены,

Пример 8: Решение: Так как , то:

Таким образом:
– действительная часть функции ;
– мнимая часть функции .
Проверим выполнение условий Коши-Римана:

Условия Коши-Римана выполнены, найдём производную:

Ответ: , , условия Коши-Римана выполнены,

Пример 10: Решение: Так как , то:

Таким образом:
– действительная часть функции ;
– мнимая часть функции .
Проверим выполнение условий Коши-Римана:

Условия Коши-Римана выполнены.
Ответ: , , условия Коши-Римана выполнены.

Автор: Емелин Александр

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

Понятие комплексного числа

Комплексным числом называется выражение вида $z=a+b i$

Например. $z=3-7 i$

Действительная и мнимая часть комплексного числа

Действительное число $a$ называется действительной частью комплексного числа $z=a+b i$ и обозначается $a=operatorname z$ (От французского слова reel — действительный).

Действительное число $b$ называется мнимой частью числа $z=a+b i$ и обозначается $b=operatorname z$ (От французского слова imaginaire — мнимый).

Например. Для комплексного числа $z=3-7 i$ действительная часть $a=operatorname z=3$, а мнимая — $b=operatorname z=-7$ .

Если действительная часть комплексного числа $z=a+b i$ равна нулю ( $a=operatorname z=0$ ), то комплексное число называется чисто мнимым.

Например. $z=-2 i$

Мнимая единица

Величина $i$ называется мнимой единицей и удовлетворяет соотношению:

Равные комплексные числа

Два комплексных числа $z_<1>=a_<1>+b_ <1>i$ и $z_<2>=a_<2>+b_ <2>i$ называются равными, если равны их действительные и мнимые части соответственно:

$z_<1>=z_ <2>Leftrightarrow a_<1>=a_ <2>wedge b_<1>=b_<2>$

Задание. Определить при каких значениях $x$ и $y$ числа $z_<1>=2-x i$ и $z_<2>=y+2 i$ будут равными.

Решение. Согласно определению $z_<1>=z_<2>$ тогда и только тогда, когда

$2=y wedge-x=2 Rightarrow y=2, x=-2$

Ответ. $x=-2, y=2$

Число $overline=a-b i$ называется комплексно сопряженным числом к числу $z=a+b i$ .

То есть комплексно сопряженные числа отличаются лишь знаком мнимой части.

Например. Для комплексного числа $z_<1>=2+3 i$ комплексно сопряженным есть число $overline_<1>=2-3 i$ ; для $z_<2>=i$ комплексно сопряженное $overline_<2>=-i$ и для $z_<3>=-2$ имеем, что $overline_<3>=-2$ .

Комплексное число $-z=-a-b i$ называется противоположным к комплексному числу $z=a+b i$ .

Например. Противоположным к числу $z=2+i$ есть число: $-z=-(2+i)=-2-i$ .

источники:

http://mathprofi.net/funkcii_kompleksnoi_peremennoi.html

http://www.webmath.ru/poleznoe/formules_16_1.php

8

Занятие 12.
Комплексные
числа.

12.1. Определение комплексных чисел в
алгебраической форме. Сравнение и
изображение комплексных чисел на
комплексной плоскости. Комплексное
сопряжение. Сложение, умножение, деление
комплексных чисел.

12.2. Модуль, аргумент комплексного числа.

12.3. Тригонометрическая и показательная
формы записи комплексного числа.

12.4. Возведение в целую степень и извлечение
корня из комплексного числа.

Определение комплексных чисел в
алгебраической форме. Сравнение и
изображение комплексных чисел на
комплексной плоскости. Комплексное
сопряжение. Сложение, умножение, деление
комплексных чисел.

Комплексным числом в алгебраической
форме называется число

,

(1)

где

называется мнимой единицей и

— действительные числа:

называется действительной (вещественной)
частью
;

мнимой частью комплексного числа
.
Комплексные числа вида

называются чисто мнимыми числами.
Множество всех комплексных чисел
обозначается буквой
.

По определению,

,


и т.д.

Множество всех действительных чисел

является частью множества

:
.
С другой стороны, существуют комплексные
числа, не принадлежащие множеству
.
Например,

и
,
т.к.
.

Комплексные числа в алгебраической
форме естественным образом возникают
при решении квадратных уравнений с
отрицательным дискриминантом.

Пример 1. Решить уравнение
.

Решение.
,

т.к.
.

Следовательно, заданное квадратное
уравнение имеет комплексные корни

,

.

Пример 2. Найти действительную и
мнимую части комплексных чисел

,

,

.

Решение.


— соответственно вещественная и мнимая
части числа
,

.

.

.

Любое комплексное число

изображается вектором на комплексной
плоскости
,
представляющей плоскость с декартовой
системой координат
.
Начало вектора лежит в точке
,
а конец — в точке с координатами
(рис
1.) Ось
называется
вещественной осью, а ось

— мнимой осью комплексной плоскости
.

Рис. 1.

Комплексные числа

сравниваются между собой только знаками
.

.
Если же хотя бы одно из равенств:

нарушено, то
.
Записи типа

не имеют смысла
.

По определению, комплексное число

называется комплексно сопряженным
числу
.
В этом случае пишут
.
Очевидно, что
.
Везде далее черта сверху над комплексным
числом будет означать комплексное
сопряжение.

Например,
.

Над комплексными числами можно выполнять
такие операции, как сложение (вычитание),
умножение, деление.

1. Сложение комплексных чисел

производится так:

.

Свойства операции сложения:


— свойство коммутативности;


— свойство ассоциативности.

Нетрудно видеть, что геометрически
сложение комплексных чисел

означает сложение отвечающих им на
плоскости

векторов по правилу параллелограмма.

Операция вычитание числа

из числа

производится так:

.

2. Умножение комплексных чисел

производится так:

.

Свойства операции умножения:


— свойство коммутативности;


— свойство ассоциативности;


— закон дистрибутивности.

3. Деление комплексных чисел

выполнимо только при

и производится так:

.

Пример 3. Найти
,
если
.

Решение.

1)
.(ош!)

2)
.(ош!)

3)
.(ош!)

4)
.

5)
.

Пример 4. Вычислить
,
если
.

Решение.

.

z, т.к.
.

.(ош!)

Нетрудно проверить (предлагается это
сделать самостоятельно) справедливость
следующих утверждений:

.

Модуль, аргумент комплексного числа.

Модуль комплексного числа

(модуль

обозначается
)
это — неотрицательное число
,
т.е.
.

Геометрический смысл

— длина вектора, представляющего число

на комплексной плоскости
.
Уравнение

определяет множество всех чисел

(векторов на
),
концы которых лежат на единичной
окружности
.

Аргумент комплексного числа

(аргумент

обозначается
)
это – угол

в радианах между вещественной осью

и числом

на комплексной плоскости
,
причем

положителен, если он отсчитывается от

до

против часовой стрелки, и

отрицателен, если

отсчитывается от оси

до

по часовой стрелке
.

Таким образом, аргумент числа

определяется неоднозначно, с точностью
до слагаемого
,
где
.
Однозначно аргумент числа

определяется в пределах одного обхода
единичной окружности

на плоскости
.
Обычно требуется найти

в пределах интервала
,
такое значение называется главным
значением аргумента числа

и обозначается
.


и

числа

можно найти из уравнения
,
при этом обязательно нужно
учитывать
, в какой четверти плоскости

лежит конец вектора

— точка
:

если

(1-я четверть плоскости
),
то
;

если

(2-я четверть плоскости
),
то;

если

(3-я четверть плоскости
),
то
;

если

(4-я четверть плоскости
),
то
.

Фактически, модуль и аргумент числа
,
это полярные координаты

точки

— конца вектора

на плоскости
.

Пример 5. Найти модуль и главное
значение аргумента чисел:

.

Решение.

1)
.

2)
.

3)

.

4)
.

5)

.

6)
.

7)

.

8)
.

Аргументы чисел
,
лежащих осях
,
разделяющих четверти 1,2,3,4 комплексной
плоскости
,
находятся сразу же по графическим
изображениям этих чисел на плоскости
.

Тригонометрическая и показательная
формы записи комплексного числа.
Умножение и деление комплексных чисел
в тригонометрической и показательной
формах записи.

Тригонометрическая форма записи
комплексного числа

имеет вид:

,

(2)

где

модуль,

аргумент комплексного числа
.
Такое представление комплексных чисел
вытекает из равенств
.

Показательная (экспоненциальная)
форма записи комплексного числа

имеет вид:

,

(3)

где

модуль,

аргумент числа
.
Возможность представления комплексных
чисел в показательной форме (3) вытекает
из тригонометрической формы (2) и формулы
Эйлера:

.

(4)

Эта формула доказывается в курсе ТФКП
(Теория функций комплексного переменного).

Пример 6. Найти тригонометрическую
и экспоненциальную формы записи
комплексных чисел:

из примера 5.

Решение. Воспользуемся результатами
примера 5, в котором найдены модули и
аргументы всех указанных чисел.

1)


— тригонометрическая форма записи числа
,


— показательная (экспоненциальная)
форма записи числа
.

2)


— тригонометрическая форма записи числа
,


— показательная (экспоненциальная)
форма записи числа
.

3)


— тригонометрическая форма записи числа
,


— показательная (экспоненциальная)
форма записи числа
.

4)


— тригонометрическая форма записи числа
,


— показательная (экспоненциальная)
форма записи числа
.

5)


— тригонометрическая форма записи числа
,


— показательная (экспоненциальная)
форма записи числа
.

6)


— тригонометрическая форма числа
,


— показательная (экспоненциальная)
форма числа
.

7)


— тригонометрическая форма записи числа
,


— показательная (экспоненциальная)
форма числа
.

8)


— тригонометрическая форма записи числа
,


— показательная (экспоненциальная)
форма записи числа
.

Показательная форма записи комплексных
чисел приводит к следующей геометрической
трактовке операций умножения и деления
комплексных чисел. Пусть

— показательные формы чисел
.

1.

При перемножении комплексных чисел
их модули перемножаются, а аргументы
складываются
.

2.

При делении комплексного числа

на число

получается комплексное число
,
модуль

которого равен отношению модулей
,
а аргумент

— разности

аргументов чисел
.

Возведение в целую степень и извлечение
корня из комплексного числа.

По определению,

.

При возведении в целую степень
комплексного
числа
,
следует действовать так: сначала найти
модуль

и аргумент

этого числа; представить

в показательной форме
;
найти
,
выполнив следующую последовательность
действий

,
где
.
(5)

Замечание. Аргумент

числа

может не принадлежать интервалу
.
В этом случае следует по полученному
значению

найти главное значение

аргумента

числа
,
прибавляя (или вычитая) число

с таким значением
,
чтобы

принадлежало интервалу
.
После этого, нужно заменить в формулах
(5)

на
.

Пример 7. Найти

и
,
если
.

Решение.

1)
=
(см. число

из примера 6).

2)
,
где
.

.

.

Следовательно,

можно заменить на

и, значит,

,
где
.

3)
,
где
.

.

Заменим

на
.
Следовательно,

.

Извлечение корня

степени

из комплексного числа

проводится по формуле Муавра-Лапласа

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

  • Действительная и мнимая часть комплексного числа
  • Мнимая единица
  • Равные комплексные числа

Определение

Комплексным числом называется выражение вида
$z=a+b i$

Например. $z=3-7 i$

Действительная и мнимая часть комплексного числа

Определение

Действительное число $a$ называется
действительной частью комплексного числа $z=a+b i$ и
обозначается $a=operatorname{Re} z$
(От французского слова reel — действительный).

Действительное число
$b$ называется мнимой частью числа
$z=a+b i$ и обозначается
$b=operatorname{Im} z$ (От французского слова imaginaire — мнимый).

Например. Для комплексного числа
$z=3-7 i$ действительная часть
$a=operatorname{Re} z=3$, а мнимая —
$b=operatorname{Im} z=-7$ .

Если действительная часть комплексного числа $z=a+b i$
равна нулю ( $a=operatorname{Re} z=0$ ), то комплексное число
называется чисто мнимым.

Например. $z=-2 i$

Мнимая единица

Величина $i$ называется мнимой единицей и
удовлетворяет соотношению:

Равные комплексные числа

Два комплексных числа $z_{1}=a_{1}+b_{1} i$ и
$z_{2}=a_{2}+b_{2} i$ называются равными, если равны их
действительные и мнимые части соответственно:

$z_{1}=z_{2} Leftrightarrow a_{1}=a_{2} wedge b_{1}=b_{2}$

Пример

Задание. Определить при каких значениях
$x$ и
$y$ числа
$z_{1}=2-x i$ и
$z_{2}=y+2 i$ будут равными.

Решение. Согласно определению $z_{1}=z_{2}$ тогда и только тогда, когда

$2=y wedge-x=2 Rightarrow y=2, x=-2$

Ответ. $x=-2, y=2$

Число $overline{z}=a-b i$ называется
комплексно сопряженным числом к числу
$z=a+b i$ .

То есть комплексно сопряженные числа отличаются лишь знаком мнимой части.

Например. Для комплексного числа
$z_{1}=2+3 i$ комплексно сопряженным есть число
$overline{z}_{1}=2-3 i$ ; для
$z_{2}=i$ комплексно сопряженное
$overline{z}_{2}=-i$ и для
$z_{3}=-2$ имеем, что
$overline{z}_{3}=-2$ .

Комплексное число
 $-z=-a-b i$  называется противоположным к комплексному числу
$z=a+b i$ .

Например. Противоположным к числу
$z=2+i$ есть число:
$-z=-(2+i)=-2-i$ .

Читать дальше: геометрическая интерпретация комплексного числа.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Содержание:

Хроника возникновения комплексных чисел:

Комплексные числа - определение и вычисление с примерами решения

Исследование.

1) Подтвердите примерами справедливость следующих высказываний. Если высказывание ложно, то сделайте так, чтобы оно стало истинным.

  • а) Если а и b — натуральные числа, то корень уравнения х + а = b также является натуральным числом.
  • б) Если а и b -целые числа, то корень уравнения ах = b также является целым числом
  • в) Если а неотрицательное рациональное число, то корень уравнения х1 = а также является рациональным числом.
  • г) Если а неотрицательное действительное число, то корень уравнения х2 = а также является действительным числом.

2) Существует ли действительное число квадрат которого равен -1?

3)

  • а) Существуют ли действительные корни уравнения х2 = а при Комплексные числа - определение и вычисление с примерами решения
  • б) Можно ли решить эту задачу расширив множество действительных чисел?

4) Существует ли однозначное соответствие между множеством действительных чисел и множеством точек на числовой оси? А какие числа соответствуют точкам на координатной плоскости?

На множестве действительных чисел уравнение х2 = -1 не имеет решений. Значит, мы должны расширить множество действительных чисел так, чтобы корни этого уравнения входили в него. Для этого введём новое число и примем, что оно является корнем уравнения х2 + 1 = 0, т.е. Комплексные числа - определение и вычисление с примерами решения. Отсюда Комплексные числа - определение и вычисление с примерами решения. После этого, корнями уравнения х2 + 1 = 0 являются числа Комплексные числа - определение и вычисление с примерами решения. Число Комплексные числа - определение и вычисление с примерами решения называется мнимой единицей.

Расширим множество действительных чисел так, чтобы в него входили все действительные числа и число Комплексные числа - определение и вычисление с примерами решения, и были справедливы все свойства сложения и умножения. Для произвольных действительных чисел а и b введём «произведение» Комплексные числа - определение и вычисление с примерами решения и «сумму» Комплексные числа - определение и вычисление с примерами решения, и назовём комплексным числом следующее выражение Комплексные числа - определение и вычисление с примерами решения. Выражение вида Комплексные числа - определение и вычисление с примерами решения называется комплексным числом, где а и b — действительные числа, Комплексные числа - определение и вычисление с примерами решения мнимая единица.Комплексные числа можно обозначать через Комплексные числа - определение и вычисление с примерами решения и т.д.Например, Комплексные числа - определение и вычисление с примерами решения. Запись Комплексные числа - определение и вычисление с примерами решения называется алгебраической формой комплексного числа, а является действительной частью, b — мнимой частью комплексного числа Комплексные числа - определение и вычисление с примерами решения, и записывается так: Комплексные числа - определение и вычисление с примерами решения. При а = 0 получается число вида Комплексные числа - определение и вычисление с примерами решения. Эти числа называются чисто мнимыми числами. При а = 0, b = 0 комплексное число равно нулю и наоборот, если а + Комплексные числа - определение и вычисление с примерами решения = 0, то а = 0 и b = 0.

Следствие: для комплексных чисел а + Комплексные числа - определение и вычисление с примерами решения и с + Комплексные числа - определение и вычисление с примерами решения равенство

а + Комплексные числа - определение и вычисление с примерами решения = с + Комплексные числа - определение и вычисление с примерами решения справедливо тогда и только тогда, если а = с, b = d.

Пример. Из равенства Комплексные числа - определение и вычисление с примерами решения найдите х и у.

Решение: Из равенства действительных и мнимых частей получаем: х = 5

Комплексные числа - определение и вычисление с примерами решения.

Суммой комплексных чисел Комплексные числа - определение и вычисление с примерами решения называется комплексное число Комплексные числа - определение и вычисление с примерами решения

Действия над комплексными числами

Произведением комплексных чисел Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения называется число Комплексные числа - определение и вычисление с примерами решения, т.е.

Комплексные числа - определение и вычисление с примерами решения

Значит, два комплексных числа умножаются по правилу умножения многочленов при условии, что Комплексные числа - определение и вычисление с примерами решения.

Пример №1

Комплексные числа - определение и вычисление с примерами решения

Рассмотрим частные случаи степеней мнимых единиц: Комплексные числа - определение и вычисление с примерами решения

Как видно, натуральные степени мнимой единицы Комплексные числа - определение и вычисление с примерами решения равны Комплексные числа - определение и вычисление с примерами решения, -1, —Комплексные числа - определение и вычисление с примерами решения‘, 1 и повторяются через каждые четыре шага, т.е.справедливо равенство Комплексные числа - определение и вычисление с примерами решения

Пример №2

Вычислите: а) Комплексные числа - определение и вычисление с примерами решения б) Комплексные числа - определение и вычисление с примерами решения

Решение: а) Комплексные числа - определение и вычисление с примерами решения б) Комплексные числа - определение и вычисление с примерами решения

Число Комплексные числа - определение и вычисление с примерами решения называется сопряжённым для числа Комплексные числа - определение и вычисление с примерами решения и обозначается как : Комплексные числа - определение и вычисление с примерами решения. Ясно, что если число Комплексные числа - определение и вычисление с примерами решения является сопряжённым для числа Комплексные числа - определение и вычисление с примерами решения, то число Комплексные числа - определение и вычисление с примерами решения является сопряжённым для числа Комплексные числа - определение и вычисление с примерами решения. Поэтому, числа Комплексные числа - определение и вычисление с примерами решения называются взаимно сопряжёнными комплексными числами. Действительные части взаимно сопряжённых чисел равны, а мнимые части являются противоположными числами.

Произведение взаимно сопряжённых комплексных чисел является действительным числом: Комплексные числа - определение и вычисление с примерами решения.

В частном случае, сопряжённым для действительного числа является само число, для мнимого — произведение числа и (-1).

Для каждого комплексного числа Комплексные числа - определение и вычисление с примерами решения существует противоположное число Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения. Для каждого, отличного от нуля, комплексного числа Комплексные числа - определение и вычисление с примерами решения существует противоположное. Комплексные числа - определение и вычисление с примерами решения

Вычитание и частное комплексных чисел определяется равенствами:

Комплексные числа - определение и вычисление с примерами решения

Для нахождения отношения комплексных чисел, удобнее числитель и знаменатель умножить на число, сопряжённое для знаменателя .

Пример №3

Найдём разность и отношение чисел Комплексные числа - определение и вычисление с примерами решения.

Решение: Комплексные числа - определение и вычисление с примерами решения

Все свойства арифметических операций для действительных чисел, справедливы для комплексных чисел. Как следствие, получаем, что любые алгебраические тождества справедливы для множества комплексных чисел. Например, для комплексных чисел Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения справедливы тождества

Комплексные числа - определение и вычисление с примерами решения

Квадратный корень комплексного числа

Число, квадрат которого равен Комплексные числа - определение и вычисление с примерами решения называется квадратным корнем комплексного числа Комплексные числа - определение и вычисление с примерами решения и обозначается как Комплексные числа - определение и вычисление с примерами решения.

Пример №4

Найдём квадратный корень комплексного числа Комплексные числа - определение и вычисление с примерами решения

Решение: Пусть Комплексные числа - определение и вычисление с примерами решения. Возведём обе части равенства в квадрат: Комплексные числа - определение и вычисление с примерами решения

Из равенства действительных и мнимых частей имеем:

Комплексные числа - определение и вычисление с примерами решения

Отсюда получаем решение (2; -1) и (-2; 1). Значит, Комплексные числа - определение и вычисление с примерами решения

Примечание: В отличии от действительных чисел, говоря о квадратном корне комплексного числа, имеется в виду каждое из двух значений, различающихся знаками. Корни квадратного уравнения Комплексные числа - определение и вычисление с примерами решения для множества комплексных чисел находится по тому же правилу, что и для действительных чисел. Комплексные числа - определение и вычисление с примерами решения

Пример №5

Решим уравнение Комплексные числа - определение и вычисление с примерами решения.

Решение:

Комплексные числа - определение и вычисление с примерами решения.

Комплексные числа - определение и вычисление с примерами решения

Легко можно проверить, что также в силе остаётся и теорема Виета. Для квадратного уравнения с действительными коэффициентами комплексные корни являются сопряжёнными числами. Комплексное число Комплексные числа - определение и вычисление с примерами решения задаётся парой действительных чисел (а; b) и эта пара соответствует определённым точкам на координатной плоскости. Поставим в соответствие числу Комплексные числа - определение и вычисление с примерами решения точку А (а; b) и обозначим её через Комплексные числа - определение и вычисление с примерами решения. Каждая точка на координатной плоскости изображает комплексное число и наоборот, каждое комплексное число на координатной плоскости, соответствует одной точке. Действительные числа располагаются на оси абсцисс, чисто мнимые числа на оси ординат. Поэтому ось абсцисс называется действительной осью, ось ординат — мнимой, а плоскость — комплексной плоскостью.

Пример:

Комплексные числа - определение и вычисление с примерами решения

Точки, соответствующие комплексно сопряжённым числам располагаются симметрично оси абсцисс.

Модуль и аргумент комплексного числа

Тригонометрическая форма комплексного числа

Пусть на комплексной плоскости комплексному числу Комплексные числа - определение и вычисление с примерами решения соответствует точка М(а; b). Обозначим расстояние ОМ через R, угол между лучом ОМ и положительным направлением оси абсцисс через Комплексные числа - определение и вычисление с примерами решения. Из Комплексные числа - определение и вычисление с примерами решения по теореме Пифагора имеем: Комплексные числа - определение и вычисление с примерами решения

Отсюда: Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Расстояние, от начала координат до точки соответствующей комплексному числу, называется модулем комплексного числа и обозначается как: Комплексные числа - определение и вычисление с примерами решения.

Комплексные числа - определение и вычисление с примерами решения

Угол, образованный конечной стороной угла поворота луча ОМ,

называется аргументом Комплексные числа - определение и вычисление с примерами решения комплексного числа Комплексные числа - определение и вычисление с примерами решения.

Из Комплексные числа - определение и вычисление с примерами решения: Комплексные числа - определение и вычисление с примерами решения

Модуль числа Комплексные числа - определение и вычисление с примерами решения имеет единственное значение, а аргумент Комплексные числа - определение и вычисление с примерами решения находится с точностью Комплексные числа - определение и вычисление с примерами решения. То есть, если одно из значений аргумента равно Комплексные числа - определение и вычисление с примерами решения, то другое будет иметь вид Комплексные числа - определение и вычисление с примерами решения.

Для аргумента комплексного числа, обычно берётся угол принадлежащий промежутку [0; Комплексные числа - определение и вычисление с примерами решения).

Пример №6

Найдём модуль и аргумент комплексного числа Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Решение: Из того, чтоКомплексные числа - определение и вычисление с примерами решения следует,что Комплексные числа - определение и вычисление с примерами решения

и принимая внимание, что угол Комплексные числа - определение и вычисление с примерами решения расположен в I четверти,

получим:Комплексные числа - определение и вычисление с примерами решения

Из формул Комплексные числа - определение и вычисление с примерами решения , Комплексные числа - определение и вычисление с примерами решения получаем: Комплексные числа - определение и вычисление с примерами решения

Тогда Комплексные числа - определение и вычисление с примерами решения

Для комплексного числа Комплексные числа - определение и вычисление с примерами решения число Комплексные числа - определение и вычисление с примерами решения называется тригонометрической формой комплексного числа.

В частном случае для модуля и аргумента числа Комплексные числа - определение и вычисление с примерами решения имеем:

Пример №7

Запишем комплексное число Комплексные числа - определение и вычисление с примерами решения

в тригонометрической форме.

Решение: Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Так как угол Комплексные числа - определение и вычисление с примерами решения принадлежит II четверги, то

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Действия над комплексными числами, заданными в тригонометрической форме

Найдём произведение комплексных чисел, заданных в тригонометрической форме Комплексные числа - определение и вычисление с примерами решения.

Комплексные числа - определение и вычисление с примерами решения

Чтобы найти произведение комплексных чисел, заданных в тригонометрической форме, надо перемножить их модули и сложить их аргументы.

Пример:

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Теперь найдём отношение Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Модуль отношение равен отношению модулей делимого и делителя, а аргумент равен разности аргументов делимого и делителя.

Пример:

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Возвести число Комплексные числа - определение и вычисление с примерами решения в степень с натуральным показателем n можно умножив n раз число Комплексные числа - определение и вычисление с примерами решения

Модуль степени комплексного числа с натуральным показателем равен степени модуля основания, а аргумент равен аргументу основания умноженному на показатель степени n.

Пример:

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Формулу Комплексные числа - определение и вычисление с примерами решения называют формулой Муавра. При помощи этой формулы можно найти синус и косинус n кратных углов через синус и косинус одинарных углов. Например, при n = 2 имеем:

Комплексные числа - определение и вычисление с примерами решения

Отсюда

Комплексные числа - определение и вычисление с примерами решения

Из равенства двух комплексных чисел имеем:

Комплексные числа - определение и вычисление с примерами решения

Аналогичным образом можно написать формулы для Комплексные числа - определение и вычисление с примерами решения.

Корень n-ой степени комплексного числа

Найдём значение выражения Комплексные числа - определение и вычисление с примерами решения.

Запишем в виде Комплексные числа - определение и вычисление с примерами решения и найдём корень n — ой степени

виде Комплексные числа - определение и вычисление с примерами решения.

Возведём каждую из двух сторон в n-ую степень:

Комплексные числа - определение и вычисление с примерами решения

Если два комплексных числа, заданных в тригонометрической форме равны, то их модули равны, а аргументы отличаются на Комплексные числа - определение и вычисление с примерами решения.

Это значит,Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Таким образом, Комплексные числа - определение и вычисление с примерами решения

Отсюда при Комплексные числа - определение и вычисление с примерами решения для первых Комплексные числа - определение и вычисление с примерами решения значений полученного числа равны значениям, полученным при Комплексные числа - определение и вычисление с примерами решения.

Обозначим корни Комплексные числа - определение и вычисление с примерами решения— ой степени единицы через Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Как видно, модули корней Комплексные числа - определение и вычисление с примерами решения-ой степени равны 1, аргументы отличаются друг от друга в Комплексные числа - определение и вычисление с примерами решения раз. То есть, эти числа расположены внутри единичной окружности, центр которой совпадает с началом координат, и соответствуют комплексным числам, являющимися вершинами правильного Комплексные числа - определение и вычисление с примерами решения-угольника.

Комплексные числа - определение и вычисление с примерами решения

Корнем Комплексные числа - определение и вычисление с примерами решения-ой степени комплексного числа Комплексные числа - определение и вычисление с примерами решения называется такое число Комплексные числа - определение и вычисление с примерами решения, что Комплексные числа - определение и вычисление с примерами решения. Если Комплексные числа - определение и вычисление с примерами решения, то для корня Комплексные числа - определение и вычисление с примерами решения-ой степени существуют Комплексные числа - определение и вычисление с примерами решения различных значений.

Запишем Комплексные числа - определение и вычисление с примерами решенияв виде

Комплексные числа - определение и вычисление с примерами решения .

Для Комплексные числа - определение и вычисление с примерами решения получим:

Комплексные числа - определение и вычисление с примерами решения

Из равенства двух комплексных чисел получим:

Комплексные числа - определение и вычисление с примерами решения

Значения при Комплексные числа - определение и вычисление с примерами решения отличаются от первых Комплексные числа - определение и вычисление с примерами решения значений на Комплексные числа - определение и вычисление с примерами решения

Поэтому, должно соблюдаться следующее:Комплексные числа - определение и вычисление с примерами решения

Формула корни n-ой степени комплексного числа

Если Комплексные числа - определение и вычисление с примерами решения, то

Комплексные числа - определение и вычисление с примерами решения

Пример №8

Найдём все значения Комплексные числа - определение и вычисление с примерами решения

Решение: пусть Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Отсюда Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

При Комплексные числа - определение и вычисление с примерами решения

При Комплексные числа - определение и вычисление с примерами решения

При Комплексные числа - определение и вычисление с примерами решения

Для чего нужны комплексные числа

Комплексные числа возникают в связи с задачей решения квадратных уравнений. Так, оставаясь в множестве действительных чисел, невозможно решить квадратное уравнение, дискриминант которого меньше нуля.

Комплексные числа необходимы в различных приложениях математики. В частности, теория функций комплексной переменной является действенным инструментом при использовании математических методов в различных областях науки.

Арифметические операции над комплексными числами

Комплексным числом называется выражение вида Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения— действительные числа, Комплексные числа - определение и вычисление с примерами решения — мнимая единица.

Число Комплексные числа - определение и вычисление с примерами решения называется действительной частью числа Комплексные числа - определение и вычисление с примерами решения и обозначается Комплексные числа - определение и вычисление с примерами решения (от франц. reele — «действительный»), а число Комплексные числа - определение и вычисление с примерами решения — мнимой частью числа Комплексные числа - определение и вычисление с примерами решения и обозначается Комплексные числа - определение и вычисление с примерами решения (от франц. imaginaire — «мнимый»), т.е. Комплексные числа - определение и вычисление с примерами решения

Действительное числоКомплексные числа - определение и вычисление с примерами решения является частным случаем комплексного Комплексные числа - определение и вычисление с примерами решения при Комплексные числа - определение и вычисление с примерами решения Комплексные числа вида Комплексные числа - определение и вычисление с примерами решения не являющиеся действительными, т.е. при Комплексные числа - определение и вычисление с примерами решения называются мнимыми, а при Комплексные числа - определение и вычисление с примерами решения т.е. числа вида Комплексные числа - определение и вычисление с примерами решениячисто мнимыми.

Числа Комплексные числа - определение и вычисление с примерами решенияназываются сопряженными.

Два комплексных числа Комплексные числа - определение и вычисление с примерами решения называются равными, если равны их действительные и мнимые части, т.е. Комплексные числа - определение и вычисление с примерами решения еслиКомплексные числа - определение и вычисление с примерами решения В частности, Комплексные числа - определение и вычисление с примерами решения если Комплексные числа - определение и вычисление с примерами решения

Арифметические операции на множестве комплексных чисел определяются следующим образом.

1.Сложение (вычитание) комплексных чисел

Комплексные числа - определение и вычисление с примерами решения

2. Умножение комплексных чисел

Комплексные числа - определение и вычисление с примерами решения

В частности,

Комплексные числа - определение и вычисление с примерами решения

т.е. мнимая единица есть число, квадрат которого равен — 1.

3. Деление двух комплексных чисел

Комплексные числа - определение и вычисление с примерами решения

Нетрудно убедиться в том, что все арифметические операции (16.1)-(16.3) над комплексными числами определяются естественным образом из правил сложения и умножения многочленов Комплексные числа - определение и вычисление с примерами решения если считать Комплексные числа - определение и вычисление с примерами решенияНапример, произведение комплексных чисел (16.2) есть

Комплексные числа - определение и вычисление с примерами решения

Пример №9

Даны комплексные числа Комплексные числа - определение и вычисление с примерами решения

Найти Комплексные числа - определение и вычисление с примерами решения

Решение:

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения (учли, что Комплексные числа - определение и вычисление с примерами решения).

Комплексные числа - определение и вычисление с примерами решения Умножая числитель и знаменатель на сопряженное делителю комплексное число Комплексные числа - определение и вычисление с примерами решения, получим

Комплексные числа - определение и вычисление с примерами решения

Если для геометрического изображения действительных чисел используются точки числовой прямой, то для изображения комплексных чисел служат точки координатной плоскости Комплексные числа - определение и вычисление с примерами решения

Плоскость называется комплексной, если каждому комплексному числу Комплексные числа - определение и вычисление с примерами решения ставится в соответствие точка плоскости Комплексные числа - определение и вычисление с примерами решения причем это соответствие взаимно однозначное (рис. 16.1).

Комплексные числа - определение и вычисление с примерами решения

Оси Комплексные числа - определение и вычисление с примерами решения, на которых расположены действительные числаКомплексные числа - определение и вычисление с примерами решения и чисто мнимые числа Комплексные числа - определение и вычисление с примерами решенияназываются соответственно действительной и мнимой осями.

Тригонометрическая и показательная формы комплексного числа

С каждой точкой Комплексные числа - определение и вычисление с примерами решения комплексной плоскости связан радиус-вектор этой точки Комплексные числа - определение и вычисление с примерами решения, длина которого Комплексные числа - определение и вычисление с примерами решения называется модулем комплексного числа Комплексные числа - определение и вычисление с примерами решения и обозначается Комплексные числа - определение и вычисление с примерами решения (см. рис. 16.1):

Комплексные числа - определение и вычисление с примерами решения

Угол Комплексные числа - определение и вычисление с примерами решения образованный радиусом-вектором Комплексные числа - определение и вычисление с примерами решения с осью Комплексные числа - определение и вычисление с примерами решения называется аргументом комплексного числа Комплексные числа - определение и вычисление с примерами решения и обозначается Комплексные числа - определение и вычисление с примерами решения Из значений Комплексные числа - определение и вычисление с примерами решения выделяется главное значение Комплексные числа - определение и вычисление с примерами решения удовлетворяющее условию Комплексные числа - определение и вычисление с примерами решения Например, Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Очевидно (см. рис. 16.1), что

Комплексные числа - определение и вычисление с примерами решения

Следовательно, комплексное числоКомплексные числа - определение и вычисление с примерами решения можно представить как

Комплексные числа - определение и вычисление с примерами решения

Представление комплексного числа в виде (16.6), где Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решенияназывается тригонометрической формой комплексного числа.

Сформулируем некоторые свойства арифметических операций над комплексными числами.

1. При сложении (вычитании) комплексных чисел их радиусы-векторы складываются (вычитаются) по правилу параллелограмма.

На рис. 16.2 показаны радиусы-векторы комплексных чиселКомплексные числа - определение и вычисление с примерами решенияих суммы Комплексные числа - определение и вычисление с примерами решения и разности Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

2. Модуль произведения (частного) двух комплексных чисел равен произ ведению (частному) модулей этих чисел, а его аргумент — сумме (разности) аргументов этих чисел, т.е.

Комплексные числа - определение и вычисление с примерами решения

Геометрически умножение числаКомплексные числа - определение и вычисление с примерами решения означает изменение длины радиуса-вектора Комплексные числа - определение и вычисление с примерами решения раз и его поворот вокруг точки Комплексные числа - определение и вычисление с примерами решения против часовой стрелки на угол Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Пример №10

Комплексные числа Комплексные числа - определение и вычисление с примерами решения представить в тригонометрической форме и найти Комплексные числа - определение и вычисление с примерами решения

Решение:

По формуле (16.4) найдем модуль комплексного числа Комплексные числа - определение и вычисление с примерами решенияа из соотношений (16.5) Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решенияполучим аргумент числа Комплексные числа - определение и вычисление с примерами решения (берем его главное значение): Комплексные числа - определение и вычисление с примерами решения

Аналогично Комплексные числа - определение и вычисление с примерами решения т.е. Комплексные числа - определение и вычисление с примерами решения

Теперь по формулам (16.7) и (16.8)

Комплексные числа - определение и вычисление с примерами решения

Так как в соответствии с формулами (16.7) и (16.8) при умножении комплексных чисел их модули перемножаются, а аргументы складываются, легко получить формулу возведения комплексного числа в натуральную степень Комплексные числа - определение и вычисление с примерами решения, известную как формула Муавра:

Комплексные числа - определение и вычисление с примерами решения

Пример №11

Найти Комплексные числа - определение и вычисление с примерами решения

Решение:

По формуле Муавра (16.9)

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения Обратимся к извлечению корня из комплексного числа.

Пусть

Комплексные числа - определение и вычисление с примерами решения

Тогда, используя определение корня и формулу Муавра (16.9), получим

Комплексные числа - определение и вычисление с примерами решения

или

Комплексные числа - определение и вычисление с примерами решения

Отсюда следует, что

Комплексные числа - определение и вычисление с примерами решения

Итак,Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения

При Комплексные числа - определение и вычисление с примерами решениязначения корня уже будут повторяться.

Таким образом, корень Комплексные числа - определение и вычисление с примерами решения-й степени из комплексного числа (не равного нулю) имеет Комплексные числа - определение и вычисление с примерами решения различных значений.

Пример №12

Найти Комплексные числа - определение и вычисление с примерами решения

Решение:

В примере 16.2 было получено

Комплексные числа - определение и вычисление с примерами решения

откуда получаем три значения корня

Комплексные числа - определение и вычисление с примерами решения

На комплексной плоскости найденные значения корня представляют равноотстоящие друг от друга точки Комплексные числа - определение и вычисление с примерами решения расположенные на окружности радиуса Комплексные числа - определение и вычисление с примерами решения (рис. 16.3). ►

Комплексные числа - определение и вычисление с примерами решения

Связь между тригонометрическими и показательными функциями выражается формулой Эйлера.

Комплексные числа - определение и вычисление с примерами решения

Отсюда следует показательная форма комплексного числа. Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения

В заключение отметим, что в показательной форме, так же как и в тригонометрической, легко проводить операции умножения, деления, возведения в степень, извлечение корня из комплексных чисел.

Формы записи комплексного числа

Решение простейшего квадратного уравнения Комплексные числа - определение и вычисление с примерами решения невозможно в области вещественных чисел. Однако, если выполнить решение формально, то получим Комплексные числа - определение и вычисление с примерами решения

Определение: Выражение Комплексные числа - определение и вычисление с примерами решения называется мнимой единицей.

Определение: Комплексным числом называется выражение видаКомплексные числа - определение и вычисление с примерами решения где х,у

Определение: Приведенная форма записи комплексного числа называется алгебраической.

Определение: Два комплексных числа Комплексные числа - определение и вычисление с примерами решения называются равными, если равны их вещественные и мнимые части, т.е. Комплексные числа - определение и вычисление с примерами решения

Определение: Комплексное число называется нулевым, если вещественная и мнимая части равны нулю.

Определение: Комплексно-сопряженным к комплексному числу Комплексные числа - определение и вычисление с примерами решения называется комплексное число Комплексные числа - определение и вычисление с примерами решения

Пример №13

Записать комплексно-сопряженное число к комплексному числу Комплексные числа - определение и вычисление с примерами решения

Решение:

Согласно определению комплексно-сопряженного числа получаем Комплексные числа - определение и вычисление с примерами решения

Замечание: Двойное комплексное сопряжение приводит к исходному комплекс- ному числу, т.е. Комплексные числа - определение и вычисление с примерами решения

Решение квадратных уравнений с отрицательным дискриминантом невозможно в области вещественных чисел, так как нельзя извлекать корень четной степени из отрицательного числа на множестве действительных чисел. Однако это ограничение снимается в области комплексных чисел.

Пример №14

Решить квадратное уравнение Комплексные числа - определение и вычисление с примерами решения

Решение:

Вычислим дискриминант уравнения Комплексные числа - определение и вычисление с примерами решения таким образом, Комплексные числа - определение и вычисление с примерами решения Следовательно, Комплексные числа - определение и вычисление с примерами решения

Замечание: Решение квадратного уравнения с отрицательным дискриминантом всегда состоит из комплексно-сопряженных корней.

Комплексное число Комплексные числа - определение и вычисление с примерами решения изобретается на комплексной плоскости Комплексные числа - определение и вычисление с примерами решения в виде вектора, соединяющего начало координат с точкой М(х; у) (Рис. 2): Комплексные числа - определение и вычисление с примерами решения

Рис. 2. Изображение комплексного числа на комплексной плоскости.

Пример №15

Изобразить на комплексной плоскости число z = 2-3i (Рис. 3). Комплексные числа - определение и вычисление с примерами решения

Решение:

Рис. 3. Изображение комплексного Комплексные числа - определение и вычисление с примерами решения на комплексной плоскости. Если перейти от декартовой системы координат к полярной системе отсчета, т.е. Комплексные числа - определение и вычисление с примерами решения то комплексное число Комплексные числа - определение и вычисление с примерами решения

Определение: Полученная форма записи комплексного числа называется тригонометрической.

Обратный переход от полярной системы отсчета к декартовой системе координат осуществляется по формулам:Комплексные числа - определение и вычисление с примерами решенияпри этом Комплексные числа - определение и вычисление с примерами решения является модулем, а Комплексные числа - определение и вычисление с примерами решенияаргументом комплексного числа z .

Замечание: Аргумент комплексного числа Комплексные числа - определение и вычисление с примерами решения определяется в зависимости от знаков вещественной и мнимой частей:

Комплексные числа - определение и вычисление с примерами решения

Действия с комплексными числами

1. Для того чтобы сложить (найти разность) два комплексных числа Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения сложить (найти разность) отдельно действительные и мнимые части, Комплексные числа - определение и вычисление с примерами решения

Пример №16

Найти сумму и разность чисел Комплексные числа - определение и вычисление с примерами решения Изобразить все числа на комплексной плоскости.

Решение:

Найдем сумму заданных комплексных чисел Комплексные числа - определение и вычисление с примерами решения Вычислим разность данных чисел Комплексные числа - определение и вычисление с примерами решения Изобразим заданные и полученные числа на комплексной плоскости (Рис. 4):

Комплексные числа - определение и вычисление с примерами решения

Рис. 4. Изображение комплексных чисел на комплексной плоскости.

Замечание: Отметим, что Комплексные числа - определение и вычисление с примерами решения

2. Для того чтобы найти произведение двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения надо их перемножить, как два выражения с учетом того, что Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Замечание: Отметим, что Комплексные числа - определение и вычисление с примерами решения

Замечание: Произведение комплексных чисел в тригонометрической форме записи имеет вид Комплексные числа - определение и вычисление с примерами решения Из полученной формулы видно, что модули комплексных чисел перемножаются, а аргументы складываются. Следовательно, n-ая степень любого комплексного числа будет иметь вид Комплексные числа - определение и вычисление с примерами решения При извлечении корня п -ой степени применяют формулу Муавра Комплексные числа - определение и вычисление с примерами решения где величина Комплексные числа - определение и вычисление с примерами решения

3. Деление комплексного числа Комплексные числа - определение и вычисление с примерами решения на комплексное число Комплексные числа - определение и вычисление с примерами решения осуществляется так Комплексные числа - определение и вычисление с примерами решения

Замечание: Деление этих чисел в тригонометрической форме записи имеет вид: Комплексные числа - определение и вычисление с примерами решения т.е. при делении комплексных чисел берут отношение модулей этих чисел, а из аргумента первого числа вычитают аргумент второго комплексного числа.

Показательная форма записи комплексного числа

Известно, что любую дифференцируемую функцию можно представить по формуле Тейлора-Маклорена (см. Лекцию № 22, Первый семестр), например, Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Последняя формула называется формулой Эйлера. Используя эту формулу,

запишем комплексное число Комплексные числа - определение и вычисление с примерами решения в показательной форме: Комплексные числа - определение и вычисление с примерами решения Отсюда видно, что при нахождении произведения и отношения комплексных чисел получаемКомплексные числа - определение и вычисление с примерами решения

Комплексные числа и арифметические операции

Как известно, под комплексным числом понимается выражение вида

Комплексные числа - определение и вычисление с примерами решения

где х и у — действительные числа, a i — мнимая единица.

Числа вида Комплексные числа - определение и вычисление с примерами решения отождествляются с действительными числами; в частности, Комплексные числа - определение и вычисление с примерами решения. Числа вида 0 + iy = iy называются чисто мнимыми.

Действительные числа х и у называются соответственно действительной и мнимой частями числа z и обозначаются следующим образом:

Комплексные числа - определение и вычисление с примерами решения

Под модулем комплексного числа z понимается неотрицательное число

Комплексные числа - определение и вычисление с примерами решения

Сопряженным числом Комплексные числа - определение и вычисление с примерами решения к числу (1) называется комплексное число

Комплексные числа - определение и вычисление с примерами решения

Таким образом,

Комплексные числа - определение и вычисление с примерами решения

На множестве комплексных чисел следующим образом определено отношение равенства двух чисел, а также операции сложения, вычитания, умножения и деления.

I. Пусть z1=x1+iy1 и z2=x2+iy2.Тогда

Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решенияRez1 = Re z2, Im z1 = Im z2

В частности, z = 0 Комплексные числа - определение и вычисление с примерами решения Re z = 0, Im z = 0.

II. z1±z2= (x1± x2) + i(y1 ± y2)-

Отсюда следует, что

Re (z1 ± z2) — Re z1 ± Re z2,

Im (z1 ± z2) — Imz1 ± 1mz2

III. z1z2 = (x1x2 — y1y2) + i(x1y2+x2y1).

Отсюда, в частности, получаем важное соотношение

Комплексные числа - определение и вычисление с примерами решения=Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения=Комплексные числа - определение и вычисление с примерами решения+Комплексные числа - определение и вычисление с примерами решения=-1

Заметим, что правило умножения III получается формально путем умножения двучленов Комплексные числа - определение и вычисление с примерами решения + Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения +Комплексные числа - определение и вычисление с примерами решения с учетом (7).

Очевидно также, что для Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения имеем

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения=Комплексные числа - определение и вычисление с примерами решения=Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Легко проверить следующие свойства:

1)Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

  • Заказать решение задач по высшей математике

Комплексная плоскость

Рассмотрим плоскость с прямоугольной системой координат Оху. Каждому комплексному числу z = х + iy может быть поставлена в соответствие точка плоскости z(x, у) (рис. 161), причем это соответствие взаимно однозначно. Плоскость, на которой реализовано такое соответствие, называют комплексной плоскостью, и вместо комплексных чисел говорят о точках комплексной плоскости.

Комплексные числа - определение и вычисление с примерами решения

На оси Ох расположены действительные числа: z =Комплексные числа - определение и вычисление с примерами решения:, поэтому она называется действительной осью. На оси Оу расположены чисто мнимые числа z = 0 + iy = iy, она носит название мнимой оси.

Заметим, что г = |z| представляет собой расстояние точки г от начала координат.

С каждой точкой z связан радиус-вектор этой точки Oz; угол, образованный радиусом-вектором точки z с осью Ох, называется аргументом ф = Arg z этой точки. Здесь Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения. Для нулевой точки z = 0 аргумент произволен. Наименьшее по модулю значение Arg z называется главным значением его и обозначается через arg z:

Комплексные числа - определение и вычисление с примерами решения

Для аргумента ср имеем (рис. 161)

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения

Примеры: 1) arg 2 = 0; 2) arg (-1) = Комплексные числа - определение и вычисление с примерами решения; 3) arg i = Комплексные числа - определение и вычисление с примерами решения.

Модуль г и аргумент ф комплексного числа z можно рассматривать (рис. 161) как полярные координаты точки z. Отсюда получаем

Комплексные числа - определение и вычисление с примерами решения

Таким образом, имеем тригонометрическую форму комплексного числа

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения

Теорема: При сложении комплексных чисел их радиусы-векторы складываются (по правилу параллелограмма).

Действительно, если число Комплексные числа - определение и вычисление с примерами решения соответствует точке с координатами Комплексные числа - определение и вычисление с примерами решения, а число Комплексные числа - определение и вычисление с примерами решения — точке с координатами Комплексные числа - определение и вычисление с примерами решения то числу Комплексные числа - определение и вычисление с примерами решения отвечает точка Комплексные числа - определение и вычисление с примерами решения Так как (рис. 162) заштрихованные прямоугольные треугольники с катетами х2 и у2 равны между собой, то четырехугольник с вершинами 0, Комплексные числа - определение и вычисление с примерами решения есть параллелограмм. Следовательно, радиус-вектор точки Комплексные числа - определение и вычисление с примерами решения является суммой радиусов-векторов точек Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения.

Комплексные числа - определение и вычисление с примерами решения

Следствие. Так как Комплексные числа - определение и вычисление с примерами решения есть длина вектора Комплексные числа - определение и вычисление с примерами решения, то

Комплексные числа - определение и вычисление с примерами решения

Теорема: При вычитании комплексных чисел их радиусы-векторы вычитаются. Так как Комплексные числа - определение и вычисление с примерами решения, то Комплексные числа - определение и вычисление с примерами решения равен второй диагонали параллелограмма, построенного на векторах Комплексные числа - определение и вычисление с примерами решения(рис. 163), т. е. равен разности радиусов-векторов точек Комплексные числа - определение и вычисление с примерами решения.

Следствие. Расстояние между двумя точками Комплексные числа - определение и вычисление с примерами решения равно

Комплексные числа - определение и вычисление с примерами решения

Теоремы о модуле и аргументе

Теорема: Модуль произведения комплексных чисел равен произведению модулей этих чисел, а аргумент произведения равен сумме аргументов сомножителей. Действительно, если

Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

то имеем

Комплексные числа - определение и вычисление с примерами решения

Отсюда

Комплексные числа - определение и вычисление с примерами решения

и

Комплексные числа - определение и вычисление с примерами решения

где значения многозначной функции Arg, стоящие в левой и правой частях равенства (1), следует подбирать соответствующим образом. Это замечание надо иметь в виду и для дальнейшего.

Следствие. Модуль целой положительной степени комплексного числа равен такой же степени модуля этого числа, а аргумент степени равен аргументу числа, умноженному на показатель степени, т. е.

Комплексные числа - определение и вычисление с примерами решения

(Комплексные числа - определение и вычисление с примерами решения — целое положительное число).

Доказательство непосредственно вытекает из рассмотрения произведения равных сомножителей.

Пример №17

Построить точку Комплексные числа - определение и вычисление с примерами решения.

Решение:

Имеем

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Следовательно, при умножении на i вектор Комплексные числа - определение и вычисление с примерами решения поворачивается на прямой угол против хода часовой стрелки (рис. 164).

Комплексные числа - определение и вычисление с примерами решения

Теорема: Модуль частного двух комплексных чисел равен частному модулей этих чисел, а аргумент частного равен разности аргументов делимого и делителя. Пусть

Комплексные числа - определение и вычисление с примерами решения

Так как

Комплексные числа - определение и вычисление с примерами решения

то на основании теоремы 1 имеем

Комплексные числа - определение и вычисление с примерами решения

ОтсюдаКомплексные числа - определение и вычисление с примерами решения

Извлечение корня из комплексного числа

Пусть

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения. Тогда на основании имеем

Комплексные числа - определение и вычисление с примерами решения

Отсюда получаем

Комплексные числа - определение и вычисление с примерами решения

Таким образом,

Комплексные числа - определение и вычисление с примерами решения

Заметим, что здесь под Комплексные числа - определение и вычисление с примерами решения понимается арифметическое значение корня.

Здесь в качестве числа k достаточно брать лишь значения Комплексные числа - определение и вычисление с примерами решения, так как при всех прочих значениях k получаются повторения уже найденных значений корня. Следовательно, окончательно имеем

Комплексные числа - определение и вычисление с примерами решения

Из формулы (4) следует, что корень Комплексные числа - определение и вычисление с примерами решения-й степени из любого комплексного числа Комплексные числа - определение и вычисление с примерами решения=0 имеет точно л значений.

Пример №18

Найти Комплексные числа - определение и вычисление с примерами решения

Решение:

Так как Комплексные числа - определение и вычисление с примерами решения, то на основании формулы (4) имеем

Комплексные числа - определение и вычисление с примерами решения

Отсюда

Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Точки Комплексные числа - определение и вычисление с примерами решения представляют собой равноотстоящие друг от друга точки, расположенные на окружности радиуса Комплексные числа - определение и вычисление с примерами решения (рис. 165).

Понятие функции комплексной переменной

Пусть даны две комплексные плоскости Оху (плоскость г) и O’uv (плоскость w).

Определение: Если каждой точке z Комплексные числа - определение и вычисление с примерами решения Е (Е — множество точек плоскости z) по некоторому закону f ставится в соответствие единственная точка w Комплексные числа - определение и вычисление с примерами решения Е’ (Е’ — множество точек плоскости w), то говорят, что w есть функция от z (однозначная)

Комплексные числа - определение и вычисление с примерами решения

с областью определения Е, значения которой принадлежат множеству Е’ (рис. 166). Если множество значений функции f(z) исчерпывает все множество Е то Е’ называется множеством значений (областью изменения) функции f(z). В этом случае пишут

Комплексные числа - определение и вычисление с примерами решения

Множества Е и Е’ можно изображать на одной комплексной плоскости.

Комплексные числа - определение и вычисление с примерами решения

Таким образом, каждая комплексная функция реализует однозначное в одну сторону отображение одного множества на другое. Благодаря этому комплексные функции находят свое применение в таких науках, как гидродинамика и аэродинамика, так как с их помощью удобно описывать «историю» движения объема жидкости (или газа).

Раздел математики, изучающий свойства комплексных функций, носит название теории функций комплексной переменной.

Пример:

Во что переходит сектор Е

Комплексные числа - определение и вычисление с примерами решения

(рис. 167, а) при отображении Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Решение:

Имеем

Комплексные числа - определение и вычисление с примерами решения

Поэтому отображенная область E’ представляет собой полукруг (рис. 167, б).

Определение комплексных чисел

Определение комплексного числа и основные функции комплексной переменной

Определение 7.1. Множеством комплексных чисел Комплексные числа - определение и вычисление с примерами решения называется множество пар действительных чисел Комплексные числа - определение и вычисление с примерами решения на котором введены операции сложения и умножения следующим образом. Если Комплексные числа - определение и вычисление с примерами решения то Комплексные числа - определение и вычисление с примерами решения Элементы множества Комплексные числа - определение и вычисление с примерами решения называются комплексными числами. Два комплексных числа Комплексные числа - определение и вычисление с примерами решения называются равными, если Комплексные числа - определение и вычисление с примерами решения

Операции сложения и умножения на множестве Комплексные числа - определение и вычисление с примерами решения обладают привычными свойствами (коммутативность сложения и умножения, ассоциативность сложения и умножения, дистрибутивность умножения относительно сложения).

Лемма 7.1. Для любых комплексных чисел Комплексные числа - определение и вычисление с примерами решения выполняются равенства

□ Докажем, например, свойство 4 (свойство 5 доказывается аналогично, свойства 1, 2, 3 очевидны).

Пусть Комплексные числа - определение и вычисление с примерами решения Тогда

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Два последних комплексных числа совпадают. После раскрытия скобок оказывается, что оба они равны

Комплексные числа - определение и вычисление с примерами решения

Определение 7.2. Комплексное число Комплексные числа - определение и вычисление с примерами решения отождествляется с действительным числом а.

Это определение оправдывается тем, что установлено взаимно однозначное соответствие между множеством пар Комплексные числа - определение и вычисление с примерами решения и множеством действительных чисел, сохраняющее операции сложения и умножения:

Комплексные числа - определение и вычисление с примерами решения

Такое соответствие в высшей алгебре называется изоморфизмом.

Определение 7.3. Комплексное число (0,1) обозначается буквой Комплексные числа - определение и вычисление с примерами решения

Легко видеть, что Комплексные числа - определение и вычисление с примерами решения т.е. Комплексные числа - определение и вычисление с примерами решения

Далее, так как Комплексные числа - определение и вычисление с примерами решения то пару Комплексные числа - определение и вычисление с примерами решения можно записать в виде Комплексные числа - определение и вычисление с примерами решения В дальнейшем комплексное число так и будем записывать: Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения Определения операций при этом запишутся так:

Комплексные числа - определение и вычисление с примерами решения

Иными словами, комплексные числа можно складывать и умножать, пользуясь известными законами сложения и умножения (лемма 7.1), имея в виду, что Комплексные числа - определение и вычисление с примерами решения

Определение 7.4. Разностью двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения называется такое комплексное число Комплексные числа - определение и вычисление с примерами решения что Комплексные числа - определение и вычисление с примерами решения(обозначается Комплексные числа - определение и вычисление с примерами решения). Частным двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения (Комплексные числа - определение и вычисление с примерами решения) называется такое комплексное число z, что Комплексные числа - определение и вычисление с примерами решения (обозначается Комплексные числа - определение и вычисление с примерами решения).

Проверим, что эти операции однозначно определены.

□ Пусть Комплексные числа - определение и вычисление с примерами решения Для разности имеем: Комплексные числа - определение и вычисление с примерами решения откуда Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решенияТогда Комплексные числа - определение и вычисление с примерами решения Разность двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения определяется однозначно: Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения т.е. вычитание можно осуществлять непосредственно.

Для частного имеем: Комплексные числа - определение и вычисление с примерами решения откуда Комплексные числа - определение и вычисление с примерами решения Так как Комплексные числа - определение и вычисление с примерами решения то определитель этой системы Комплексные числа - определение и вычисление с примерами решения решая систему по правилу Крамера, получим: Комплексные числа - определение и вычисление с примерами решения   Частное двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения определено однозначно:

Комплексные числа - определение и вычисление с примерами решения

Такое деление можно осуществлять непосредственно:

Комплексные числа - определение и вычисление с примерами решения

Комплексное число Комплексные числа - определение и вычисление с примерами решения называется сопряжённым к числу Комплексные числа - определение и вычисление с примерами решения Мы воспользовались тем, что Комплексные числа - определение и вычисление с примерами решения Произведённые действия аналогичны домножению числителя и знаменателя дроби со знаменателем вида Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения на число Комплексные числа - определение и вычисление с примерами решения сопряжённое к знаменателю (такие действия применяются для избавления от иррациональности в знаменателе).

Определение 7.5. Пусть Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения Тогда числа Комплексные числа - определение и вычисление с примерами решения называются соответственно действительной и мнимой частью числа Комплексные числа - определение и вычисление с примерами решения                  (Комплексные числа - определение и вычисление с примерами решения). Комплексное число Комплексные числа - определение и вычисление с примерами решения называется числом, сопряжённым к Комплексные числа - определение и вычисление с примерами решения Действительное неотрицательное число Комплексные числа - определение и вычисление с примерами решения называется модулем числа Комплексные числа - определение и вычисление с примерами решения

Лемма 7.2. Для любых комплексных чисел Комплексные числа - определение и вычисление с примерами решения имеют место следующие соотношения: 

Комплексные числа - определение и вычисление с примерами решения

Доказать эти утверждения будет предложено самостоятельно в качестве упражнения.

Множество комплексных чисел Комплексные числа - определение и вычисление с примерами решения геометрически интерпретируется как множество точек плоскости (комплексная плоскость Комплексные числа - определение и вычисление с примерами решения). Если координаты точек заданы в прямоугольной системе координат 0, Комплексные числа - определение и вычисление с примерами решения (кратчайший поворот от Комплексные числа - определение и вычисление с примерами решения осуществляется против часовой стрелки), то комплексное число Комплексные числа - определение и вычисление с примерами решения соответствует точке Комплексные числа - определение и вычисление с примерами решения с координатами Комплексные числа - определение и вычисление с примерами решения Такое соответствие является взаимно однозначным. Точка Комплексные числа - определение и вычисление с примерами решения симметрична точке Комплексные числа - определение и вычисление с примерами решения относительно оси абсцисс, которая называется действительной осью, ось ординат называется мнимой осью. Расстояние от точки Комплексные числа - определение и вычисление с примерами решения до начала координат равно Комплексные числа - определение и вычисление с примерами решения (см. рис. 7.1).

Комплексные числа - определение и вычисление с примерами решения
Аргументом числа Комплексные числа - определение и вычисление с примерами решения называется угол Комплексные числа - определение и вычисление с примерами решения поворота от положительного луча действительной оси к лучу Комплексные числа - определение и вычисление с примерами решения (против часовой стрелки). Этот угол определён с точностью до Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения и обозначается Комплексные числа - определение и вычисление с примерами решения Аргумент нулевого комплексного числа не определён. Фактически мы ввели полярные координаты на комплексной плоскости: Комплексные числа - определение и вычисление с примерами решения При этом Комплексные числа - определение и вычисление с примерами решения и комплексное число Комплексные числа - определение и вычисление с примерами решения можно записать в тригонометрической форме:

Комплексные числа - определение и вычисление с примерами решения

Пример:

Записать в тригонометрической форме числа Комплексные числа - определение и вычисление с примерами решения

□  1) Комплексные числа - определение и вычисление с примерами решения

При записи комплексного числа в тригонометрической форме обычно берут одно фиксированное («наиболее простое») значение аргумента. Возьмём Комплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

2) Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решения(Комплексные числа - определение и вычисление с примерами решения).

Комплексные числа, записанные в тригонометрической форме, удобно умножать и делить. При умножении модули чисел перемножаются, аргументы складываются. При делении модули делятся, аргументы вычитаются.

Лемма 7.3. Пусть Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Тогда

Комплексные числа - определение и вычисление с примерами решения

 Комплексные числа - определение и вычисление с примерами решения

Если Комплексные числа - определение и вычисление с примерами решения
Комплексные числа - определение и вычисление с примерами решения откуда следует, что Комплексные числа - определение и вычисление с примерами решения

Степень с целым показателем для комплексных чисел определяется так же, как и для действительных. Поэтому мы можем сформулировать

Следствие (формула Муавра). Если Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения то при любом целом Комплексные числа - определение и вычисление с примерами решения имеет место равенство

Комплексные числа - определение и вычисление с примерами решения

Иными словами, при возведении комплексного числа в целую степень модуль числа возводится в эту степень, а аргумент умножается на показатель степени.

Пример:

Применяя формулу Муавра, получить известные формулы тригонометрии для Комплексные числа - определение и вычисление с примерами решения

□ Имеем: Комплексные числа - определение и вычисление с примерами решения Возводя двучлен в куб, получим: Комплексные числа - определение и вычисление с примерами решения (мы воспользовались тем, что Комплексные числа - определение и вычисление с примерами решения). Приравнивая действительные и мнимые части двух равных выражений, имеем

Комплексные числа - определение и вычисление с примерами решения

Определение 7.6. Пусть Комплексные числа - определение и вычисление с примерами решения — натуральное число, Комплексные числа - определение и вычисление с примерами решения Корнем Комплексные числа - определение и вычисление с примерами решения степени из комплексного числа Комплексные числа - определение и вычисление с примерами решения называется комплексное число Комплексные числа - определение и вычисление с примерами решения такое, что Комплексные числа - определение и вычисление с примерами решения (обозначение: Комплексные числа - определение и вычисление с примерами решения).

Лемма 7.4. Если Комплексные числа - определение и вычисление с примерами решения принимает единственное значение 0 при любом Комплексные числа - определение и вычисление с примерами решения Если Комплексные числа - определение и вычисление с примерами решения то Комплексные числа - определение и вычисление с примерами решения принимает ровно Комплексные числа - определение и вычисление с примерами решения комплексных значений, имеющих одинаковый модуль Комплексные числа - определение и вычисление с примерами решения различных значений аргумента Комплексные числа - определение и вычисление с примерами решения

□ Правая часть леммы очевидна, так как Комплексные числа - определение и вычисление с примерами решения и если Комплексные числа - определение и вычисление с примерами решения
Комплексные числа - определение и вычисление с примерами решения Пусть теперь Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Комплексные числа, записанные в тригонометрической форме, равны тогда и только тогда, когда их модули равны, а аргументы отличаются на Комплексные числа - определение и вычисление с примерами решения (пока значение Комплексные числа - определение и вычисление с примерами решения стояло только под знаком косинуса и синуса, неоднозначность определения Комплексные числа - определение и вычисление с примерами решения можно было не учитывать, если сравнивать сами углы — эту неоднозначность учитывать необходимо). Итак, Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения откуда Комплексные числа - определение и вычисление с примерами решения (арифметический корень Комплексные числа - определение и вычисление с примерами решения степени из положительного числа), Комплексные числа - определение и вычисление с примерами решения

При замене Комплексные числа - определение и вычисление с примерами решения получим тот же угол, увеличенный на Комплексные числа - определение и вычисление с примерами решения поэтому существенно различные значения Комплексные числа - определение и вычисление с примерами решения дают лишь Комплексные числа - определение и вычисление с примерами решения значений Комплексные числа - определение и вычисление с примерами решения далее значения корня повторяются).    

Замечание. Комплексные числа - определение и вычисление с примерами решения значений Комплексные числа - определение и вычисление с примерами решения на комплексной плоскости соответствуют Комплексные числа - определение и вычисление с примерами решения точкам, лежащим в вершинах правильного Комплексные числа - определение и вычисление с примерами решения-угольника, вписанного в окружность радиуса Комплексные числа - определение и вычисление с примерами решения с центром в начале координат.

Пример №19

Найти все значения Комплексные числа - определение и вычисление с примерами решения

□ 1) Комплексные числа - определение и вычисление с примерами решения поэтому Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Получим 3 значения: Комплексные числа - определение и вычисление с примерами решения (см. рис. 7.2).

Первое из них — арифметическое значение кубического корня из положительного числа 8.
Комплексные числа - определение и вычисление с примерами решения
2) Комплексные числа - определение и вычисление с примерами решения поэтому

Комплексные числа - определение и вычисление с примерами решения

Получим 4 значения:
Комплексные числа - определение и вычисление с примерами решения
(см. рис. 7.3). Комплексные числа - определение и вычисление с примерами решения здесь — арифметическое значение корня 4-й степени из положительного числа 5.

3) Комплексные числа - определение и вычисление с примерами решения,  поэтому

Комплексные числа - определение и вычисление с примерами решения

Получим 3 значения:

Комплексные числа - определение и вычисление с примерами решения

(см. рис. 7.4).    ■

Определение 7.7. Пусть Комплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решения определяется как комплексное число Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Если Комплексные числа - определение и вычисление с примерами решения (при Комплексные числа - определение и вычисление с примерами решения получаем обычное действительное значение Комплексные числа - определение и вычисление с примерами решения). Отмстим, что Комплексные числа - определение и вычисление с примерами решения при любых Комплексные числа - определение и вычисление с примерами решения

Лемма 7.5. Для любых Комплексные числа - определение и вычисление с примерами решения имеют место равенства Комплексные числа - определение и вычисление с примерами решения

□ Пусть Комплексные числа - определение и вычисление с примерами решения Тогда

Комплексные числа - определение и вычисление с примерами решения

Далее, так как Комплексные числа - определение и вычисление с примерами решения откуда следует второе утверждение леммы.    

Пример №20

Вычислить Комплексные числа - определение и вычисление с примерами решения

□ Имеем: Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Так как при всех Комплексные числа - определение и вычисление с примерами решения выполняются равенства Комплексные числа - определение и вычисление с примерами решения
Комплексные числа - определение и вычисление с примерами решения, то функция комплексной переменной Комплексные числа - определение и вычисление с примерами решения имеет мнимый период Комплексные числа - определение и вычисление с примерами решения Привычной взаимной однозначности отображения при помощи функции Комплексные числа - определение и вычисление с примерами решения уже нет.

Определение 7.8. Логарифмом комплексного числа Комплексные числа - определение и вычисление с примерами решения называется комплексное число Комплексные числа - определение и вычисление с примерами решения такое, что Комплексные числа - определение и вычисление с примерами решения (обозначение: Комплексные числа - определение и вычисление с примерами решения).

Лемма 7.6. Если Комплексные числа - определение и вычисление с примерами решения не определен. Если Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения принимает бесконечно много значений, имеющих одинаковую действительную часть Комплексные числа - определение и вычисление с примерами решения (обычный натуральный логарифм положительного числа) и бесконечное число значений мнимой части Комплексные числа - определение и вычисление с примерами решения

□ Первая часть леммы следует из того, что Комплексные числа - определение и вычисление с примерами решения при любых Комплексные числа - определение и вычисление с примерами решения Пусть теперь Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решения (откуда Комплексные числа - определение и вычисление с примерами решения), Комплексные числа - определение и вычисление с примерами решения

Таким образом, множество значений функции Комплексные числа - определение и вычисление с примерами решения есть вся комплексная плоскость, кроме точки 0.

Пример №21

Найти все значения Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Определение 7.9. Для любых Комплексные числа - определение и вычисление с примерами решения определим Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения так:

Комплексные числа - определение и вычисление с примерами решения

Если Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения Поэтому

Комплексные числа - определение и вычисление с примерами решения

Аналогично, Комплексные числа - определение и вычисление с примерами решения

Отметим также, что все известные формулы тригонометрии сохраняются для комплексных значений аргументов (при этом Комплексные числа - определение и вычисление с примерами решения).   Например, для всех Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Так как Комплексные числа - определение и вычисление с примерами решения

Легко видеть, что Комплексные числа - определение и вычисление с примерами решения Косинус на действительной оси соответствует гиперболическому косинусу на мнимой оси и наоборот: аналогично для синусов. Поэтому формально все операции для тригонометрических и гиперболических функций проводятся одинаково с точностью до некоторых степеней числа Комплексные числа - определение и вычисление с примерами решения (если работать только с действительными числами, то всё будет происходить одинаково с точностью до степеней числа —1). Этим и объясняется сходство формул тригонометрии с соответствующими формулами для гиперболических функций, включая формулы для производных и разложения по формуле Тейлора.

Комплекснозначные функции действительной переменной

Рассмотрим функцию Комплексные числа - определение и вычисление с примерами решения такую, что Комплексные числа - определение и вычисление с примерами решения Тогда при всех Комплексные числа - определение и вычисление с примерами решения можно рассмотреть Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Так как Комплексные числа - определение и вычисление с примерами решения можно интерпретировать как плоскость Комплексные числа - определение и вычисление с примерами решения, то комплекснозначная функция действительной переменной фактически есть двумерная вектор-функция, значения которой записываются как комплексные числа.

Определение 7.10. Комплекснозначная функция действительной переменной Комплексные числа - определение и вычисление с примерами решения называется непрерывной (дифференцируемой, непрерывно дифференцируемой, дважды дифференцируемой и т.д.) в точке или на промежутке, если таковыми же являются обе функции Комплексные числа - определение и вычисление с примерами решения Для дифференцируемой функции по определению Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Для комплекснозначных функций сохраняются формулы производной суммы, произведения и частного.

Лемма 7.7. Если комплекснозначные функции действительной переменной Комплексные числа - определение и вычисление с примерами решения дифференцируемы в точке Комплексные числа - определение и вычисление с примерами решения то функции Комплексные числа - определение и вычисление с примерами решения также дифференцируемы в этой точке, причем

Комплексные числа - определение и вычисление с примерами решения

в точке Комплексные числа - определение и вычисление с примерами решения (в последнем случае нужно требовать, чтобы Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

□ Докажем лемму для случая производной произведения. Утверждение для производной суммы доказывается проще, а для производной частного — несколько сложнее, но, по сути дела, аналогично.

Пусть Комплексные числа - определение и вычисление с примерами решения функции Комплексные числа - определение и вычисление с примерами решения дифференцируемы в точке Комплексные числа - определение и вычисление с примерами решения Тогда

Комплексные числа - определение и вычисление с примерами решения

Функция Комплексные числа - определение и вычисление с примерами решения дифференцируема в точке Комплексные числа - определение и вычисление с примерами решения так как существуют и конечны все производные в последнем выражении. Далее,

Комплексные числа - определение и вычисление с примерами решения

Легко видеть, что это выражение совпадает с Комплексные числа - определение и вычисление с примерами решения

Пример №22

Доказать, что при любом Комплексные числа - определение и вычисление с примерами решения имеет место равенство

Комплексные числа - определение и вычисление с примерами решения

т.е. привычная для действительных Комплексные числа - определение и вычисление с примерами решения формула сохраняется и при комплексных Комплексные числа - определение и вычисление с примерами решения

□ Пусть Комплексные числа - определение и вычисление с примерами решения

Тогда Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

С другой стороны, Комплексные числа - определение и вычисление с примерами решения

что совпадает с Комплексные числа - определение и вычисление с примерами решения

Отметим, что производная комплекснозначной функции берётся по действительной переменной. Принципиально иная ситуация возникает при рассмотрении комплекснозначных функций комплексной переменной и при дифференцировании их по комплексной переменной. Здесь имеют место совершенно неожиданные эффекты (например, если функция дифференцируема в окрестности точки, то она имеет производные всех порядков в этой окрестности), которые студенты обычно изучают на III курсе (курс ТФКП — теория функций комплексной переменной).

Многочлены

Функция комплексной переменной Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения называется многочленом степени Комплексные числа - определение и вычисление с примерами решения от переменной Комплексные числа - определение и вычисление с примерами решения Многочлен степени 0 — это постоянная функция Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения Нулевому многочлену не приписывается никакая степень (иногда удобно считать, что его степень равна Комплексные числа - определение и вычисление с примерами решения). Если все Комплексные числа - определение и вычисление с примерами решения, то говорят о многочлене с действительными коэффициентами (Комплексные числа - определение и вычисление с примерами решения или Комплексные числа - определение и вычисление с примерами решения по смыслу задачи). Если все Комплексные числа - определение и вычисление с примерами решения то говорят о многочлене с комплексными коэффициентами Комплексные числа - определение и вычисление с примерами решения

Если Комплексные числа - определение и вычисление с примерами решения — многочлен степени Комплексные числа - определение и вычисление с примерами решения то многочлен Комплексные числа - определение и вычисление с примерами решения можно разделить с остатком на Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения

Теорема 7.1 (Безу). Остаток от деления многочлена Комплексные числа - определение и вычисление с примерами решения на двучлен Комплексные числа - определение и вычисление с примерами решения равен Комплексные числа - определение и вычисление с примерами решения

□ Из (7.1) имеем при Комплексные числа - определение и вычисление с примерами решения

Следствие. Многочлен Комплексные числа - определение и вычисление с примерами решения делится без остатка на Комплексные числа - определение и вычисление с примерами решения тогда и только тогда, когда число Комплексные числа - определение и вычисление с примерами решения является корнем многочлена Комплексные числа - определение и вычисление с примерами решения

□ Утверждение немедленно следует из теоремы Безу.

Таким образом, число Комплексные числа - определение и вычисление с примерами решения является корнем многочлена Комплексные числа - определение и вычисление с примерами решения тогда и только тогда, когда Комплексные числа - определение и вычисление с примерами решения где степень многочлена Комплексные числа - определение и вычисление с примерами решения на единицу меньше степени Р.

Теорема 7.2 (основная теорема алгебры). Любой многочлен степени Комплексные числа - определение и вычисление с примерами решения с комплексными коэффициентами имеет комплексный корень.

В настоящее время мы не располагаем математическим аппаратом для доказательства этой теоремы, поэтому примем её без доказательства. Доказана она будет очень просто в курсе ТФКП (и даже двумя способами — как простое следствие из теоремы Лиувилля или теоремы Руше).

Теорема 7.3. Многочлен с комплексными коэффициентами

Комплексные числа - определение и вычисление с примерами решения

раскладывается в произведение линейных множителей

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения (среди чисел Комплексные числа - определение и вычисление с примерами решения возможно, есть равные).

□    По основной теореме алгебры Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения — многочлен степени Комплексные числа - определение и вычисление с примерами решения Применяя такую же процедуру к Комплексные числа - определение и вычисление с примерами решения получим: Комплексные числа - определение и вычисление с примерами решения — многочлен степени Комплексные числа - определение и вычисление с примерами решения и т.д. В конце концов дойдём до многочлена степени 0.

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения (комплексная постоянная). Здесь Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения — комплексные числа, среди которых могут быть равные.

Если раскрыть скобки в правой части (7.2), то коэффициент при Комплексные числа - определение и вычисление с примерами решения будет равен С, т.е. Комплексные числа - определение и вычисление с примерами решения

Определение 7.11. Комплексное число Комплексные числа - определение и вычисление с примерами решения называется корнем кратности Комплексные числа - определение и вычисление с примерами решения многочлена Комплексные числа - определение и вычисление с примерами решения степени Комплексные числа - определение и вычисление с примерами решения если Комплексные числа - определение и вычисление с примерами решения — многочлен такой, что Комплексные числа - определение и вычисление с примерами решения При Комплексные числа - определение и вычисление с примерами решения корень называется простым, при Комплексные числа - определение и вычисление с примерами решения— кратным.

Если Комплексные числа - определение и вычисление с примерами решения, то число Комплексные числа - определение и вычисление с примерами решения не является корнем многочлена Комплексные числа - определение и вычисление с примерами решения

В общем случае, учитывая кратность корней, многочлен Комплексные числа - определение и вычисление с примерами решения степени Комплексные числа - определение и вычисление с примерами решения раскладывается на линейные множители:

Комплексные числа - определение и вычисление с примерами решения

где все комплексные числаКомплексные числа - определение и вычисление с примерами решения различны, корень Комплексные числа - определение и вычисление с примерами решения имеет кратность Комплексные числа - определение и вычисление с примерами решения, при этом степень многочлена равна Комплексные числа - определение и вычисление с примерами решения

Лемма 7.8. Пусть Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения (многочлен, сопряжённый к P). Число Комплексные числа - определение и вычисление с примерами решения является корнем многочлена Р  кратности Комплексные числа - определение и вычисление с примерами решения тогда и только тогда, когда число а является корнем многочлена Комплексные числа - определение и вычисление с примерами решения той же кратности Комплексные числа - определение и вычисление с примерами решения

 □ Так как Комплексные числа - определение и вычисление с примерами решения то утверждение достаточно доказать лишь в одну сторону. Пусть Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Так как Комплексные числа - определение и вычисление с примерами решения — любое комплексное число, то в последней записи можно заменить Комплексные числа - определение и вычисление с примерами решения Получим

Комплексные числа - определение и вычисление с примерами решения

Это и означает, что Комплексные числа - определение и вычисление с примерами решения — корень многочлена Комплексные числа - определение и вычисление с примерами решения кратности Комплексные числа - определение и вычисление с примерами решения

Следствие. Если Комплексные числа - определение и вычисление с примерами решения — многочлен с действительными коэффициентами, то числа Комплексные числа - определение и вычисление с примерами решения одновременно являются его корнями, причем кратности их совпадают (т.е. недействительные корни появляются «парочками» — взаимно сопряжённые корни одинаковой кратности).

□ Это очевидно из леммы 7.8, так как Комплексные числа - определение и вычисление с примерами решения — один и тот же многочлен.  

Теорема 7.4. Многочлен степени Комплексные числа - определение и вычисление с примерами решения с действительными коэффициентами Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения раскладывается в произведение линейных и неприводимых квадратичных множителей:

Комплексные числа - определение и вычисление с примерами решения

□ По теореме 7.3 и лемме 7.8

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения — действительные корни многочлена Комплексные числа - определение и вычисление с примерами решения кратностей Комплексные числа - определение и вычисление с примерами решения соответственно, a Комплексные числа - определение и вычисление с примерами решения — оставшиеся корни (Комплексные числа - определение и вычисление с примерами решения имеют одинаковую кратность Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения). Очевидно, что степень многочлена равна Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения т.е. эта сумма равна Комплексные числа - определение и вычисление с примерами решения

Пусть Комплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Получили квадратный трёхчлен с действительными коэффициентами Комплексные числа - определение и вычисление с примерами решения который имеет отрицательный дискриминант Комплексные числа - определение и вычисление с примерами решения Остаётся символически заменить Комплексные числа - определение и вычисление с примерами решения подчёркивая этим, что нас интересуют лишь действительные значения Комплексные числа - определение и вычисление с примерами решения и мы получим нужное равенство. 

Теорема 7.4 является примером утверждения, в формулировке которого отсутствуют комплексные числа (чисто действительное утверждение), а естественное доказательство его получается с выходом во множество комплексных чисел. Таких утверждений можно встретить немало в различных математических курсах и прикладных науках.

Кстати, квадратный трехчлен с комплексными коэффициентами имеет такой же вид разложения на линейные множители, как и квадратный трёхчлен с действительными корнями в элементарной алгебре:

Комплексные числа - определение и вычисление с примерами решения

Корни Комплексные числа - определение и вычисление с примерами решения — комплексные, и они обязательно существуют. Роль дискриминанта Комплексные числа - определение и вычисление с примерами решения сводится только к определению того, различны ли корни Комплексные числа - определение и вычисление с примерами решения или они совпадают (т.е. квадратный трёхчлен имеет один корень Комплексные числа - определение и вычисление с примерами решения кратности 2). Если Комплексные числа - определение и вычисление с примерами решения то квадратный трёхчлен имеет два различных простых корня, если Комплексные числа - определение и вычисление с примерами решения — один корень кратности 2. В самом деле, решая квадратное уравнение Комплексные числа - определение и вычисление с примерами решения методом выделения полного квадрата, получим, как и в элементарной алгебре:

Комплексные числа - определение и вычисление с примерами решения

Если Комплексные числа - определение и вычисление с примерами решения и уравнение имеет один корень Комплексные числа - определение и вычисление с примерами решения кратности 2 Комплексные числа - определение и вычисление с примерами решения Если Комплексные числа - определение и вычисление с примерами решения то Комплексные числа - определение и вычисление с примерами решения (писать ± не имеет смысла, так как Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения и под Комплексные числа - определение и вычисление с примерами решения понимаются оба значения квадратного корня из ненулевого комплексного числа). Окончательно получим привычную формулу корней квадратного уравнения:

Комплексные числа - определение и вычисление с примерами решения

Пример №23

Решить уравнение Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения Найдём оба значения Комплексные числа - определение и вычисление с примерами решения Пусть Комплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения Решая эту систему, получим: Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Полученное биквадратное уравнение Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения решается при помощи замены Комплексные числа - определение и вычисление с примерами решения Квадратное уравнение Комплексные числа - определение и вычисление с примерами решения имеет корни Комплексные числа - определение и вычисление с примерами решения Так как Комплексные числа - определение и вычисление с примерами решения Получили два значения квадратного корня: Комплексные числа - определение и вычисление с примерами решения Тогда корни данного уравнения равны

Комплексные числа - определение и вычисление с примерами решения

Пример №24

Найти все значения Комплексные числа - определение и вычисление с примерами решения решая уравнение Комплексные числа - определение и вычисление с примерами решения

□ Левая часть раскладывается на множители:

Комплексные числа - определение и вычисление с примерами решения

Поэтому один из корней равен 2. Квадратный трёхчлен Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения не имеет действительных корней Комплексные числа - определение и вычисление с примерами решения поэтому Комплексные числа - определение и вычисление с примерами решения имеет всего одно действительное значение 2. Найдём оставшиеся два комплексно-сопряжённых значения. Решаем квадратное уравнение Комплексные числа - определение и вычисление с примерами решения по формуле чётного коэффициента:

Комплексные числа - определение и вычисление с примерами решения

Во множестве комплексных чисел Комплексные числа - определение и вычисление с примерами решения имеет два значения Комплексные числа - определение и вычисление с примерами решения поэтому Комплексные числа - определение и вычисление с примерами решения имеет 3 комплексных значения: Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения (такой же результат был получен в примере 7.3 другим способом).    ■

Разложение правильной дроби в сумму простейших дробей

Мы будем рассматривать действительные дробно-рациональные функции Комплексные числа - определение и вычисление с примерами решения— многочлены степеней соответственно Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения Дробь называется правильной, если Комплексные числа - определение и вычисление с примерами решения и неправильной, если Комплексные числа - определение и вычисление с примерами решения

Лемма 7.9. Если Комплексные числа - определение и вычисление с примерами решения правильная дробь и Комплексные числа - определение и вычисление с примерами решения —действительный корень многочлена Комплексные числа - определение и вычисление с примерами решения кратности Комплексные числа - определение и вычисление с примерами решения то

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения — многочлен, для которого Комплексные числа - определение и вычисление с примерами решения является корнем кратности Комплексные числа - определение и вычисление с примерами решения a Комплексные числа - определение и вычисление с примерами решения— такой многочлен, что дробь Комплексные числа - определение и вычисление с примерами решения является правильной.

□ Так как Комплексные числа - определение и вычисление с примерами решения — корень Комплексные числа - определение и вычисление с примерами решения кратности Комплексные числа - определение и вычисление с примерами решения то Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения — многочлен такой, что Комплексные числа - определение и вычисление с примерами решения Рассмотрим число Комплексные числа - определение и вычисление с примерами решения и многочлен Комплексные числа - определение и вычисление с примерами решения (это многочлен, так как Комплексные числа - определение и вычисление с примерами решения и числитель делится нацело на Комплексные числа - определение и вычисление с примерами решения).

Так как степень G меньше степени Q и степень Р меньше степени Q, то степень числителя последней дроби меньше степени Q; значит, степень Комплексные числа - определение и вычисление с примерами решения меньше степени Комплексные числа - определение и вычисление с примерами решения т.е. дробь Комплексные числа - определение и вычисление с примерами решения правильная. Далее, Комплексные числа - определение и вычисление с примерами решения откуда Комплексные числа - определение и вычисление с примерами решения

Утверждение леммы, очевидно, сохраняется, если все числа и многочлены считать комплексными.

Лемма 7.10. ПустьКомплексные числа - определение и вычисление с примерами решения — неприводимый квадратный трёхчлен, входящий в разложение многочлена Комплексные числа - определение и вычисление с примерами решения на множители в степени Комплексные числа - определение и вычисление с примерами решения Тогда правильная дробь Комплексные числа - определение и вычисление с примерами решения представляется в виде

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения — многочлен, в разложение которого Комплексные числа - определение и вычисление с примерами решения входит в степени Комплексные числа - определение и вычисление с примерами решения — такой многочлен, что дробь Комплексные числа - определение и вычисление с примерами решения является правильной.

□ Пусть Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения комплексно-сопряжённые корни квадратного трёхчлена Комплексные числа - определение и вычисление с примерами решения — действительный многочлен такой, что Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Рассмотрим действительные числа А и В такие, что

Комплексные числа - определение и вычисление с примерами решения

Такие числа А и В определены единственным образом, так как если Комплексные числа - определение и вычисление с примерами решения то равенство (7.3) перепишется так:

Комплексные числа - определение и вычисление с примерами решения

и числа А, В находятся из системы Комплексные числа - определение и вычисление с примерами решения очевидно, имеющей единственное решение. Из (7.3) следует также, что Комплексные числа - определение и вычисление с примерами решения так как Комплексные числа - определение и вычисление с примерами решения — многочлены с действительными коэффициентами.

Рассмотрим многочлен Комплексные числа - определение и вычисление с примерами решения (это — многочлен, так как Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения значит, числитель делится нацело на Комплексные числа - определение и вычисление с примерами решения и на Комплексные числа - определение и вычисление с примерами решения следовательно, делится на Комплексные числа - определение и вычисление с примерами решения). Пусть степень Q равна Комплексные числа - определение и вычисление с примерами решения Так как степень G не превосходит Комплексные числа - определение и вычисление с примерами решения то степень многочлена Комплексные числа - определение и вычисление с примерами решения не превосходит Комплексные числа - определение и вычисление с примерами решения т.е. меньше степени Q. Степень Р также меньше степени Q, поэтому степень числителя последней дроби меньше степени Q.

Значит, степень Комплексные числа - определение и вычисление с примерами решения меньше, чем Комплексные числа - определение и вычисление с примерами решения, т.е. меньше степени Комплексные числа - определение и вычисление с примерами решения и дробь Комплексные числа - определение и вычисление с примерами решенияправильная. Далее,

Комплексные числа - определение и вычисление с примерами решения

откуда

Комплексные числа - определение и вычисление с примерами решения

Последовательно выделяя из многочлена Комплексные числа - определение и вычисление с примерами решения линейные, а затем неприводимые квадратичные множители, и применяя соответственно леммы 7.9 и 7.10, получим разложение Комплексные числа - определение и вычисление с примерами решения в сумму правильных дробей вида

Комплексные числа - определение и вычисление с примерами решения

(здесь Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения — как разложение многочлена в теореме 7.4).

Все слагаемые последней суммы называются простейшими дробями. Все коэффициенты, обозначенные символом Комплексные числа - определение и вычисление с примерами решения, являются действительными числами (вообще говоря, различными). Всего их Комплексные числа - определение и вычисление с примерами решения штук. Можно доказать, что они определены единственным образом. Процесс выделения слагаемых по леммам 7.9 и 7.10 прекратится, когда в знаменателе останется ровно один множитель вида Комплексные числа - определение и вычисление с примерами решения Но такая правильная дробь сама будет простейшей. Таким образом, доказана

Теорема 7.5. Любая правильная рациональная дробь с действительными коэффициентами раскладывается в сумму простейших дробей.

Пример №25

Разложить в сумму простейших дробей:

Комплексные числа - определение и вычисление с примерами решения

а) Комплексные числа - определение и вычисление с примерами решения Приводя к общему знаменателю, имеем: Комплексные числа - определение и вычисление с примерами решения При Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения получим Комплексные числа - определение и вычисление с примерами решения при Комплексные числа - определение и вычисление с примерами решения получим Комплексные числа - определение и вычисление с примерами решения Окончательно имеем: Комплексные числа - определение и вычисление с примерами решения

б)Комплексные числа - определение и вычисление с примерами решения Приводя в общему знаменателю, имеем: Комплексные числа - определение и вычисление с примерами решения
Комплексные числа - определение и вычисление с примерами решения При Комплексные числа - определение и вычисление с примерами решения получим Комплексные числа - определение и вычисление с примерами решения Приравнивая коэффициенты при Комплексные числа - определение и вычисление с примерами решения получим Комплексные числа - определение и вычисление с примерами решения т.е. Комплексные числа - определение и вычисление с примерами решения Приравнивая свободные члены, получим Комплексные числа - определение и вычисление с примерами решения откуда Комплексные числа - определение и вычисление с примерами решения Окончательно имеем

Комплексные числа - определение и вычисление с примерами решения

в) Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения Приводя к общему знаменателю, имеем: Комплексные числа - определение и вычисление с примерами решения Приравнивая коэффициенты при Комплексные числа - определение и вычисление с примерами решения получим: Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения откуда Комплексные числа - определение и вычисление с примерами решения Окончательно имеем

Комплексные числа - определение и вычисление с примерами решения

Вычисление комплексного числа

Определение 1.1. Многочленом (полиномом) степени n с действительными коэффициентами называется любое выражение вида
Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения
х – переменная.

Корнем многочлена (1.1) называется любое число Комплексные числа - определение и вычисление с примерами решения такое, чтоКомплексные числа - определение и вычисление с примерами решения

Нетрудно заметить, что некоторые многочлены вообще не имеют
действительных корней, например: Комплексные числа - определение и вычисление с примерами решения

Расширим множество действительных чисел. Добавим к этому
множеству символ i , такой что Комплексные числа - определение и вычисление с примерами решения ( i называется мнимой единицей).
Тогда ±i – два корня уравнения Комплексные числа - определение и вычисление с примерами решения
 

Определение 1.2. Множеством комплексных чисел называется множество
Комплексные числа - определение и вычисление с примерами решения

Суммой двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения называется число
Комплексные числа - определение и вычисление с примерами решения.
Произведением двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения называется число
Комплексные числа - определение и вычисление с примерами решения
Для числа z= a +bi число а называется действительной частью,
число b – мнимой частью. Обозначения: Комплексные числа - определение и вычисление с примерами решения

Относительно операций «+» и « · » комплексные числа С обладают
такими же свойствами, как и действительные числа. Эти операции
коммутативны и ассоциативны; для них существуют обратные операции:
вычитание и деление (кроме деления на 0).

Пример №26

Найти Комплексные числа - определение и вычисление с примерами решения

Решение:

Комплексные числа - определение и вычисление с примерами решения
 

Теорема 1.1 (основная теорема алгебры). Любое уравнение вида (1.2)
имеет решение во множестве С.
 

Пример №27

Решить уравнение
Комплексные числа - определение и вычисление с примерами решения

Решение:

Комплексные числа - определение и вычисление с примерами решения
 

Определение 1.3. Для комплексного числа z =a +bi число z =a -bi называется комплексно-сопряженным, число Комплексные числа - определение и вычисление с примерами решенияназывается модулем z.

Если рассмотреть плоскость с декартовой системой координат ( O,x,y ) и на оси Ох отложить а – действительную часть z, а на оси Oy – b – мнимую часть z, то получим взаимно однозначное соответствие между множеством С всех
комплексных чисел и множеством точек плоскости.

Такая плоскость называется комплексной плоскостью, рис. 1.1.

Комплексные числа - определение и вычисление с примерами решения

При этом Комплексные числа - определение и вычисление с примерами решения – длина радиуса-вектора точки z.

Комплексные числа - определение и вычисление с примерами решения

Определение 1.4. Аргументом комплексного числа z =a +bi  называется
угол Комплексные числа - определение и вычисление с примерами решения, который образует радиус-вектор точки z с положительным
направлением оси Ох Аргумент будем обозначать Argz . Аргумент
определен с точностью до 2 πn. При этом значение Комплексные числа - определение и вычисление с примерами решения называется
главным и обозначается argz.
 

Замечание. Комплексные числа - определение и вычисление с примерами решения

При этом
Комплексные числа - определение и вычисление с примерами решения
Если Комплексные числа - определение и вычисление с примерами решения – аргумент z, то z представляется в виде Комплексные числа - определение и вычисление с примерами решения

тригонометрическая форма комплексного числа.
 

Теорема 1.2. Пусть Комплексные числа - определение и вычисление с примерами решения
Комплексные числа - определение и вычисление с примерами решения

Доказательство
Комплексные числа - определение и вычисление с примерами решения 

Из формул (1.5) следует, в частности, что Комплексные числа - определение и вычисление с примерами решения – формула Муавра. (1.6)

Пример №28

Комплексные числа - определение и вычисление с примерами решения Представить числа Комплексные числа - определение и вычисление с примерами решения в тригонометрической форме.

Решение:

Комплексные числа - определение и вычисление с примерами решения
поэтому по формуле (1.3)
Комплексные числа - определение и вычисление с примерами решения
Тогда по формуле (1.4)
Комплексные числа - определение и вычисление с примерами решения

поэтому по формуле (1.3)
Комплексные числа - определение и вычисление с примерами решения

Тогда Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Из формул (1.5), (1.6) видно, что аргумент Комплексные числа - определение и вычисление с примерами решения комплексного числа z при
умножении, делении, возведении в степень ведет себя как показатель
степени. Обозначим Комплексные числа - определение и вычисление с примерами решения – формула Эйлера. (1.7)

Тогда из теоремы 1.2 следует, что
Комплексные числа - определение и вычисление с примерами решения

Учитывая (1.7), формулу (1.4) для z можно переписать в виде Комплексные числа - определение и вычисление с примерами решенияпоказательная форма комплексного числа.

Пример №29

Вычислить Комплексные числа - определение и вычисление с примерами решения

Решение:

Согласно примеру 1.3 Комплексные числа - определение и вычисление с примерами решения

Поэтому

 Комплексные числа - определение и вычисление с примерами решения

Определение 1.5. Корнем n-й степени из числа z Комплексные числа - определение и вычисление с примерами решенияC называется такое
число Комплексные числа - определение и вычисление с примерами решения, что Комплексные числа - определение и вычисление с примерами решения, при этом обозначается Комплексные числа - определение и вычисление с примерами решения. Таким образом
Комплексные числа - определение и вычисление с примерами решения

Из формулы (1.8) видно что Комплексные числа - определение и вычисление с примерами решения корней n-й степени из числа z, при этом,
если Комплексные числа - определение и вычисление с примерами решения, то

Комплексные числа - определение и вычисление с примерами решения
 

Пример №30

Найти Комплексные числа - определение и вычисление с примерами решения

Решение:

Комплексные числа - определение и вычисление с примерами решения

  • Координаты на прямой
  • Координаты на плоскости
  • Линейная функция
  • Квадратичная функция
  • Степенные ряды
  • Элементы матричного анализа
  • Уравнение линии
  • Функции нескольких переменных

Содержание:

  1. Комплексные числа
  2. Алгебраическая форма комплексного числа
  3. Действия над комплексными числами в алгебраической форме
  4. Геометрическая интерпретация комплексного числа
  5. Тригонометрическая форма комплексного числа
  6. Действия над комплексными числами в тригонометрической форме
  7. Показательная форма комплексного числа
  8. Что такое комплексное число
  9. Понятие о комплексном числе
  10. Арифметические операции над комплексными числами
  11. Отыскание комплексных корней уравнений

Комплексные числа

Комплексное число — это выражение вида a + bi, где ab — действительные числа, а i — так называемая мнимая единица, символ, квадрат которого равен –1, то есть i2 = –1. Число a называется действительной частью, а число b — мнимой частью комплексного числа z = a + bi. Если b = 0, то вместо a + 0i пишут просто a. Видно, что действительные числа — это частный случай комплексных чисел.

Алгебраическая форма комплексного числа

На множестве действительных чисел ряд алгебраических задач, в частности нахождение корней квадратных уравнений с отрицательным дискриминантом, не имеет решения. Введём некоторое навое число, которое будем считать решением уравнения х2 + 1 = 0. Корень уравнения  х2 + 1 = 0 или  х= -1 называется мнимой единицей и обозначается буквой i. Таким образом i2 = -1.

В некоторых технических дисциплинах мнимую единицу обозначают буквой j. В дальнейшем будем использовать оба обозначения.

Мнимая единица позволяет ввести числа нового вида, которые называют комплексными.

Комплексным числом называют выражение вида Комплексные числа в математике, где Комплексные числа в математике — действительные числа, i — мнимая единица.

Число Комплексные числа в математике называют действительной, а число Комплексные числа в математике — мнимой частями комплексного числа. Комплексное число, как правило, обозначают буквой Комплексные числа в математике. Два комплексных числа Комплексные числа в математике называют равными тогда и только тогда, когда Комплексные числа в математике, то есть когда равны их действительные части и коэффициенты при мнимой части. 

Понятия «больше» и «меньше» для комплексных чисел не определено. Комплексное число Комплексные числа в математике называется нулём и обозначается 0; комплексное число Комплексные числа в математике отождествляется с действительным числом Комплексные числа в математике; комплексное число Комплексные числа в математике называют чисто мнимым и обозначают Комплексные числа в математике. Число 0 является единым числом, которое одновременно и является действительным, и чисто мнимое.

Комплексные числа Комплексные числа в математике называются сопряжёнными и обозначаются Комплексные числа в математике иКомплексные числа в математике. Например, в числе Комплексные числа в математике, сопряжённым к нему будет число Комплексные числа в математике, а для числа Комплексные числа в математике сопряжённым будет число Комплексные числа в математике.

Множество комплексных чисел принято обозначать буквой С. Запись комплексного числа в виде Комплексные числа в математике называется алгебраической формой комплексного числа.

Действия над комплексными числами в алгебраической форме

Сложение, вычитание, умножение комплексных чисел в алгебраической форме по правилам соответствующих действий над многочленами.

Пример 1. Найти сумму и произведение комплексных чисел Комплексные числа в математике

Решение: Сумму находим формальным сложением двучленов Комплексные числа в математикеКомплексные числа в математике

произведение находим перемножив двучлены Комплексные числа в математике с последующей заменой Комплексные числа в математике.

Комплексные числа в математике

Ответ: Комплексные числа в математике

Легко увидеть, что слагаемое двух сопряжённых чисел является действительным числом:

Комплексные числа в математике

Воспользуемся этим свойством для введения действия деления двух комплексных чисел.

При делении комплексных чисел Комплексные числа в математике, где Комплексные числа в математике достаточно умножить числитель и знаменатель дроби Комплексные числа в математике на число сопряжённое к знаменателю, то есть на Комплексные числа в математике

Пример 2. Даны комплексные числа  Комплексные числа в математике и Комплексные числа в математике Найдите разность Комплексные числа в математике и частное Комплексные числа в математике

Решение:

Находим разность вычитанием двучленов Комплексные числа в математикеКомплексные числа в математике

Чтобы найти частное Комплексные числа в математике умножим числитель и знаменатель на число, сопряжённое к знаменателю:

Комплексные числа в математике

Ответ: Комплексные числа в математике

Действия над комплексными числами имеют следующие интересные свойства:

Комплексные числа в математике

Доказательство выходит из определения сопряжённых чисел. Действительно, 

Комплексные числа в математике

Аналогично доказываются и другие приведённые свойства.

Возведение комплексного числа в степень выполняется по формулам возведения двучлена в степень. При этом следует учитывать, что

Комплексные числа в математике

Например:

Комплексные числа в математике

Пример 3. Найти комплексное число  Комплексные числа в математике

Решение: 

Выполнив в знаменателе возведение в степень, получим:

Комплексные числа в математике

Умножив числитель и знаменатель на число, сопряжённое к знаменателю, то есть на -5-12i, получим:

Комплексные числа в математике

Ответ: z = i.

Геометрическая интерпретация комплексного числа

Каждому комплексному числу Комплексные числа в математике можно поставить в соответствие упорядоченную пару действительных чисел Комплексные числа в математике и наоборот. Такая упорядоченная пара действительных чисел определяет точку или вектор на плоскости.

Следовательно, комплексное число вида Комплексные числа в математике изображается на координатной плоскости точкой Комплексные числа в математике или вектором, начало которого совпадает с началом координат, а конец с т. М.

Сама координата плоскости называется при этом комплексной плоскости, ось абсцисс — действительной осью, ось ординат — мнимой осью.

Например, изобразим числа Комплексные числа в математикеКомплексные числа в математике

Комплексные числа в математике

Представление комплексного числа как вектора на плоскости позволяет ввести понятие модуля и аргумента комплексного числа.

Модулем комплексного числа называют длину вектора, которая соответствует данному числу (обозначают r либо p).

Аргументом комплексного числа Комплексные числа в математике называют величину угла Комплексные числа в математике между положительным направлением действительной оси и вектора, который соответствует данному комплексному числу.

Рассмотрим рисунок:

Комплексные числа в математике

На основе теоремы Пифагора получаем Комплексные числа в математике

Например, комплексное число Комплексные числа в математике имеет модуль равный 10, так как 

Комплексные числа в математике

Аргумент комплексного числа Комплексные числа в математике, в отличии от модуля, вычисляется неоднозначно. Так аргументом числа 5 являются следующие углы Комплексные числа в математикеКомплексные числа в математике Среди бесконечного множества значений аргумента только одно принадлежит промежутку Комплексные числа в математике. Эти значения аргумента мы и будем вычислять.

Аргумент легко вычислить, если комплексное число расположено в I четверти. Действительно, согласно тригонометрическим соотношениям в прямоугольном треугольнике (рис. 2) имеем:

Комплексные числа в математике

Если комплексные числа размещены в других четвертях, то необходимо провести дополнительные рассуждения. Рассмотрим рис. 3. Видим, что для

Комплексные числа в математике

Комплексные числа в математике

Таким образом, алгоритм нахождения аргумента комплексного числа следующий:

1.Определить коэффициент Комплексные числа в математике заданного комплексного числа.

2. Найти  Комплексные числа в математике

3. Установить, в какой четверти расположено комплексное число.

4. Вычислить аргумент Комплексные числа в математике согласно приведённым формулам.

Возможны и другие способы нахождения аргумента комплексного числа, например:

Комплексные числа в математике

Пример 4. Найти аргумент комплексного числа Комплексные числа в математике

Комплексные числа в математике

Тригонометрическая форма комплексного числа

Рассмотрим рис. 2. Согласно тригонометрическим соотношениям в прямоугольном треугольнике числа Комплексные числа в математике можно выразить через r и Комплексные числа в математике таким образом:

Комплексные числа в математике

Тогда комплексное число запишется в виде:

Комплексные числа в математике

Запись комплексного числа в таком виде называется тригонометрической формой комплексного числа.

Следовательно, для того, чтобы перейти от алгебраической формы записи комплексного  числа Комплексные числа в математике к тригонометрической, достаточно найти его модуль и аргумент.

Пример 5. Записать число Комплексные числа в математике в тригонометрической форме.

Решение:

Найдём модуль Комплексные числа в математике

Найдём острый угол Комплексные числа в математике

Вектор, который соответствует данному комплексному числу принадлежит третьей четверти, поэтому аргумент равен Комплексные числа в математике следовательно Комплексные числа в математике

Ответ:Комплексные числа в математике

Для того, чтобы перейти от тригонометрической формы записи комплексного числа Комплексные числа в математике к алгебраической, достаточно найти действительные числа Комплексные числа в математике из формул Комплексные числа в математике

Пример 6. Записать число Комплексные числа в математике в алгебраической форме.

Найдём Комплексные числа в математике и Комплексные числа в математике

Комплексные числа в математике

Ответ:Комплексные числа в математике

Действия над комплексными числами в тригонометрической форме

В тригонометрической форме записи комплексного числа выполняют действия умножения, деления, возведения в степень, извлечения корня n-й степени. Выведение формул, по которым выполняются действия, относительно просты и основываются на основных формулах тригонометрии.

Комплексные числа в математике

Следовательно, при умножении комплексных чисел, заданных в тригонометрической форме, их модули перемножают, а аргументы складывают; при делении — модули делят, а аргументы вычитают.

Правило умножения комплексных чисел автоматически распространяется на произвольное число множителей. Если взять равные множители Комплексные числа в математике

Комплексные числа в математике

Полученную формулу называют формулой Муавра.

Для извлечении корня n-й степени из комплексного числа Комплексные числа в математике используют формулу:

Комплексные числа в математике

где Комплексные числа в математике арифметический корень, Комплексные числа в математике

Комплексные числа в математике

Пример 8. Вычислить Комплексные числа в математике Ответ записать в алгебраической форме.

Решение: Находим:

Комплексные числа в математике

Ответ: Комплексные числа в математике

Пример 9. ВычислитьКомплексные числа в математике

Решение: Запишем числоКомплексные числа в математике в тригонометрической форме:

Комплексные числа в математике

Комплексные числа в математике

Пример 10. Вычислите Комплексные числа в математике. Ответ запишите в алгебраической и тригонометрической формах.

Решение: Запишем число -81 в тригонометрической форме:

Комплексные числа в математике

Тогда:

Комплексные числа в математике

Комплексные числа в математике

Показательная форма комплексного числа

Рассматривая функцию Комплексные числа в математике для комплексной переменной, известный математик Л. Эйлер установил соотношение Комплексные числа в математике

Из заданной формулы следует, что каждое комплексное число Комплексные числа в математике можно записать в виде Комплексные числа в математике которое называется показательной формой записи.

Над комплексными числами в показательной форме выполняют те же действия что и в тригонометрической форме. Выведение формул, по которым выполняют действия основывается на основных свойствах степени.

Пусть Комплексные числа в математике, тогда:  

Комплексные числа в математике

Пример 11. Представить число Комплексные числа в математике в алгебраической форме.

Решение: Согласно условию задачи Комплексные числа в математике, поэтому

Комплексные числа в математике

значит

Комплексные числа в математике

Ответ:Комплексные числа в математике

Пример 12. Выполнить действия, результат записать в тригонометрической и показательной формах: Комплексные числа в математике

Решение: Сначала выполним действия:

Комплексные числа в математике

Теперь полученное число запишем в тригонометрической и показательной формах. Для этого найдём модуль и аргумент:

Комплексные числа в математике

Тогда

Комплексные числа в математике

Ответ: Комплексные числа в математике

Что такое комплексное число

Комплексные числа — это числа вида Комплексные числа в математике, где Комплексные числа в математике — вещественные числа,Комплексные числа в математике — мнимая единица, то есть число, для которого выполняется равенство: Комплексные числа в математике

Понятие о комплексном числе

Процесс расширения понятия числа от натуральных к действительным был связан как с потребностями практики, так и с нуждами самой математики. Сначала для счета предметов использовались натуральные числа. Необходимость выполнения деления привела к понятию обыкновенной (и десятичной) дроби, необходимость выполнения вычитания — к понятиям нуля и отрицательного числа, необходимость извлечения корней из положительных чисел — к понятию иррационального числа.

Все перечисленные операции выполнимы на множестве действительных чисел. Однако остались и невыполнимые на этом множестве операции, например извлечение квадратного корня из отрицательного числа. Значит, имеется потребность в дальнейшем расширении понятия числа, в появлении новых чисел, отличных от действительных.

Геометрически действительные числа изображаются точками на координатной прямой: каждому действительному числу соответствует одна точка прямой («образ» действительного числа) и, обратно, каждая точка координатной прямой соответствует одному действительному числу. Координатная прямая сплошь заполнена образами действительных чисел, т. е., выражаясь фигурально, «на ней нет места для новых чисел». Возникает предположение о том, что геометрические образы новых чисел надо искать уже не на прямой, а на плоскости. Однако каждую точку М координатной плоскости ху можно отождествить с координатами этой точки. Поэтому естественно в качестве новых чисел ввести упорядоченные пары действительных чисел (упорядоченные в том смысле, что Комплексные числа в математике — разные точки, а значит, и разные числа).

Комплексным числом называют всякую упорядоченную пару Комплексные числа в математике действительных чисел Комплексные числа в математике

Два комплексных числа Комплексные числа в математике называют равными тогда и только тогда, когда Комплексные числа в математике

Арифметические операции над комплексными числами

Суммой комплексных чисел Комплексные числа в математике Комплексные числа в математике называют комплексное число Комплексные числа в математике

Например, Комплексные числа в математике

Комплексные числа в математике

Комплексным нулем считают пару (0; 0). Числом, противоположным числу Комплексные числа в математике считают число Комплексные числа в математике обозначают его Комплексные числа в математике

Разностью комплексных чисел Комплексные числа в математике называют, как обычно, такое число Комплексные числа в математике Разность всегда существует и единственна. В самом деле, пусть Комплексные числа в математике Тогда Комплексные числа в математикеКомплексные числа в математике Это значит, что Комплексные числа в математике откуда находим Комплексные числа в математике Комплексные числа в математике

Таким образом, получаем следующее правило вычитания комплексных чисел: Комплексные числа в математикеКомплексные числа в математике

Например, (9; 10) — (8; 12) = (9 — 8; 10 — 12) = (1;-2).

Произведением комплексных чисел Комплексные числа в математикеКомплексные числа в математике называют комплексное число Комплексные числа в математике

Например, если Комплексные числа в математике то

Комплексные числа в математике

Арифметические операции над комплексными числами обладают теми же свойствами, что арифметические операции над действительными числами (см. п. 29).

Пусть Комплексные числа в математике Существует, и только одно, комплексное число Комплексные числа в математике такое, что Комплексные числа в математике Это число и называют, как обычно, частным от деления z на w.

Имеем Комплексные числа в математикеКомплексные числа в математике Так какКомплексные числа в математике то должны выполняться равенства

Комплексные числа в математике

Из этой системы двух уравнений с двумя переменными находим (см. п. 164) Комплексные числа в математикеКомплексные числа в математике Итак,

Комплексные числа в математике

Получили следующее правило деления комплексных чисел: если Комплексные числа в математике то

Комплексные числа в математике

Например,

Комплексные числа в математике

Алгебраическая форма комплексного числа

Используя введенные в п. 45 определения сложения и умножения комплексных чисел, легко получить следующие равенства:

Комплексные числа в математике

Условились вместо Комплексные числа в математике писать просто Комплексные числа в математике, а комплексное число (0; 1) обозначать буквой Комплексные числа в математике и называть мнимой единицей. Тогда равенство (1) принимает вид Комплексные числа в математике т. е.

Комплексные числа в математике

а равенство (2) — вид

Комплексные числа в математике

Запись Комплексные числа в математике называют алгебраической формой комплексного числа Комплексные числа в математике при этом число Комплексные числа в математике называют действительной частью комплексного числа z, a bi — его мнимой частью.

Например, Комплексные числа в математикеКомплексные числа в математике

Если мнимая часть комплексного числа Комплексные числа в математике отлична от нуля, то число называют мнимым, если при этом Комплексные числа в математике = 0, т. е. число имеет вид bi, то его называют чисто мнимым, наконец, если у комплексного числа Комплексные числа в математике мнимая часть равна нулю, то получается действительное число Комплексные числа в математике.

Алгебраическая форма существенно облегчает выполнение арифметических операций над комплексными числами.

Сложение. Известно (см. п. 45), что

Комплексные числа в математике

Выполнив сложение тех же чисел в алгебраической форме, считая Комплексные числа в математике и с + di обычными двучленами, находим

Комплексные числа в математике

Сравнивая равенства (7) и (8), замечаем, что получился верный результат.

Вычитание. Известно (см. п. 45), что

Комплексные числа в математике

Выполнив вычитание тех же чисел в алгебраической форме, считая Комплексные числа в математике и с + di обычными двучленами, находим

Комплексные числа в математике

Сравнивая равенства (9) и (10), замечаем, что получился верный результат.

Умножение. Известно (см. п. 45), что

Комплексные числа в математике

Выполнив умножение тех же чисел в алгебраической форме, считая Комплексные числа в математике и с + di обычными двучленами, находим

Комплексные числа в математике

Воспользуемся тем, что Комплексные числа в математике (см. равенство (5)); тогда Комплексные числа в математике В результате получаем

Комплексные числа в математике

Сравнивая равенства (11) и (12), замечаем, что получился верный результат.

Деление. Известно (см. п. 45), что если Комплексные числа в математике то

Комплексные числа в математике

Выполним деление тех же чисел в алгебраической форме, считая Комплексные числа в математике и с + di обычными двучленами, a Комплексные числа в математике— обычной дробью. Умножив числитель и знаменатель этой дроби на с — di (предполагая, что значение дроби от этого не изменится), находим

Комплексные числа в математике

Итак,

Комплексные числа в математике

Сравнивая равенства (13) и (14), замечаем, что получился верный результат.

Подводя итоги, приходим к следующему важному практическому выводу: над комплексными числами, записанными в алгебраической форме, можно осуществлять все арифметические операции как над обычными двучленами, учитывая лишь, что Комплексные числа в математике Чтобы преобразовать в комплексное число дробь вида Комплексные числа в математике нужно числитель и знаменатель дроби умножить на число с — di; числа с + di и с — di называют комплексно-сопряженными.

Пример 1.

Вычислить Комплексные числа в математике

Решение: 

Применив формулу Комплексные числа в математикеКомплексные числа в математике, получим

Комплексные числа в математике

Пример 2.

Вычислить Комплексные числа в математике

Решение: 

Комплексные числа в математике

Комплексные числа в математике

Пример 3.

Найти действительные числа х и у такие, что выполняется равенство Комплексные числа в математикеКомплексные числа в математике

Решение: 

Имеем Комплексные числа в математике Комплексные числа в математике Тогда заданное равенство можно переписать в виде

Комплексные числа в математике

Комплексные числа Комплексные числа в математике равны тогда и только тогда, когда равны их действительные части (Комплексные числа в математике = с) и коэффициенты при мнимых частях (Ь = d). Значит, приходим к системе уравнений

Комплексные числа в математике

из которой находим (см. п. 164) Комплексные числа в математикеКомплексные числа в математике

Пример 4.

Найти комплексные числа z, удовлетворяющие равенству Комплексные числа в математике

Решение: 

Будем искать комплексное число z в виде х + yi. Имеем

Комплексные числа в математике

Из последнего равенства следует, что

Комплексные числа в математике

Эта система имеет два решения (см. п. 164): (2; 3) и (-2; -3). Значит, Комплексные числа в математике

Пример 5.

Вычислить Комплексные числа в математике

Решение: 

Имеем (см. п. 58)        Комплексные числа в математике

Комплексные числа в математике

Значит, Комплексные числа в математике Комплексные числа в математике

Далее, имеем Комплексные числа в математикеКомплексные числа в математике

Значит, Комплексные числа в математикеКомплексные числа в математике

Отыскание комплексных корней уравнений

Пусть Комплексные числа в математике > 0. Так как Комплексные числа в математикеКомплексные числа в математике Тем самым мы получаем возможность извлекать квадратные корни из отрицательных действительных чисел. Это позволяет находить не только действительные, но и мнимые корни уравнений.

Пример 1.

Решить уравнение Комплексные числа в математике

Решение.

Имеем (см. п. 137) Комплексные числа в математике Комплексные числа в математике Итак, Комплексные числа в математике

Пример 2.

Решить уравнение Комплексные числа в математике

Решение.

Имеем Комплексные числа в математикеКомплексные числа в математике Значит, либо х — 2 = 0, откуда находим Комплексные числа в математике либо Комплексные числа в математике откуда находим Комплексные числа в математикеКомплексные числа в математике Итак, Комплексные числа в математике Комплексные числа в математике

Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:

  • Математика решение заданий и задач

Смотрите также дополнительные лекции по предмету «Математика»:

Лекции:

  • Производная сложной функции
  • Многоугольники
  • Арифметические операции над пределами
  • Метод Гаусса: пример решения
  • Производные показательной и логарифмической функций
  • Уравнение окружности и прямой
  • Область определения функции примеры решения
  • Неопределенный интеграл
  • Тригонометрические функции углов прямоугольного треугольника
  • Решение треугольников

Понравилась статья? Поделить с друзьями:
  • Как найти синус 119
  • Как абитуриенту найти специальность
  • Как найти ошибку в постановке ударения
  • Как найти реквизиты платежного поручения
  • Ошибочно выставлен акт выполненных работ как исправить