Как найти действующее напряжение на всем участке

Добавил:

Vezen

Опубликованный материал нарушает ваши авторские права? Сообщите нам.

Вуз:

Предмет:

Файл:

ТОЭ — Расчет линейных электрических цепей переменного тока

.pdf

Скачиваний:

44

Добавлен:

20.06.2014

Размер:

829.16 Кб

Скачать

Мгновенное значение напряжения на активном сопротивление в фазе с током,

на индуктивности– опережает ток на угол π 2 .

Действующие значения напряжений:

π

U R = UmR

10

=

= 7,07 В;

ϕ = 4

U L

2

2

U RL

U L = UmL

=

10

= 7,07 В;

ϕ

UR

I

2

2

U RL =

2 7,07 = 10 В.

Рис. 1.8

Векторные диаграммы напряжений и тока приведены на рис. 1.8.

Амплитудное значение

UmRL =

2 10 = 14,1 В.

Начальная фаза

ψu = ϕ = arctg U L

= π (т. к. ψi = 0 ),

следовательно

U R

4

uRL =UmRL sin(ωt + ψu )=14,1sin(ωt + π 4) В.

Зависимости uR (ωt) ; uL (ωt) ; uRL (ωt) представлены на рис. 1.9.

B u

10

uRL

uR

5

uL

ωt

0

π

π

3π

2π

5

2

4

10

15

Рис. 1.9

Задача 1.2.

R

C

К цепи со схемой рис. 1.10 приложено синусоидаль-

u

ное напряжение u =141sin 314t В.

uR

Найти мгновенные и действующие значения то-

uC

i

ка и напряжений на всех участках цепи, если

R = 30 Ом, С = 79,62 мкФ.

Рис. 1.10

11

sin(314t +53o )А;

Решение

Назначаем положительные направления тока и напряжений как на рис. 1.10. Определяем реактивное сопротивление ХС емкости С на частоте ω = 314 с–1:

ХС =

1

=

106

=40 Ом.

ωC

314 79,62

Полное сопротивление цепи

Z = R2 + XC2 = 302 + 402 =50 Ом.

Амплитудные значения:

тока i : Im =

Um

=

141

= 2,82 А;

Z

50

напряжения на резисторе R: UmR = RIm = 30 2,82 = 84,6 В;

напряжения на емкости С: UmC = XC Im = 40 2,82 = 112,8 В.

Угол сдвига фаз между напряжением u и током i

ϕ = arctg XRэк = arctg RXC = arctg 3040 = – 53°.

Начальная фаза тока i определяется из соотношения ψu −ψi = ϕ. Откуда,

ψi = −ϕ = 53°.

Мгновенные значения тока и напряжений на участках цепи: i = Im sin(ωt + ψi )=2,82

uR =UmR sin(ωt + ψi )=84,6 sin(314t +53o )t В;

uC =UmC sin(ωt + ψi 90o )=112,8 sin(314t 37o )В.

Действующие значения:

I = Im2 =2 А; UR = UmR2 =60 В; UC = UmC2 =80 В.

Задача 1.3

Для пассивного двухполюсника (рис. 1.5) экспериментально определены:

U = 10 В; I = 2 А; ϕ = 30°.

Найти полное и эквивалентные активное и реактивное сопротивления двухполюсника.

Решение.

Имеем по определению:

Z = UI =5 Ом;

12

Rэк = Z cos ϕ = 5cos 30o =4,33 Ом; X эк = Z sin ϕ = 5sin 30o = 2,5 Ом.

Задача 1.4

В цепи по схеме рис. 1.10 действующие значения тока i на частотах f1 =500 Гц и f2 =1000 Гц равны, соответственно, I1 = 1 А и I2 = 1,8 А.

Определить параметры цепи R и С, если на этих частотах напряжение на входе

U = 100 B.

Решение

По определению на частотах f1 и f2 имеем:

Z1 =

U

;

Z2

=

U

.

I1

I2

Непосредственно по схеме цепи рис. 1.10 находим:

2

2

1

2

2

2

1

2

; Z2

ω

Z1 = R + ω C

= R +

C .

1

2

Значения параметров R и С найдем из решения системы уравнений

1

2

R2

2 ;

+

= Z

ω C

1

1

1

2

2

2

R

= Z2 .

+

ω2C

Программа расчета в пакете Mathcad.

Присвоение переменным заданных

U

100

f1

500 f2

1000

I1

1 I2

1.8

z1

U

z2

U

z1 = 100

z2 = 55.556

условием задачи величин.

Расчет полных сопротивлений на

I1

I2

ω1

2.π.f1

ω2

2.π.f2

частотах f1 и f2.

R

100

C

10 6.1

Расчет угловой частоты.

Give

Задание

приближенных

значений

R2

1

2

z12

параметров R и С цепи.

Решение системы нелинейных урав-

ω1.C

2

нений.

нажмите [Ctrl]

=

R2

1

z22

Для набора

ω2.C

RC Find(R, C)

27.962

RC =

3.315 10 6

Присвоение вектору RC найденных значений параметров R и С цепи.

R = 27, 9 Ом, С = 3,3 мкФ.

13

Значения параметров цепи: R = 28 Ом; С = 3,3 мкФ.

Задача 1.5

Вычислить действующее значение тока и активную мощность на входе пассивного двухполюсника с эквивалентными активной проводимостью G = 0,011 Ом–1 и реактивной проводимостью В = 0,016 Ом –1. Напряжение на входе двухполюсника U = 30 В.

Решение

Полная проводимость

Y = G2 + B2 = 0,0112 + 0,0162 = 0,019 Ом–1.

Действующее значение тока

I =YU = 0,019 30 = 0,58 А.

Активная мощность

P =UI cos ϕ =UI GY = 30 0,58 00,,019011 = 10,1 Вт.

Задача 1.6

Действующее значение синусоидального тока ветви с резистором R равно 0,1 А (рис1.11). Найти действующие значения напряжения u, токов iL и i, если R = 430 Ом;

X L = 600 Ом. Чему равна активная, реактивная и полная мощности этого двухполюсника?

Решение

i iL

iR

Положительные направления напряжения и токов ука-

Рис. 1.11

заны на рис. 1.11.

Действующее значение тока IR =0,1 А.

По закону Ома U = IR R = 0,1 430 = 43 В.

Ток

IL =

U

=

43

= 0,072 А.

600

X L

Ток

I = IR2 + IL2 = 0,12 + 0,0722 = 0,123 А.

Действующее значение тока I можно вычислить, определив полную проводимость Y цепи. По виду схемы имем

1

2

1

2

1

2

1

2

–3

–1

Y =

=

= 2,86 10

+

+

Ом .

R

X L

430

600

14

Ток

I =YU = 2,86 10 –3 43 = 0,123 А.

Мощности:

P = IR2 R = 4,3 Вт; Q = IL2 X L = 3,082 ВАр, S =UI =5,29 ВА.

Выполняется соотношение P2 +Q2 = S 2 .

Задача 1.7

Действующее значение синусоидального напряжения на емкости С в цепи со схемой рис. 1.10 UC =24 В. Найти действующие значения напряжения u и тока

i, если ХС = 12 Ом; R = 16 Ом.

Решение

Определяем действующее

I = UC = 24 = 2 А.

XC 12

Полное сопротивление цепи

Z = R2 + XC2 = 162 +122 = 20 Ом.

Действующее значение напряжения u U = IZ = 2 20 = 40 В.

Задача 1.8

Для определения эквивалентных параметров пассивного двухполюсника в цепи синусоидального тока были сделаны измерения действующих значений напряжения и токаи активной мощности

(рис. 1.12).

Показания приборов:

i

A

W

I

iC

C

u

U

П

U

Рис. 1.12

А 0,5 А, U 100 В, W 30 Вт.

Для определения характера реактивного сопротивления (проводимости) параллельно двухполюснику была включена емкость С (ВС < Вэк). При этом показания амперметра уменьшились. Рассчитать эквивалентные сопротивления и проводимости двухполюсника.

Решение

Действующие значения: I = 0,5 А, U = 100 В. Активная мощность, потребляемая двухполюсником, Р = 30 Вт. Полное сопротивление двухполюсника

Z =

U

=

100

= 200 Ом.

I

0,5

15

Эквивалентное активное сопротивление

а)

U

IC

б)

IC

U

R

=

P

=

30

= 120 Ом.

I

эк

I 2 0,25

I

I

I

Эквивалентное реактивное сопротивление

ϕ< 0

X эк =

Z 2 R2

= 2002 1202 =

IC

ϕ> 0

IC

= 160 Ом.

Рис. 1.13

Характер реактивного сопротивления индуктивный ( Хэк = X L ,

ϕ > 0 ). После

включения параллельно двухполюснику емкости С, ток I′ < I . Этому случаю соответствует векторная диаграмма рис. 1.13, а. Емкостному характеру соответствует векторная диаграмма рис. 1.13, б.

Полная проводимость двухполюсника

Y = UI = 1000,5 = 5 103 Ом –1 .

Эквивалентная активная проводимость

Gэк = UP2 = 100302 = 3 103 Ом –1 .

Эквивалентная реактивная проводимость

B = Y 2

G2

= 25 106 9 106 = 4 103 Ом –1 .

эк

эк

Следует обратить внимание, что треугольники сопротивлений и проводимостей для одного и того же двухполюсника подобны (рис. 1.4). Поэтому,

ZR = GY и XZ = YB .

Следовательно,

Gэк = RZэк2 = 2001202 = 3 103 Ом –1; Bэк = XZэк2 = 2001602 = 4 103 Ом –1.

1.3. Задачи и вопросы для самоконтроля

1. Напряжение на индуктивности L = 0,1 Гн в цепи синусоидального тока изменяется по закону uL =141sin(1000t 30o) .

Найти мгновенное значение тока в индуктивности.

2. Ток в емкости С = 0,1 мкФ равен i = 0,1sin(400t + π3) А.

Найти мгновенное значение напряжения на емкости.

3. На участке цепи с последовательно включенными активным сопротивлением

R = 160 Ом и емкостью С = 26, 54 мкФ мгновенное значение синусоидального тока i = 0,1sin 314t А.

Найти мгновенные значения напряжений на емкости и на всем участке цепи. Чему равны действующие значения этих величин?

16

4.Записать уравнения идеальных элементов в цепи синусоидального тока. Нарисовать векторные диаграммы напряжения и тока для этих элементов.

5.Определить понятие угла сдвига фаз ϕ. Почему возникает угол ϕ в цепях синусоидального тока?

6.Как определить действующее значение синусоидального тока (напряжения)? Какой физический смысл имеют эти величины?

7.Дать определение активной мощности. В каких единицах измеряется активная мощность? Нарисовать схему включения ваттметра.

8.В чем заключается разница между активной, реактивной и полной мощностями?

9.Определить понятия активных и реактивных составляющих напряжения и тока.

10.Как определяются полное, эквивалентные активное и реактивное сопротивление пассивного двухполюсника?

11.Как определяются полная, эквивалентные активная и реактивная проводимость пассивного двухполюсника?

12.Как экспериментально определить эквивалентные параметра пассивного двухполюсника?

13.На участке цепи последовательно включены сопротивление R = 1000 Ом и индуктивность L = 0,12 Гн. Действующее значение синусоидального напряжения U R = 10 В. Частота f = 1000 Гц.

Найти действующие значения тока и напряжения на участке цепи.

14.Вычислить действующее значение тока и активную мощность на входе пассивного двухполюсника с эквивалентным активным сопротивлением R = 160 Ом и эквивалентным реактивным сопротивлением Х = 120 Ом . Напряжение на входе двухполюсника U = 20 В.

15.Найти действующее значение тока i в электрических цепях со схемами рис.

1.14, а, б, в. U = 100 В, R = 80 Ом, X L = 100 Ом, XC = 60 Ом.

i

R

а)

i

б)

i

в)

u

X L

u

R

X C

u

R

X

L

XC

Рис. 1.14 16. Для пассивного двухполюсника (рис. 1.5) экспериментально определены:

U = 10 В; I = 2 А; ϕ = – 30°.

Найти полное и эквивалентные активное и реактивное сопротивления и проводимости двухполюсника.

17

2. Комплексный метод расчета

2.1. Общие сведения

При расчетах установившихся режимов линейных электрических цепей синусоидального тока мгновенным значениям синусоидальных функций времени ставят в соответствие комплексные мгновенного значения. Например, для тока i(t) = Im sin(ωt + ψi ) комплексные мгновенного значение имеет вид

i = Ime j(ωti ) = Ime jψi e jωt = Im cos(ωt + ψi ) + jIm sin(ωt + ψi ) .

Мнимая часть комплексного мгновенного значения равна i(t) : i(t) = Im[Ime j(ωti ) ].

Комплексное число I&m = Ime jψi называют комплексным амплитудным

значением или комплексной амплитудой, а

I& = I&m2 = Ie jψi

– комплексным действующим значением тока.

Аналогично определяются комплексные мгновенные значения синусоидальных напряжений, э. д. с., электрических зарядов, магнитных потоков и т. д.

Так, напряжению u(t) =Um sin(ωt + ψu ) и э. д. с. e(t) = Em sin(ωt + ψe ) соответствуют комплексные мгновенные значения

u =Ume jψu e jωt , e = Eme jψe e jωt ,

комплексные амплитуды U&m =Ume jψu , E&m = Eme jψe и комплексные действующие значения

U& =Ue jψu , E& = Ee jψe .

Производной от синусоидальной функции времени (тока) соответствует алгебраическая операция умножения на jω комплексного мгновенного значения:

dtd (Im sin(ωt + ψi ))= ωIm sin(ωt + ψi + π2)

→ ωIme jωt e jψi e j π2 = jωIme jωt e jψi = jωi .

Интегралу от синусоидальной функции времени (тока) соответствует алгебраическая операция деления на jω комплексного мгновенного значения:

(Im sin(ωt + ψi ))= ω1 Im sin(ωt + ψi − π 2)

Iωm e jωt e jψi ej π2 = Ijωm e jωt e jψi = jiω.

18

В последних выражениях использовалась формула Эйлера:

e± jα = cos α ± j sin α.

При α =

π имеем: e j π2 = j ,

ej π2 = − j = 1 .

2

j

Математические модели идеальных элементов в комплексной форме при-

ведены в таблице 2.1.

Таблица 2.1

Установившийся синусоидальный режим

Идеальный

Математическая модель

Математическая модель

элемент

элемента относительно ве-

элемента в комплексной

щественных функций вре-

форме

мени

Сопротивление

i

uR

R

uR = RI m sin(ωt + ψi )

U&R = I&R

Индуктивность

π)

π

i

uL

L

uL = ωLIm

sin(ωt + ψi +

U&L = jωLI& = jX L I& = X L I&e j 2

2

Емкость

uC

1

π

I&

j

π

i

C

uC = ωC Im sin(ωt + ψi

2)

U&C = jωC = − jX C I& = XC I&e

2

Для пассивного двухполюсника (рис. 2. 1, а), вводятся по определению

следующие величины:

Комплексное сопротивление

Z = U&

= Ue jψu

= Ze j(ψu −ψi ) = Ze jϕ = Z cos ϕ+ jZ sin ϕ = R + jX ,

I&

Ie jψi

Комплексная проводимость

Y =

I& =

Ie jψi =Yej(ψu −ψi ) =Yejϕ =Y cos ϕ− jY sin ϕ = G jB .

U&

Ue jψu

Из последних выражений следует, что этот участок цепи можно предста-

вить в виде последовательно соединенных эквивалентных активного R и реак-

тивного X сопротивлений (рис. 2. 1, б), либо параллельно соединенных эквива-

лентных активной G и реактивной B проводимостей (рис. 2. 1, в). Выше приве-

денные выражения имеют место при ϕ > 0.

19

&

I&

R

jX

I&

U&

I

П

U&

G

jB

U&

а)

б)

в)

Рис. 2.1

В таблице 2.2 приведены схемы типичных участков цепи синусоидального тока и комплексные сопротивления этих участков.

Таблица 2.2

Схема участка цепи

Комплексное сопротивление

&

R

Z R = R

I

&

L

j π

I

Z L = jωL = jX L = X Le 2

I&

C

Z C = − j

1

== − jXC = XC ej π2

ωC

I&

Z1

Z 2

Z = Z1 + Z 2

Z1 Z 2

I&

Z1

Z 2

Z =

Z1 + Z 2

Переход к комплексным сопротивлениям и проводимостям и комплексным действующим значениям напряжений и токов позволяет:

1. Записать закон Ома для участка цепи U& = ZI&,

2. Первый закон Кирхгофа для любого узла I&k = 0 (алгебраическая сумма

k

по всем k ветвям узла),

3. Второй закон Кирхгофа для любого контура U&l = E&l (алгебраические

l l

суммы по всем l ветвям контура),

Мощности источников и пассивных участков цепи в комплексной форме записи имеют вид

S =U&I =Ue jψu Iejψi = Se jϕ = S cos ϕ+ jS sin ϕ = P + jQ,

где S комплексная мощность, I = Iejψi сопряженный комплекс действующего значения тока, S полная мощность.

20

Что такое действующее значение напряжения

Содержание

  • 1 Как измеряется
    • 1.1 Практический пример
  • 2 Импульсный электрический заряд
    • 2.1 Расчёт кривой
    • 2.2 Вычисления
  • 3 Сила переменного тока
  • 4 Вывод
  • 5 Видео по теме

Всем нам известно о 220 вольт в бытовой розетке. Но если подключить к ней вольтметр, напряжение каждый раз будет разным. При этом зачастую напряжение может быть даже больше данной величины. Постараемся в данном материале разобраться — почему это происходит, что такое действующее значение переменного тока, и как его можно рассчитать с помощью различных вариантов.

Как измеряется

Электродинамические параметры в сети постоянно изменяются. Это связано с тем, что они представлены синусоидальным однополярным импульсом разной амплитуды. При измерении напряжения в цепи переменного тока, каждый раз будет получен разный результат. А при вычислении усреднённого параметра, он всегда будет составлять 0.

Измерение напряжения в розетке мультиметром

Получается, что математически вычислить данный параметр невозможно. Есть возможность получить только усреднённый параметр, который зависит от полупериода синусоидальной волны. Однако использовать его на практике или для каких-то вычислений нельзя.

Для решения этой проблемы и стали применять такое понятие, как действующее значение для расчёта силы тока и напряжения. Параметр определяется по характеристикам постоянного тока в цепи, генерирующей тепловую энергию такого же объёма, как и при подаче в цепь переменного тока.

Практический пример

Определение выше будет непонятным для человека, который не имеет особых познаний в области электротехники и электродинамики. Чтобы понять его смысл, предлагается рассмотреть следующий пример:

  1. Доступны две идентичные электроцепи (длина, элементы цепи и сечение проводников у них совпадают).
  2. В каждую включён одинаковый резистор — электронный компонент, который изменяет свое сопротивление в зависимости от подаваемого тока.
  3. Обе цепи подключаются к источникам электроэнергии, имеющим одинаковое напряжение.Измерение выделяемого тепла в двух идентичных цепях

Но между цепями есть одна разница. На первую электроцепь подаётся постоянный, а на вторую — переменный ток. По одной из них пойдёт стабильный электроток, а по другой потечет импульсный электрозаряд, который постоянно изменяется и имеет синусоидальной график.

Чтобы найти количества тепла в цепи с сопротивлением, используется такая формула:

Формула для вычисления количества тепла

После произведения ряда замеров и вычислений можно увидеть, что выделяемое тепло в этих двух электроцепях имеет одинаковую величину. Например, в цепи с постоянным током при подаче напряжения 30 вольт выделяется тепло 200 Джоуль (или Дж). Если вторая цепь имеет идентичные характеристики, то выделение тепла в ней также составит 200 Дж. Получается, что напряжение 30В в этих электроцепях — это и есть эффективное напряжение.

Импульсный электрический заряд

Вышеприведенный пример позволяет только определить действующее и среднее значение напряжения переменного тока. Но на практике такой метод также не применяется, из–за того, что получить доступ к источнику переменного напряжения не всегда представляется возможным. Поэтому параметры цепи рассчитываются с помощью формул, которые основаны на синусоидальных кривых.

Стоит отметить, что действующее напряжение не всегда формируется путём плавного изменения определённого импульсного электрозаряда. Кривая зачастую имеет форму, отличную от привычной нам синусоиды:

  1. Прямоугольную (меандр);
  2. треугольную;
  3. трапециевидную
  4. и другие.

Различные формы кривой переменного тока

То есть график электротока может иметь отличную, но при этом стабильную форму. Наглядным примером такого варианта является кривая осциллографа, регистрирующая ритмы сердцебиения человека.

Действующее значение переменного тока

Но независимо от действующего в сети импульсного заряда, во время расчётов используется именно синусоида. Это объясняется тем, что погрешности в расчетах будут крайне малыми. Поэтому ими можно пренебречь, ведь они не скажутся на конечном результате:

  1. Частота импульса в жилых домах составляет 50 Гц. За 1 сек электрический импульс проходит через фазу 100 раз. Это означает, что работающая от сети лампочка за секунду 100 раз загорается и тухнет, а электрический заряд при этом изменяется довольно плавно. Но человек этого не замечает из-за невосприимчивости человеческого зрения к сверхбыстрым колебаниям.Электролампочка
  2. Одинаковая площадь фигур. Независимо от формы кривой периода, описывающей переменный электроток идентичных параметров, площадь их фигур всегда будет одинаковой. Следовательно, при любых расчетах получится одно и то же эффективное значение переменного синусоидального тока. Поэтому эффективные значения не зависят от формы кривой. На них оказывает влияние именно величина амплитуды.Одинаковая площадь фигур

Форма кривой импульса важна только для сверхточных расчётов в лабораторных условиях. Также она учитывается для работы суперкомпьютеров. В остальных случаях синусоида позволит вычислить действующее значение переменного синусоидального тока.

Расчёт кривой

Синусоида — это периодическая функция, которую можно всегда описать с помощью уравнения. Если взять её за основу, то на входе имеются следующие исходные данные:

  • Т — амплитуда;
  • φ — начальная фаза;
  • ωt — угловая скорость.

Синусоидальный переменный ток

По этим входным характеристикам находим другие переменные параметры:

  • Uт — амплитудное напряжение;
  • Uм — действующие в момент измерения значения напряжения;
  • ωt + φ — фактическая фаза в точке измерения.

Т.к. начальная фаза равняется нулю, на выходе формула кривой будет иметь следующий вид:

Uм = Uт·sin(ωt + φ) = Uт·sin(ωt)

Теперь необходимо обратиться к закону выделения тепла, который еще называется законом Джоуля-Ленца. Согласно него квадрат напряжения — это произведение выделяемого тепла на сопротивление проводника.

Формулы для расчета тепловой энергии в электроцепях:
с постоянным током с переменным током
Q = U2/R Q = Uм2/R
  • Uм — величина постоянного напряжения;
  • Uм — величина действующего напряжения;
  • R — сопротивление проводника.

Мы видим, что при расчетах количества тепла в цепи переменного тока, пользуется именно действующим значением переменного тока.

Действующие средние значения напряжения силы тока

Из данных формул вытекают два важных нюанса, на которые стоит обратить внимание:

  1. В расчетах используется среднеквадратичное значение напряжения (СКЗ). Это связано с тем, что величина напряжения постоянно изменяется и можно получить только какую-то усредненную величину.
  2. Амплитуда постоянного тока довольно условная величина. Ее используют в расчетах, чтобы только описать период синусоиды переменного электрозаряда.

Вычисления

Волны синусоид будут одинаковыми. Однако в пределах периода в каждой точке измерения напряжения будут отличаться. Поэтому, чтобы уравнять между собой среднеквадратичное напряжение постоянного и переменного электротока по тепловыделению, требуется рассчитать объём выделенного тепла в течение времени, равного 1 периоду:

Формула

В уравнение теперь можно подставить выражение расчёта мгновенного напряжения

Uм = Uт·sin(ωt + ф) = Uт·sin(ωt)

Амплитудное и мгновенное напряжение синусоидального переменного тока

После математического преобразования можно рассчитать действующее значение электрического напряжения:

U = Uт / √2 = 0,707·Uм

Теперь найдем амплитудное напряжение по формуле:

Uт = U·√2

Амплитудное напряжение так же имеет и другое название – максимально возможное эффективное мгновенное значение напряжения.

Сила переменного тока

С помощью амперметра находим амплитудную силу тока в цепи. Используя её вместе с периодом, который равен 1/50 секунд, можно применить описанную выше формулу, чтобы рассчитать среднеквадратичное значение напряжения. В результате этого будет получена действующие значения силы тока.

Действующее значение тока можно рассчитать, когда других исходных параметров нет, но нам известно эффективное значение величины напряжения в цепи. Следовательно, можно воспользоваться всем нам известным законом Ома вычисления значения силы тока:

U = I·R и I = U/R

где:

  • U — будет действующим напряжением переменного синусоидального тока;
  • R — сопротивление проводника, которое всегда можно узнать в любом справочнике, зная состав материала проводника.

Ранее электропроводку делали из алюминия и меди, которые отличались довольно высоким сопротивлением. Эффективное значение реальной силы тока этих металлов было меньше 6.5А. По этой причине в старых домах зачастую срабатывает автоматический выключатель, если одновременно подключить в сеть несколько приборов. Сегодня открыты сложные сплавы с низким сопротивлением. Они позволяют достичь с действующее значение силы переменного тока около 16А даже в обычных современных многоквартирных домах.

Пробка автоматическая 16А

С уменьшением сопротивления проводника, прямопропорционально возрастает мощность и тепловыделение. При том надо помнить о том, что у каждого сплава есть свой определенный температурный предел. Поэтому в жилых сетях сила тока часто не превышает 20 ампер, а при резком ее скачке, например, при неполадках на подстанции, электронная часть устройств просто сгорает. Для предотвращения таких случаев и подключаются автоматы, которые при регистрации высоких действующих значений размыкают цепь на данном участке. Более мощные источники электроэнергии встречаются только в промышленных трехфазных сетях с напряжением 380В.

Вывод

Мы рассмотрели в данной статье — что называют действующим значением силы тока и напряжения, а так же как определяют эти значения переменного тока в электроцепи. Это эффективные значения переменного тока, под действием которого выделяется точно такое же количества тепла, как и в цепи постоянного тока, имеющей аналогичные характеристики.

Видео по теме

Действующее напряжение и амплитудное напряжение — что это, и в чем отличие

действующее напряжение и амплитудное напряжение

Все знают, что действующее напряжение в розетке 220 Вольт (230 по новым нормам, но для данной темы это не имеет особого значения). Это легко проверить при помощи мультиметра, который измерит разность потенциалов между фазой и рабочим нулевым проводником. То есть, при идеальных условиях, потенциал на нулевом проводе 0, а на фазном 220 Вольт. На самом деле все немного не так — переменный ток имеет синусоидальную форму с потенциалом на пиках 310 и -310 Вольт (амплитудное напряжение). Для того чтобы это увидеть, необходимо воспользоваться осциллографом.

Синусоида действующего и амплитудного напряжения

Понятно, что данный материал в большей степени ориентирован на простую аудиторию, у которой не то, что осциллографа нет, даже мультиметр наверняка не у каждого есть. Поэтому все примеры будут браться из среды программы Electronics Workbench, доступной каждому.

И первое, что нам нужно посмотреть — это синусоиду напряжения фазы из розетки. Для этого в программе отрисуем трехфазную сеть и подключим осциллограф к одной из фаз:

действующее напряжение и амплитудное напряжение - синусоида

Как видно при показании вольтметра 219,4 Вольт между одной из фаз и PEN проводником, осциллограф показал синусоиду с амплитудой 309,1 Вольт. Это значение напряжения называется максимальным (амплитудным). А 219,4 Вольт, которые показывает вольтметр — это действующее напряжение. Его также называют среднеквадратичным или эффективным. И прежде чем перейти к рассмотрению данной особенности, кратко, простыми словами пройдемся по отрисованной схеме трехфазной сети и разберемся в природе синусоиды.

Начнем со схемы:

  • Слева на право — три источника переменного напряжения с фазовыми углами 0, 120, 240 градусов и соединенными звездой.
  • Резистор 4 Ом — это заземление нейтрали трансформатора.
  • Резисторы по 0,8 Ом — условное сопротивление проводов, зависящее от сечения провода и длины линии.
  • Резисторы 15, 10 и 20 Ом — нагрузка потребителей по трем фазам.
  • К одной из фаз подключен осциллограф, показывающий амплитуду 309,1 Вольт.

Теперь рассмотрим синусоиду. Переменное напряжение в отличие от постоянного, график которого прямая на осциллографе, непрерывно изменяется как по величине, так и по направлению. Причем изменения эти происходят периодически, то есть точно повторяются через равные промежутки времени.

Переменное напряжение генерируется на электростанциях и посредством повышающих и понижающих распределительных трансформаторов попадает к конечному потребителю. При этом трансформация по пути никак не сказывается на синусоиде напряжения.

Видео — действующее напряжение и амплитудное

С полным и наглядным изложением рассматриваемого вопроса вы можете ознакомиться в следующем видео:

Работа генератора трехфазного переменного тока

Рассмотрим упрощенно работу генератора трехфазного переменного тока. Обмотки статора (фазы А, В и С) генератора расположены под углом 120 градусов относительно друг друга. Ротор с магнитом вращаясь индуцирует в обмотках статора периодически изменяющиеся ЭДС. Выглядит это следующим образом:

работа генератора трехфазного переменного тока

Такое вращение происходит с частотой 50 оборотов в секунду, то есть с частотой 50 Герц. Это значит, что электроны движутся в течение 1 секунды 50 раз в одном направлении (положительный полупериод синусоиды), и 50 — в обратном (отрицательный полупериод), 100 раз проходя чрез нулевое значение. Получается, что к примеру обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.

Определение действующего напряжения

Теперь непосредственно о том, почему произошел переход от максимального, амплитудного значения напряжения 310 Вольт к действующему 220 Вольт. Ответ можно найти в самом определении.

Действующее (эффективное или среднеквадратичное) значение напряжения — это такое напряжение постоянного тока, которое на такой же резистивной нагрузке выделит такую же мощность, как измеряемое переменное напряжение. Соответственно, действующее значение силы тока — такое значение силы постоянного тока, при прохождении которого через резистивную нагрузку выделится такая же мощность, что и при прохождении измеряемого тока.

Можно сформулировать и немного иначе. Действующее значение переменного тока равно величине такого постоянного тока, который за время, равное одному периоду переменного тока, произведет такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток.

Общая формула расчета действующего напряжения произвольной формы следующая:

формула расчета действующего напряжения

Объяснение действующего напряжения

Определение и формула — это хорошо. Но лучше все понять на наглядном примере. Объяснить все можно через мощность. Причем есть сложный для восприятия способ и более простой, который мы и рассмотрим далее.

Нам нужно взять один период синусоиды переменного напряжения, на этом промежутке построить синусоиду переменного тока и проанализировать мощность. Начнем с периода синусоиды переменного напряжения. Здесь же построим синусоиду переменного тока с учетом условной резистивной нагрузки (например, лампочки). По закону Ома сила тока равна напряжению, деленному на сопротивление.

Точные значения в конкретный момент при данном объяснении не принципиальны, поэтому все построения приблизительные. Естественно нужно понимать, что деля напряжение на сопротивление, мы получим синусоиду переменного тока с амплитудой в R раз меньшей, чем у напряжения. R – это значение сопротивления.

объяснение действующего напряжения

Теперь по двум синусоидам строим график мощности по формуле мощность равна силе тока умноженной на напряжение (P = I × U). Так как напряжение и ток имеют общие нулевые точки, то график мощности не будет заходить в отрицательную область. То есть сила тока со знаком «+» и напряжение со знаком «+» дадут мощность со знаком «+», так же как и сила тока со знаком «-» и напряжение со знаком «-» дадут мощность со знаком «+».

Анализируя полученный график можно отметить, что мощность пульсирующая. Она поднимается до максимального значения и падает до нуля, потом опять поднимается и снова падает. Как на эти колебания мощности реагируют электроприборы? Никак. Поскольку частота переменного тока 50 Герц, то эти колебания происходят очень быстро. Электроприборы откликаются не на максимальные и минимальные значения мощности, а на усредненные. То есть берется максимальное значение мощности и делится на два. Это значение называется действующим и находится по следующей формуле:

Pд = (Imax × Umax) / 2, где Pд — мощность действующая, Imax — сила тока максимальная, Umax — напряжение максимальное.

Двойку можно представить в виде корень из двух умножить на корень из двух. Получаем Действующее значение мощности = сила тока максимальная деленная на корень из двух умноженная на напряжение максимальное деленное на корень из двух (Pд = (Imax/√2) × (Umax/√2)).

Соответственно сила тока максимальная деленная на корень из двух — это действующее значение силы переменного тока, а напряжение максимальное деленное на корень из двух – это действующее значение переменного напряжения.

И действительно, если мы возьмем максимальное напряжение из предыдущего примера 309,1 Вольт и разделим на корень из двух, то получим действующее напряжение (то, которое показывает вольтметр) 219,4 Вольт.

Содержание:

Электрические цепи синусоидального тока:

В общем случае цепь переменного тока характеризуется тремя параметрами: активным сопротивлением R, индуктивностью L и емкостью С. В технике часто применяются цепи переменного тока, в которых преобладает один или два из этих параметров.

При анализе работы и расчетах цепей исходят из того, что для мгновенных значений переменного тока можно использовать все правила и законы постоянного тока.

Цепь с активным сопротивлением

Активным сопротивлением R обладают элементы, которые нагреваются при прохождении через них тока (проводники, лампы накаливания, нагревательные приборы и т.д.).

Если к активному сопротивлению R (рис. 11.1) приложено синусоидальное напряжение Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока

Ток в цепи с активным сопротивлением совпадает по фазе с напряжением, так как начальные фазы их равны (Электрические цепи синусоидального тока = 0). Векторная диаграмма для цепи с активным сопротивлением изображена на рис. 11.16, временная диаграмма изображена на рис. 11.1в.

Математическое выражение закона Ома для цепи переменного тока с активным сопротивлением имеет вид:

Электрические цепи синусоидального тока

Это вытекает из выражения (11.1), если левую и правую части уравнения разделить на Электрические цепи синусоидального тока =1,41.

Электрические цепи синусоидального тока

Таким образом, действующее значение синусоидального тока I пропорционально действующему значению синусоидального напряжения U и обратно пропорционально сопротивлению R участка цепи, к которому приложено напряжение U. Такая интерпретация закона Ома справедлива как для мгновенных, так и для действующих и амплитудных значений синусоидального тока.

Активная мощность

Мгновенная мощность в цепи с активным сопротивлением определяется произведением мгновенных значений напряжения ка, т. е. р = ui. Это действие производится над кривыми тока и ряжения в определенном масштабе (рис. 11.1в). В результате учена временная диаграмма мгновенной мощности р. Как видно из временной диаграммы, мощность в цепи с активным сопротивлением изменяется по величине, но не изменяется по направлению (рис. 11.1в). Эта мощность (энергия) необратима. От источника она поступает на потребитель и полностью преобразуется в другие виды мощности (энергии), т.е. потребляется. Такая потребляемая мощность называется активной.

Поэтому и сопротивление R, на котором происходит подобное образование, называется активным сопротивлением, цепи с активным сопротивлением мгновенная мощность характеризует скорость преобразования электрической энергии в другие виды энергии.

Количественно мощность в цепи с активным сопротивлением определяется следующим образом:

Электрические цепи синусоидального тока

Мгновенная мощность в цепи синусоидального тока с активным сопротивлением представляет собой сумму двух величин -постоянной мощности UI и переменной Электрические цепи синусоидального тока, изменяющейся с двойной частотой.

Средняя за период мощность, равная постоянной составляющей мгновенной мощности UI, является активной мощностью Р. Среднее за период значение переменной составляющей, как и всякой синусоидальной величины, равно нулю, то есть

Электрические цепи синусоидального тока

Таким образом, величина активной мощности в цепи синусоидального тока с активным сопротивлением с учетом закона Ома определяется выражением:

Электрические цепи синусоидального тока

где U- действующее значение напряжения; I— действующее значение тока.

Единицей активной мощности является ватт:

Электрические цепи синусоидального тока

Поверхностный эффект и эффект близости

Сопротивление проводника постоянному току Электрические цепи синусоидального тока называют омическим сопротивлением и определяют выражением (2.8) Электрические цепи синусоидального тока Сопротивление проводника переменному току R называют активным.

Оказывается, что сопротивление проводника переменному току больше его омического сопротивления за счет так называемого поверхностного эффекта и эффекта близости, т. е. Электрические цепи синусоидального тока

Увеличение активного сопротивления вызвано неодинаковой плотностью тока в различных сечениях проводника (рис. 11.2а).

На рис. 11.2а изображено магнитное поле проводника цилиндрического сечения. Если по проводнику проходит переменный ток, то он создает переменный магнитный поток внутри и вне проводника. Этот поток в различных сечениях проводника индуктирует ЭДС самоиндукции, которая, согласно правилу Ленца. противодействует изменению тока как причине создания ЭДС Очевидно, центр проводника охвачен большим количеством магнитных линий (большее потокосцепление), чем слои, близкие к поверхности. Следовательно, в центре проводника ЭДС (сопротивление) больше, чем на поверхности проводника. Плотность на поверхности больше, чем в центре. Поэтому это явление и называется поверхностным эффектом.

Электрические цепи синусоидального тока

Таким образом, поверхностный эффект уменьшает сечение проводника для переменного тока, а следовательно, увеличивает активное сопротивление R.

Отношение активного сопротивления проводника к его сопротивлению определяет коэффициент поверхностного эффекта Электрические цепи синусоидального тока(кси)

Электрические цепи синусоидального тока

График зависимости коэффициента поверхностного эффекта от параметра проводника d, его удельной проводимости Электрические цепи синусоидального тока, магнитной проницаемости материала проводника Электрические цепи синусоидального тока и частоты переменного тока Электрические цепи синусоидального тока, проходящего по проводнику, показан на рис. 11.26.

При токах большой частоты Электрические цепи синусоидального тока (радиочастотах) ток в центре проводника отсутствует. Поэтому такие проводники делают трубчатыми, т.е. полыми.

На величину активного сопротивления проводника R оказывает влияние и эффект близости.

Если токи в двух параллельных проводах, расположенных близко друг к другу, направлены в одну сторону, то элементы сечения водников, удаленных на большее расстояние друг от друга, цепляются с меньшим магнитным потоком и имеют большую плотность тока (заштриховано на рис. 11.3а), чем элементы сечения проводников, расположенные близко друг к другу.

Если же токи в близко расположенных параллельных проводах направлены в различные стороны, то большая плотность тока на-дается в элементах сечения проводников, расположенных ближе друг к другу (заштриховано на рис. 11.36).

Таким образом, эффект близости в проводниках также влияет активное сопротивление проводников за счет наведения в различных элементах сечений проводников различных ЭДС взаимоиндукции, направление которых определяется правилом Ленца.

Электрические цепи синусоидального тока

Цепь с идеальной индуктивностью

Идеальной называют индуктивность L такой катушки, активным сопротивлением R и емкостью С которой можно пренебречь, т.е. R= О и С=0.

Если в цепи идеальной катушки индуктивностью L (рис. 11.4а) проходит синусоидальный ток Электрические цепи синусоидального тока, то этот ток создает в катушке синусоидальный магнитный поток Электрические цепи синусоидального тока, который индуктирует в катушке ЭДС самоиндукции, равную согласно (9.11)

Электрические цепи синусоидального тока

так как Электрические цепи синусоидального тока

Очевидно, эта ЭДС достигает своего амплитудного значения Электрические цепи синусоидального тока тогда, когда Электрические цепи синусоидального тока:

Электрические цепи синусоидального тока

Тогда Электрические цепи синусоидального тока

Таким образом, ЭДС самоиндукции в цепи с идеальной индуктивностью L, как и ток, вызвавший эту ЭДС, изменяется по синусоидальному закону, но отстает от тока по фазе на угол 90° = Электрические цепи синусоидального тока (рис. 11.46, в).   

По второму закону Кирхгофа для мгновенных значений можно записать

Электрические цепи синусоидального тока

Откуда Электрические цепи синусоидального тока

Тогда напряжение, приложенное к цепи с идеальной индуктивностью (см. (11.5)):

Электрические цепи синусоидального тока

Очевидно, напряжение достигает своего амплитудного значения Um тогда, когда Электрические цепи синусоидального тока:

Электрические цепи синусоидального тока

Следовательно, Электрические цепи синусоидального тока

Таким образом, напряжение, приложенное к цепи с идеальной ин-ивностью, как и ток в этой цепи, изменяется по синусоидально-жону, но опережает ток по фазе на угол 90°= Электрические цепи синусоидального тока (рис. 11.46, в).

Резюмируя все вышесказанное, можно сделать вывод: для существования тока в цепи с идеальной индуктивностью необходимо ожить к цепи напряжение, которое в любой момент времени но по величине, но находится в противофазе с ЭДС, вызванной таким током (рис. 11.46, в).

Временная диаграмма (рис. 11.4в) еще раз иллюстрирует правило Ленца: ЭДС Электрические цепи синусоидального тока противодействует изменению тока.

Если уравнение (11.10) разделить на Электрические цепи синусоидального тока=1,41, то получается Электрические цепи синусоидального тока=Электрические цепи синусоидального тока, откуда

Электрические цепи синусоидального тока

Это уравнение (11.12а) и есть математическое выражение закона Ома для цепи синусоидального тока с идеальной индуктивностью. Очевидно, знаменатель этого уравнения есть не что иное, как сопротивление, которое называют индуктивным сопротивлением XL.

Таким образом,

Электрические цепи синусоидального тока

Закон Ома для этой цепи можно записать иначе:

Электрические цепи синусоидального тока

Индуктивное сопротивление XL — это противодействие, которое ЭДС самоиндукции eL оказывает изменению тока.

Реактивная мощность в цепи с индуктивностью

Мгновенная мощность для цепи синусоидального тока с идеальной катушкой равна произведению мгновенных значений напряжения и тока

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока

Следовательно, Электрические цепи синусоидального тока

Полученное уравнение умножают и делят на 2:

Электрические цепи синусоидального тока

Таким образом, мощность в цепи синусоидального тока с идеальной катушкой индуктивности изменяется по синусоидальному закону с двойной частотой.

Следовательно, среднее значение этой мощности за период Яс, как и любой синусоидальной величины, т. е. активная потребляемая мощность, в этой цепи равна нулю, Р= 0.

Временная диаграмма (рис. 11,4в) подтверждает этот вывод. На диаграмме видно, что мгновенная мощность (Электрические цепи синусоидального тока) в рассматриваемой цепи изменяется по синусоидальному закону с двойной частотой.

То есть в 1-ю и 3-ю четверти периода мощность (энергия) источника накапливается в магнитном поле индуктивности. Максимальное значение накапливаемой в магнитном поле идеальной катушки энергии по (9.12) равно

Электрические цепи синусоидального тока

Во 2-ю и 4-ю четверти периода эта мощность (энергия) из магнитного поля идеальной катушки возвращается к источнику.

Таким образом, в цепи переменного тока с идеальной катушки мощность не потребляется (Р= 0), а колеблется между источником и магнитным полем индуктивности, загружая источник и провода.

Такая колеблющаяся мощность (энергия), в отличие от активной, потребляемой, называется реактивной.

Обозначается реактивная мощность буквой Q и измеряется в варах, т.е. [Q]=вар (вольт-ампер реактивный).

Величина реактивной мощности в рассматриваемой цепи определяется выражением

Электрические цепи синусоидального тока

Так как реактивная мощность QL имеет место в цепи с индуктивным сопротивлением, то индуктивное сопротивление считается реактивным сопротивлением X индуктивного характера, т. е. XL.

Цепь с емкостью

Если конденсатор емкостью С подключить к источнику с постоянным напряжением U (рис. 11.5а), то ток зарядки конденсатора ходит в цепи очень короткое время, пока напряжение на конденсаторе Uc не станет равным напряжению источника U.

Ток в рассматриваемой цепи (рис. 11.5а) практически отсутствует (амперметр А покажет I=0).

Если же конденсатор подключить к источнику с синусоидальным напряжением (рис. 11.56), то ток в цепи конденсатора существует все время, пока цепь замкнута, и амперметр А покажет этот ток. Ток в цепи конденсатора, подключенного к источнику с синусоидальным напряжением, имеет место потому, что напряжена конденсаторе Uc отстает по фазе от напряжения источника и зарядке, и при разрядке конденсатора. Например, пока напряжение на конденсаторе достигает значения 1, напряжение источника достигнет значения 2 (рис. 11.5в), т. е. конденсатор заряжается; пока конденсатор зарядится до напряжения 2, напряжение источника уменьшится до напряжения 3 — конденсатор разряжается на источник и т.д. Однако ток проходит только в цепи конденсатора. Через диэлектрик конденсатора ток не проходит.

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Таким образом, если к конденсатору емкостью С приложено синусоидальное напряжение Электрические цепи синусоидального тока, то в цепи конденсатора проходит ток i (рис. 11.6а):

Электрические цепи синусоидального тока

где q= Си согласно (6.3).

Очевидно, ток в цепи конденсатора достигает амплитудного значения тогда, когда Электрические цепи синусоидального тока:

Электрические цепи синусоидального тока

Тогда Электрические цепи синусоидального тока

Как видно, ток в цепи конденсатора, как и напряжение, приложенное к его обкладкам, изменяется по синусоидальному закону, однако опережает это напряжение по фазе на угол 90°=Электрические цепи синусоидального тока

Следовательно, напряжение отстает по фазе от тока на 90° = Электрические цепи синусоидального тока(рис. 11.66). 

Если уравнение (11.17) разделить на Электрические цепи синусоидального тока = 1,41, то получится равенство Электрические цепи синусоидального тока или

Электрические цепи синусоидального тока

Это равенство (11.19а) и является математическим выражением закона Ома для цепи переменного тока с емкостью.

Очевидно, знаменатель этого равенства является сопротивлением конденсатора Хс, которое называется емкостным сопротивлением:

Электрические цепи синусоидального тока

Когда закон Ома для цепи с конденсатором можно записать:

Электрические цепи синусоидального тока

Емкостное сопротивление — это противодействие, которое оказывает напряжение заряженного конденсатора напряжению, приложенному к нему (рис. 11,5а).

Реактивная мощность в цепи с конденсатором

Если в цепи конденсатора емкостью Электрические цепи синусоидального тока = 0 (рис. 11.6а) проходит ток i, изменяющийся по синусоидальному закону:

Электрические цепи синусоидального тока

Напряжение и, приложенное к этому конденсатору (рис. 11.6), будет равно

Электрические цепи синусоидального тока

Мгновенная мощность в цепи с конденсатором

Электрические цепи синусоидального тока

Мощность в цепи с конденсатором, подключенным к источнику с синусоидальным напряжением, изменяется по синусоидальному закону с двойной частотой (рис. 11.6в).

Следовательно, активная мощность Р в рассматриваемой цепи 1С. 11.6а), равная среднему значению мгновенной мощности за период, имеет нулевое значение, Р= 0.

Это следует и из временной диаграммы (рис. 11.6в). На временной диаграмме видно, что изменение мгновенной мощности р по синусоидальному закону происходит с двойной частотой: 2-ю и 4-ю четверти периода мощность (энергия) источника накапливается в электрическом поле конденсатора.

Максимальное значение энергии, накапливаемой в электрическом поле конденсатора, равно

Электрические цепи синусоидального тока

В 1-ю и 3-ю четверти периода эта мощность (энергия) из электрического поля конденсатора возвращается к источнику.

Таким образом, в цепи переменного тока с конденсатором происходит колебание мощности (энергии) между источником и электрическим полем конденсатора. Такая колеблющаяся, но не потребляемая мощность называется реактивной мощностью.

Величина реактивной мощности в цепи конденсатора определяется выражением

Электрические цепи синусоидального тока

Из временных диаграмм (рис. 11.4в, 11.6в) видно, что реактивная мощность в цепи конденсатора изменяется в противофазе с реактивной мощностью в цепи с идеальной катушкой. Отсюда и знак «минус» в уравнении (11.21) — аналитическом выражении мгновенной мощности в цепи с конденсатором.

Так как реактивная мощность Qc имеет место в цепи с емкостным сопротивлением, то это емкостное сопротивление считается реактивным сопротивлением Х емкостного характера (Хс).

Расчет линейных электрических цепей синусоидального тока

Расчет электрических цепей синусоидального тока производится преимущественно с помощью векторных диаграмм. В нашей главе рассматривается расчет неразветвленных цепей синусоидального тока, содержащих активное сопротивление R, активность L и емкость С в различных сочетаниях.

Цепь с активным сопротивлением и индуктивностью

Если по цепи с реальной катушкой, обладающей активным сопротивлением R и индуктивностью L, проходит синусоидальный ток Электрические цепи синусоидального тока (рис. 12.1а), то этот ток создает падение напряжения на активном сопротивлении проводников катушки и индуктивном сопротивлении катушки Электрические цепи синусоидального тока

Следовательно, по второму закону Кирхгофа, для мгновенных значений, приложенное к реальной катушке напряжение можно записать

Электрические цепи синусоидального тока

Это равенство справедливо для неразветвленной цепи синусоидального тока с последовательно включенными активным сопротивлением R и индуктивным сопротивлением XL (рис. 12.16).

Активное напряжение (рис. 11.16) совпадет по фазе с током и может быть записано Электрические цепи синусоидального тока. Индуктивное напряжение Электрические цепи синусоидального тока опережает ток на угол 90° = Электрические цепи синусоидального тока.

Электрические цепи синусоидального тока

Мгновенное значение напряжения, приложенного к цепи, определяется алгебраической суммой мгновенных значений напряжений Электрические цепи синусоидального тока согласно (12.1). А действующее значение этого напряжения U определяется геометрической суммой их действующих значений

Электрические цепи синусоидального тока

Это равенство лежит в основе построения векторной диаграммы (рис. 12.1 в).

Из векторной диаграммы (рис. 12.1 в) видно, что напряжение U, приложенное к реальной катушке, опережает по фазе ток Электрические цепи синусоидального тока на угол ф. Мгновенное значение этого напряжения может быть записано:

Электрические цепи синусоидального тока

где ф — это международное обозначение угла сдвига фаз между током и напряжением для любой цепи переменного тока.

Воспользовавшись теоремой Пифагора для определения гипотенузы прямоугольного треугольника, по векторной диаграмме (рис. 12.1 в) определяется напряжение

Электрические цепи синусоидального тока

Откуда

Электрические цепи синусоидального тока

Равенство (12.4) является математическим выражением закона Ома для цепи синусоидального тока с активным R и индуктивным XL сопротивлениями в неразветвленной цепи.

Знаменатель этого равенства является сопротивлением этой цепи, которое называется полным, или кажущимся, сопротивлением цепи синусоидального тока. Обозначается кажущееся (полное) сопротивление любой цепи переменного тока буквой Z:

Электрические цепи синусоидального тока

где Zk — полное, или кажущееся, сопротивление реальной катушки.

Тогда закон Ома для любой цепи переменного тока в общем виде можно записать

Электрические цепи синусоидального тока

где Z — кажущееся сопротивление этой цепи.

Треугольники напряжений, сопротивлений, мощностей

Треугольник, все стороны которого изображены векторами напряжений, называется треугольником напряжений. Пользуясь векторной диаграммой для неразветвленной цепи с активным и индуктивным сопротивлениями (рис. 12.1в), выделяем треугольник напряжений (рис. 12.2а).

Связь между напряжениями в данной цепи можно рассматривать как соотношение между сторонами и углами прямоугольного треугольника:

Электрические цепи синусоидального тока

Если все стороны треугольника напряжений разделить на ве-1ину тока в цепи, то получится подобный прямоугольный треугольник, все стороны которого в определенном масштабе изображают сопротивления цепи, т. е. получится треугольник составлений (рис. 12.16). Сопротивления не являются векторными величинами. Из треугольника сопротивлений можно определить:

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Обычно тригометрические функции угла ф определяются из треугольника сопротивлений отношением (12.9).

Если все стороны треугольника напряжений умножить на величину тока цепи, то получится подобный прямоугольный треугольник, все стороны которого в определенном масштабе изображают мощности цепи, т.е. получится треугольник мощностей (рис. 12.2в).

Произведение напряжения и тока цепи характеризует полную мощность цепи

Электрические цепи синусоидального тока

которая измеряется в вольт-амперах, т.е. Электрические цепи синусоидального тока

Однако потребляется в цепи только часть полной мощности — активная мощность

Электрические цепи синусоидального тока

где cos ф показывает, какая часть полной мощности Электрические цепи синусоидального тока потребляется в цепи, поэтому cos ф называют коэффициентом мощности:

Электрические цепи синусоидального тока

Полная мощность цепи S называется кажущейся. Из того же треугольника мощностей (рис. 12.2в) записать:

Электрические цепи синусоидального тока

Построив треугольники напряжений, сопротивлений и мощностей для любой цепи синусоидального тока, по выражениям (12.7)—(12.14) можно рассчитать параметры этой цепи.

Цепь с активным сопротивлением и емкостью

Если в цепи с последовательно включенными активным сопротивлением R и емкостью С протекает синусоидальный ток Электрические цепи синусоидального тока, то он создает падение напряжения на активном сопротивлении Электрические цепи синусоидального тока и на емкостном сопротивлении Электрические цепи синусоидального тока. Векторная диаграмма для этой цепи изображена на рис. 12.36.

Электрические цепи синусоидального тока

Напряжение цепи изменяется, как и ток, по синусоидальному закону и отстает по фазе от тока на угол ф < 90°, т. е.

Электрические цепи синусоидального тока

Действующее значение напряжения U, приложенного к этой цепи, определяется по векторной диаграмме (рис. 12.3):

Электрические цепи синусоидального тока

Откуда математическое выражение закона Ома для этой цепи:

Электрические цепи синусоидального тока

Пример 12.1

К цепи с последовательно включенными сопротивлениями R= 8 Ом и Хс= 6 Ом (рис. 12.3а) приложено напряжение U= 220 В. Определить ток цепи I, напряжение на активном Электрические цепи синусоидального тока и реактивном Up участках, полную S, активную Р и реактивную Q мощности.

Решение

Для определения тока вычислим полное сопротивление цепи

Электрические цепи синусоидального тока

Тогда ток будет равен

Электрические цепи синусоидального тока

Напряжения на участках:

Электрические цепи синусоидального тока

Полная мощность Электрические цепи синусоидального тока

Активная мощность Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Реактивная мощность Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Неразветвленная цепь с активным сопротивлением, индуктивностью и емкостью

Если в неразветвленной цепи с R, L и С (рис. 12.4а) протекает синусоидальный ток Электрические цепи синусоидального тока, то он создает падение напряжения на всех участках цепи: Электрические цепи синусоидального тока и Электрические цепи синусоидального тока.

Мгновенное значение напряжения цепи определяется по формуле

Электрические цепи синусоидального тока

Так как в рассматриваемой цепи включены два реактивных сопротивления XL и Хс, то возможны три режима работы цепи: Электрические цепи синусоидального тока

Векторная диаграмма цепи для режима Электрические цепи синусоидального тока изображена на рис. 12.46.

Электрические цепи синусоидального тока

Знак перед углом сдвига фаз ф зависит от режима работы цепи Если в рассматриваемой цепи преобладает индуктивное напряжение (сопротивление), т. е. Электрические цепи синусоидального тока, то цепь имеет индуктивный характер и напряжение U опережает по фазе ток Электрические цепи синусоидального тока.

Если в цепи преобладает емкостное напряжение (сопротивление), т.е. Электрические цепи синусоидального тока, то цепь имеет емкостной характер и напряжение U отстает по фазе от тока I (—ф).

Из векторной диаграммы (рис. 12.46) следует:

Электрические цепи синусоидального тока

Сопротивление R может включать в себя сопротивление самостоятельного резистора или активное сопротивление реальной катушки и конденсатора.

Математическое выражение закона Ома для неразветвленной цепи с активным сопротивлением, индуктивностью и емкость:

Электрические цепи синусоидального тока

где Z — полное (или кажущееся) сопротивление неразветвленной цепи с R, L и С, т. е.

Электрические цепи синусоидального тока

На рис. 12.5 изображены треугольники напряжений, сопротивлений и мощностей для рассматриваемой цепи.

Знак и значение угла ф можно определить из треугольника сопротивлений (рис. 12.56):

Электрические цепи синусоидального тока

или

Электрические цепи синусоидального тока

Из выражений (12.20) и (12.21) видно, что если Электрические цепи синусоидального тока, то угол ф положителен (+ф), если Электрические цепи синусоидального тока, то угол ф отрицательный (—ф).

Из треугольника мощностей (рис. 12.5в) видно, что в цепи с R, L и С кроме активной мощности Электрические цепи синусоидального тока имеется реактивная мощность Электрические цепи синусоидального тока. Кроме того, в цепи происходит колебание мощности (меньшей из двух реактивных, в нашем случае Uc) между электрическим полем конденсатора С и магнитным полем катушки индуктивности L, так как мощности QL и Qc изменяются в противофазе. Но эта мощность (1—2 на рис. 12.5в) не считается реактивной, так как она не загружает источник и провода.

Из треугольника мощностей (рис. 12.5в) видно, что реактивная мощность, которая загружает источник и провода, Q= QL— Qc. Эта реактивная мощность (энергия) колеблется между источником и магнитным полем катушки индуктивности, так как Электрические цепи синусоидального тока

Полная мощность цепи определяется по формуле

Электрические цепи синусоидального тока

Колебательный контур

Электрические цепи, в которых происходят периодические изменения токов, напряжений, энергии называются колебательными.

Для того чтобы исследовать резонансные явления, необходимо иметь представления о процессах в колебательном контуре, состоящем из идеальной катушки и конденсатора без потерь.

Если конденсатор емкостью С зарядить до напряжения Um, то в электрическом поле этого конденсатора накопится энергия, максимальное значение которой согласно выражению (6.21):

Электрические цепи синусоидального тока

Если к заряженному конденсатору подключить индуктивность L замыканием ключа К (рис. 12.6), то конденсатор будет

разряжаться через индуктивность переменным током i. При этом в индуктивности L создается ЭДС самоиндукции eL, и в магнитном поле ее накапливается энергия, максимальное значение которой (9.12):

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока    

Источником энергии в этом контуре является конденсатор. Ток в контуре, состоящем из индуктивности L и конденсатора С, не прекращается даже когда конденсатор полностью разрядится. За счет ЭДС самоиндукции и энергии, накопившейся в магнитном поле индуктивности, конденсатор будет заряжаться, и энергия магнитного поля индуктивности переходит в электрическое поле конденсатора. При этом источником энергии в этом контуре является индуктивность. Дальше процесс повторяется.

Таким образом, в замкнутом контуре, состоящем из индуктивности и емкости, происходит колебание энергии между электрическим полем конденсатора С и магнитным полем индуктивности L. Поэтому такой замкнутый контур называется колебательным контуром.

Колебание энергии в колебательном контуре происходит с определенной частотой Электрические цепи синусоидального тока, которую называют частотой собственных колебаний контура. Частоту собственных колебаний со0 определяют из условия равенства энергии электрического и магнитного полей:

Электрические цепи синусоидального тока

так как из (11.19) в цепи переменного тока с емкостью Электрические цепи синусоидального тока

Откуда

Электрические цепи синусоидального тока

Таким образом, частота собственных колебаний колебательного контура определяется параметрами этого контура L и С.

Если в колебательном контуре отсутствуют потери (идеальный контур), то колебания в нем будут незатухающими с неизменной амплитудой. Если в колебательном контуре имеется активное сопротивление, т.е. возникают потери, то колебания энергии в нем будут затухающие, с уменьшающейся амплитудой, если эти потери не компенсируются.

Резонанс напряжений

Если в цепи синусоидального тока с последовательно соединенными конденсатором емкостью С и катушкой с сопротивлением R И индуктивностью L (рис. 12.7а) равны реактивные сопротивления, то в цепи наступает резонанс напряжений. Равенство реактивных сопротивлений является условием резонанса напряжений.

Электрические цепи синусоидального тока

Из (12.25) следует Электрические цепи синусоидального тока, тогда частота резонанса опреляется выражением
Электрические цепи синусоидального тока

Из (12.26) следует, что резонанс напряжений имеет место в неразветвленной цепи с L и С тогда, когда частота вынужденных колебаний (частота источника) Электрические цепи синусоидального тока будет равна частоте собственных колебаний резонансного контура Электрические цепи синусоидального тока. Следовательно, добиться резонанса напряжений можно изменением частоты источника Электрические цепи синусоидального тока или изменением параметров колебательного контура L или С. т. е. изменением частоты собственных колебаний Электрические цепи синусоидального тока.

Полное (кажущееся) сопротивление цепи (рис. 12.7а) при резонансе напряжений определяется по формуле

Электрические цепи синусоидального тока

так как XL-Xc=0.

То есть полное сопротивление неразветвленной цепи при резонансе напряжений Электрические цепи синусоидального тока становится минимальным и равным активному сопротивлению цепи R.

Следовательно, ток в неразветвленной цепи при резонансе напряжений максимальный:

Электрические цепи синусоидального тока

Реактивные сопротивления при резонансе напряжений равны между собой, т. е.
(12.29)

Электрические цепи синусоидального тока

Таким образом, реактивные сопротивления при резонансе напряжений равны (каждое) волновому сопротивлению Электрические цепи синусоидального тока, которое называют характеристическим сопротивлением:

Электрические цепи синусоидального тока

Напряжения на индуктивности UL и на емкости Uc при резонансе напряжений равны между собой, так как равны сопротивления, см. (12.25).

Электрические цепи синусоидального тока

Равенство (12.31) определяет название «резонанс напряжений».

Так как UL и Uc изменяются в противофазе, то напряжение в резонансном режиме равно напряжению на активном сопротивлении Электрические цепи синусоидального тока, т. е. Электрические цепи синусоидального тока, что видно на векторной диаграмме (рис. 12.76).

При резонансе напряжений каждое из реактивных напряжений UL и Uc может оказаться большим, чем напряжение цепи U.

Электрические цепи синусоидального тока

где Q — добротность резонансного контура.

Добротность контура Q показывает, во сколько раз напряжение на индуктивности UL и емкости Uc (каждое) больше напряжения цепи U.

Высокая добротность резонансного контура (при малом активном сопротивлении контура) нашла широкое применение в радиотехнике, в частности в антенном контуре.

Из векторной диаграммы (рис. 12.76) видно, что при резонансе напряжение цепи U совпадает по фазе с током Электрические цепи синусоидального тока, угол между Электрические цепи синусоидального тока и U ф = 0 и cos ф = 1. Следовательно, кажущаяся мощность цепи S при резонансе вся потребляется, т. е. является активной:

Электрические цепи синусоидального тока

Колеблющаяся между магнитным полем индуктивности и электрическим полем емкости мощность (Электрические цепи синусоидального тока) не является реактивной, так как не загружает источник и провода.

Из выражения (12.33) следует, что при отсутствии активной Мощности Р (активного сопротивления R) резонансный контур становится при резонансе идеальным колебательным контуром. Следовательно, при наличии активного сопротивления R источник расходует свою мощность на компенсацию потерь в контуре, за счет чего колебания в цепи будут незатухающими.

Электрические цепи синусоидального тока

Кроме активного сопротивления R резонансной цепи и напряжения, приложенного к ней, все параметры резонансной цепи (Электрические цепи синусоидального тока) изменяются с изменением частоты сети Электрические цепи синусоидального тока.

Эти изменения параметров резонансной цепи наглядно иллюстрируются резонансными кривыми, изображенными на рис. 12.8.

На резонансных кривых четко просматриваются значения этих параметров при частоте резонанса Электрические цепи синусоидального тока.

Общий случай неразветвленной цепи

Для неразветвленной цепи, содержащей несколько активных и реактивных сопротивлений различного характера (рис. 12.9а), справедливо геометрическое равенство напряжений (баланс напряжений)

Электрические цепи синусоидального тока

которое лежит в основе построения векторной диаграммы (рис. 12.96).

Таким образом, напряжение цепи равно геометрической сумме напряжений на всех участках этой цепи.

Из векторной диаграммы следует (рис. 12.96)

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока — активное напряжение цепи равно арифметической сумме напряжений на активных участках цепи; Электрические цепи синусоидального тока — реактивное напряжение цепи равно алгебраической сумме напряжений на реактивных участках цепи.

Те же рассуждения можно отнести и к сопротивлениям:

— полное сопротивление цепи Электрические цепи синусоидального тока;

— активное сопротивление цепи Электрические цепи синусоидального тока;

— реактивное сопротивление цепи Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Напряжение на каком-либо участке неразветвленной цепи (рис. 12.9а), например на участке АВ, определяется так:_

Электрические цепи синусоидального токаЭлектрические цепи синусоидального тока

Вектор напряжения UAB показан на векторной диаграмме (рис. 12.96).

Пример 12.2

Напряжение, приложенное к неразветвленной цепи (рис. 12.10) U=220 В, частота тока сети f = 50 Гц. Начальная фаза тока Электрические цепи синусоидального тока = 0.

Сопротивление участков цепи: Электрические цепи синусоидального тока Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Требуется:

1. Вычислить ток цепи I и записать его мгновенное значение.

2. Записать мгновенное значение напряжения цепи иАЕ, определив предварительно угол ср и характер цепи.

3. Определить напряжение между точками АВ и CD.

4. Построить в масштабе векторную диаграмму цепи, определив едварительно напряжение на каждом сопротивлении.

5. Определить мощности S, Р и Q цепи.

6. Определить частоту, при которой в цепи наступит резонанс напряжений, и ток при резонансе.

7. Определить максимальную энергию, запасенную в магнитном поле катушек WmL и электрическом поле конденсаторов WmC. Как нужно изменить емкость конденсаторов, чтобы в цепи пил резонанс напряжений при частоте f = 50 Гц?

Решение

1. Для определения тока цепи I необходимо вычислить полное сопротивление цепи:

Электрические цепи синусоидального тока

Действующее значение тока Электрические цепи синусоидального тока = 8,8 А, а амплитудное значение тока Электрические цепи синусоидального тока

Угловая частота Электрические цепи синусоидального тока рад/с.

Мгновенное значение тока цепи:

Электрические цепи синусоидального тока

2. Угол сдвига фаз ф и характер цепи определяется через tg ф:

Электрические цепи синусоидального тока

Таким образом, угол ф = 37° (из таблицы), характер цепи индуктивный (+ф).

Тогда мгновенное значение напряжения цепи

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока

3. Напряжение на участках:

Электрические цепи синусоидального тока

4. Для построения векторной диаграммы определяются напряжения:

Электрические цепи синусоидального тока

Векторная диаграмма цепи (отображает только характер участков, но не величины напряжений на них) изображена на рис. 12.11.

5. Полная мощность цепи Электрические цепи синусоидального тока активная мощность Р=Электрические цепи синусоидального тока (так как Электрические цепи синусоидального тока), реактивная мощность Электрические цепи синусоидального тока вар, (так как Электрические цепи синусоидального тока).

6. Для определения частоты резонанса вычисляется индуктивность L и емкость С цепи:

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Тогда

Электрические цепи синусоидального тока

Ток цепи при резонансе Электрические цепи синусоидального тока А.

7. Максимальная энергия, запасенная в магнитном поле катушек:

Электрические цепи синусоидального тока

Максимальная энергия, запасенная в электрическом поле конденсаторов:

Электрические цепи синусоидального тока

8. Условие резонанса XL = XC.

По условию задачи Электрические цепи синусоидального тока, а Электрические цепи синусоидального токаЭлектрические цепи синусоидального тока Ом. Этому Хс соответствует емкость С = Электрические цепи синусоидального тока Ф при f = 50 Гц. Для того чтобы выполнить условие резонанса при сохранении частоты 50 Гц, необходимо Хс увеличить до 38 Ом. Чтобы емкостное сопротивление равнялось 38 Ом, величина емкости С должна быть равна

Электрические цепи синусоидального тока

т. е. емкость конденсаторов нужно уменьшить на

Электрические цепи синусоидального тока

Разветвленная цепь синусоидального тока

Активный и реактивный токи:

Для расчета разветвленных цепей синусоидального тока вводятся расчетные величины активного и реактивного токов цепи.

Если к цепи, содержащей активное сопротивление R и индуктивное XL (рис. 13.1а), приложено синусоидальное напряжение Электрические цепи синусоидального тока, то синусоидальный ток в цепи, вызванный этим напряжением, отстает от него по фазе на угол ф (рис. 12.1 в), Электрические цепи синусоидального тока.

Векторная диаграмма в этом случае изображена на рис. 13.16.

Электрические цепи синусоидального тока

Ток цепи I (рис. 13.16) раскладывается на две составляющие, одна из которых Электрические цепи синусоидального тока совпадает по фазе с напряжением, другая Электрические цепи синусоидального тока — сдвинута на 90°. Составляющая тока Электрические цепи синусоидального тока, совпадающая по фазе с напряжением, называется активной составляющей, или активным током. Составляющая тока Электрические цепи синусоидального тока, имеющая относительно напряжения сдвиг по фазе на угол 90°, называется реактивной составляющей, или реактивным током.

Активный и реактивный токи физического смысла не имеют. Они являются расчетными величинами, так как в неразветвленной цепи (рис. 13.1а) ток на всех участках имеет одинаковое значение. Однако понятия активный Электрические цепи синусоидального тока и реактивный Электрические цепи синусоидального тока токи значительно облегчают расчет разветвленных цепей синусоидального тока. Соотношения между токами определяются из треугольника токов (рис. 13.16)

13.2. Проводимости

Из треугольника токов для рассматриваемой цепи (рис. 13.16) следует: Электрические цепи синусоидального тока.

С другой стороны, известно, что Электрические цепи синусоидального тока (см. (12.6)), a Электрические цепи синусоидального тока и Электрические цепи синусоидального тока (см. (12.9)).

Тогда

Электрические цепи синусоидального тока

где g — активная проводимость цепи, равная

Электрические цепи синусоидального тока

Величина, на которую умножают напряжение, чтобы получить ток, называют проводимостью.

А так как g определяет активный ток Электрические цепи синусоидального тока, то ее и называют активной проводимостью.

Таким образом, активная проводимость g определяется величиной активного сопротивления, деленного на квадрат полного (кажущегося) сопротивления цепи.

Величина реактивного тока определяется выражением

Электрические цепи синусоидального тока

где b — реактивная проводимость цепи, равная

Электрические цепи синусоидального тока

Величина полного тока цепи равна

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока так как для цепи синусоидального тока с Электрические цепи синусоидального тока (рис. 13.1а) Электрические цепи синусоидального тока

Таким образом, у — полная, или кажущаяся, проводимость цепи:

Электрические цепи синусоидального тока

Полная (кажущаяся) проводимость цепи «у» является обратной величиной полного (кажущегося) сопротивления цепи.

Активная Электрические цепи синусоидального тока и реактивная Электрические цепи синусоидального тока проводимости являются соответственно обратными величинами активного R и реактивного X сопротивлений только в том случае, если эти сопротивления (R и X) являются единственными в цепи или ветви, т. е. Электрические цепи синусоидального тока и Электрические цепи синусоидального тока

Если же в неразветвленной цепи (или ветви) включены сопротивления Электрические цепи синусоидального тока то для определения проводимостей можно воспользоваться выражениями (13.2), (13.4), (13.6). Треугольник проводимостей для рассматриваемой цепи (рис. 13.1а) изображен на рис. 13.1 в. Соотношения между проводимостями определяются из этого треугольника.
 

Параллельное соединение катушки и конденсатора

Если к источнику синусоидального напряжения Электрические цепи синусоидального тока подключить параллельно реальную катушку с активным сопротивлением Электрические цепи синусоидального тока и индуктивным Электрические цепи синусоидального тока и конденсатор с активным сопротивлением Электрические цепи синусоидального тока и емкостным Электрические цепи синусоидального тока (рис. 13.2а), то токи в параллельных ветвях этой цепи изменяются по синусоидальному закону:

Электрические цепи синусоидального тока

Действующие значения этих токов будут соответственно равны
Электрические цепи синусоидального тока
Электрические цепи синусоидального тока

Ток в неразветвленной цепи Электрические цепи синусоидального тока равен геометрической сумме токов в ветвях, так как токи не совпадают по фазе:

Электрические цепи синусоидального тока

Для определения этого тока строится векторная диаграмма цепи (рис. 13.26), из которой следует:

Электрические цепи синусоидального тока
где Электрические цепи синусоидального тока
Таким образом, ток в неразветвленной части цепи Электрические цепи синусоидального тока определяется произведением напряжения U и полной проводимости цепи Электрические цепи синусоидального тока

Реактивные проводимости в ветвях имеют различные знаки, так как сопротивления в ветвях различного характера (индуктивное и емкостное).

Треугольник проводимостей рассматриваемой цепи изображен на рис. 13.2в.

Характер разветвленной цепи определяется так же, как и неразветвленной. Если ток цепи Электрические цепи синусоидального тока отстает от напряжения Электрические цепи синусоидального тока (как в рассматриваемом случае), то цепь индуктивного характера, если же ток Электрические цепи синусоидального тока опережает напряжение Электрические цепи синусоидального тока то цепь емкостного характера.
 

Резонанс токов

Резонанс токов в цепи (рис. 13.2а) с параллельным включением катушки и конденсатора (в различных ветвях) возникает при равенстве реактивных проводимостей в ветвях:
Электрические цепи синусоидального тока
Выражение (13.9) является условием резонанса токов в разветвленных цепях синусоидального тока. Полная (кажущаяся) проводимость при этом условии

Электрические цепи синусоидального тока

так как Электрические цепи синусоидального тока
 

Таким образом, полная проводимость цепи при резонансе токов Электрические цепи синусоидального тока минимальна по величине и равна активной проводимости Электрические цепи синусоидального тока Следовательно, и ток в неразветвленной части цепи при резонансе токов имеет минимальную величину

Электрические цепи синусоидального тока

Реактивные токи в ветвях при резонансе токов равны между собой

Электрические цепи синусоидального тока

Это равенство и определяет название «резонанс токов».

На основании равенства (13.12) строится векторная диаграмма при резонансе токов (рис. 13.3). Реактивные токи находятся в противофазе, поэтому ток в неразветвленной части цепи Электрические цепи синусоидального тока при резонансе токов равен активному току Электрические цепи синусоидального тока и совпадает по фазе с напряжением, т.е. Электрические цепи синусоидального тока Следовательно, вся мощность цепи 5 при резонансе токов является активной Р:

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Эта активная мощность компенсирует потери на активном сопротивлении в параллельном резонансном контуре. Мощность (энергия), которая колеблется между электрическим полем конденсатора и магнитным полем индуктивности при резонансе, не является реактивной, так как не загружает источник и провода.

Частота резонанса токов в параллельном резонансном контуре может быть определена из условия резонанса токов, т. е. равенства реактивных проводимостей в ветвях Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

После ряда преобразований равенства (13.13) определяется частота резонанса токов
Электрические цепи синусоидального тока
Резонансная частота зависит не только от параметров колебательного контура Электрические цепи синусоидального тока но и от активных сопротивлений в ветвях реального резонансного контура.

Если в резонансном контуре отсутствуют активные сопротивления в ветвях, то частота резонанса токов Электрические цепи синусоидального тока становится равной частоте собственных колебаний идеального резонансного контура

Электрические цепи синусоидального тока

Если в резонансном контуре Электрические цепи синусоидального тока или Электрические цепи синусоидального тока то резонанса токов добиться невозможно.

Резонанс токов нашел широкое применение в радиотехнике и выпрямительной технике (в резонансных фильтрах) и др.

Пример 13.1

Напряжение, приложенное к параллельно включенным катушке и конденсатору (рис. 13.4а), Электрические цепи синусоидального тока частота сети Электрические цепи синусоидального тока Гц. Параметры цепи: Электрические цепи синусоидального тока Определить:

1) токи всех участков цепи: Электрические цепи синусоидального тока

2) углы сдвига фаз этих токов относительно напряжения: Электрические цепи синусоидального токаЭлектрические цепи синусоидального тока

3) полную S, активную Р и реактивную Q мощности цепи;

4) частоту, при которой наступит резонанс токов в этой цепи. Построить векторную диаграмму.

РешениеЭлектрические цепи синусоидального тока

1. Сопротивление участков цепи:

Электрические цепи синусоидального тока
где Электрические цепи синусоидального тока

Сопротивление 1-й ветви:

Электрические цепи синусоидального тока

Токи в ветвях соответственно равны

Электрические цепи синусоидального тока

Для определения тока Электрические цепи синусоидального тока в неразветвленной части цепи определяются проводимости:

Электрические цепи синусоидального тока

Тогда полная проводимость цепи будет равна

Электрические цепи синусоидального тока

Ток в неразветвленной части цепи

Электрические цепи синусоидального тока

2. Углы сдвига фаз:

.Электрические цепи синусоидального тока

Знак «минус» перед значением угла Электрические цепи синусоидального тока параллельного контура означает, что цепь имеет емкостной характер, так как Электрические цепи синусоидального тока

3. Полная мощность цепи Электрические цепи синусоидального тока

Активная мощность цепи Электрические цепи синусоидального тока так как Электрические цепи синусоидального тока

Реактивная мощность цепи Электрические цепи синусоидального тока вар, так как Электрические цепи синусоидального тока

4. Угловая частота резонанса токов в цепи равна

Электрические цепи синусоидального тока

Откуда Электрические цепи синусоидального тока

Для построения векторной диаграммы определяют активные и реактивные токи в ветвях:

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока так как в ветви с емкостью отсутствует активное сопротивление, т.е. Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Векторная диаграмма для рассматриваемой цепи изображена на рис. 13.46.

На векторной диаграмме видно, что ток I опережает напряжение U на угол 53°30′ (цепь емкостного характера).
 

Коэффициент мощности

Номинальные параметры, т.е. мощность источника Электрические цепи синусоидального тока мощность потребителя Электрические цепи синусоидального тока и коэффициент мощности Электрические цепи синусоидального тока связаны следующим соотношением

Электрические цепи синусоидального тока

Из (13.15) следует, что чем меньше Электрические цепи синусоидального тока тем большую мощность Электрические цепи синусоидального тока должен иметь источник для питания этого потребителя, т. е. тем больше его габариты, вес, расход материалов, стоимость и др.

Ток в цепи потребителя с определенным Электрические цепи синусоидального тока согласно выражению (12.11) равенЭлектрические цепи синусоидального тока

Из (13.16) видно, что чем меньше Электрические цепи синусоидального тока, тем больше ток потребителя Электрические цепи синусоидального тока тем больший ток проходит по проводам линий электропередачи, тем больше потери энергии в этой линии и меньше КПД ее и всей системы (3.11). Кроме того, увеличение тока требует для его передачи проводов большего сечения, т. е. большего расхода цветных металлов.

Таким образом, низкий коэффициент мощности потребителя Электрические цепи синусоидального тока приводит к увеличению мощности источника, питающего этот потребитель, уменьшению КПД линии электропередачи и к увеличению сечения проводов линий электропередачи. 4В России установлен минимально допустимый коэффициент мощности не менее 0,93, т.е. Электрические цепи синусоидального тока должен быть равен или больше 0,93 Электрические цепи синусоидального тока

Однако Электрические цепи синусоидального тока большинства электрических потребителей переменного тока меньше этой нормы. Так, например, Электрические цепи синусоидального тока асинхронных двигателей, в зависимости от нагрузки, составляет Электрические цепи синусоидального тока трансформаторов — Электрические цепи синусоидального тока выпрямителей — Электрические цепи синусоидального тока и т.д. Следовательно, коэффициент мощности этих потребителей необходимо повышать.

Так как большинство потребителей представляет собой нагрузку индуктивного характера, то для улучшения Электрические цепи синусоидального тока параллельно с ним подключаются конденсаторы (рис. 13.5а).

Электрические цепи синусоидального тока

Из векторной диаграммы (рис. 13.56) видно, что с подключением конденсатора С (ключ К замкнут) появляется Электрические цепи синусоидального тока за счет которого уменьшается угол Электрические цепи синусоидального тока и увеличивается Электрические цепи синусоидального тока установки. При этом уменьшается ток цепи Электрические цепи синусоидального тока который до подключения конденсатора был равен току нагрузки Электрические цепи синусоидального тока

Для повышения коэффициента мощности Электрические цепи синусоидального тока конденсатор можно включить последовательно с потребителем индуктивного характера. Однако при этом нарушается режим работы (напряжение) потребителя. Поэтому для улучшения Электрические цепи синусоидального тока конденсатор подключают параллельно с нагрузкой (рис. 13.5а).

Коэффициент мощности можно повысить, увеличив активную нагрузку. При этом увеличивается потребляемая энергия, что экономически нерационально (уменьшается КПД установки).

Пример 13.2

Асинхронный двигатель, включенный в сеть с напряжением Электрические цепи синусоидального тока и частотой Электрические цепи синусоидального тока развивает на валу мощность Электрические цепи синусоидального тока КПД двигателя Электрические цепи синусоидального тока при Электрические цепи синусоидального тока Определить емкость конденсатора С, который необходимо включить параллельно с двигателем (рис. 13.5а), чтобы повысить Электрические цепи синусоидального тока установки до 0,95.

Решение

Мощность, потребляемая двигателем из сети:

Электрические цепи синусоидального тока

Ток нагрузки Электрические цепи синусоидального тока т.е. ток двигателя (рис. 13.5а), равен

Электрические цепи синусоидального тока

Реактивная составляющая тока двигателя Электрические цепи синусоидального тока (рис. 13.56)

Электрические цепи синусоидального тока

(по таблице Электрические цепи синусоидального тока).

Ток установки Электрические цепи синусоидального тока при подключении конденсатора, т. е. при Электрические цепи синусоидального тока будет равен

Электрические цепи синусоидального тока

При Электрические цепи синусоидального тока Реактивная составляющая тока установки (рис. 13.56)

Электрические цепи синусоидального тока

Ток конденсатора Электрические цепи синусоидального тока (рис. 13.56)

Электрические цепи синусоидального тока

Емкостное сопротивление конденсаторов

Электрические цепи синусоидального тока

Емкость конденсаторов, которые нужно подключить параллельно двигателю для улучшения Электрические цепи синусоидального тока до 0,95:

Электрические цепи синусоидального тока

  • Электрические цепи несинусоидального тока
  • Несинусоидальный ток
  • Электрические цепи с распределенными параметрами
  • Резистивные электрические цепи и их расчёт
  • Резонанс токов
  • Трехфазные симметричные цепи
  • Трехфазные несимметричные цепи
  • Вращающееся магнитное поле


Онлайн расчёт электрических величин напряжения, тока и мощности для участка цепи,
полной цепи, цепи
с резистивными, ёмкостными и индуктивными элементами.
Теория и практика для начинающих.

Начнём с терминологии.
Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одной области
электрической цепи в другую.
Силой электрического тока (I) является величина, которая численно равна количеству заряда Δq, протекающего через заданное поперечное
сечение проводника S за единицу времени Δt: I = Δq/Δt.
Напряжение электрического тока между точками A и B электрической цепи — физическая величина, значение которой равно работе эффективного
электрического поля, совершаемой при переносе единичного пробного заряда из точки A в точку B.
Омическое (активное) сопротивление — это сопротивление цепи постоянному току, вызывающее безвозвратные потери энергии
постоянного тока.
Теперь можно переходить к закону Ома.

Закон Ома был установлен экспериментальным путём в 1826 году немецким физиком Георгом Омом и назван в его честь.

По большому счёту, Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях,
определяющих зависимость между электрическими величинами, такими как: напряжение, сопротивление и сила тока исключительно
для проводников, обладающих постоянным сопротивлением.
При расчёте напряжений и токов в нелинейных цепях, к примеру, таких, которые содержат полупроводниковые или электровакуумные приборы,
этот закон в простейшем виде уже использоваться не может.

Тем не менее, закон Ома был и остаётся основным законом электротехники, устанавливающим связь силы
электрического тока с сопротивлением и напряжением.

Формулировка закона Ома для участка цепи может быть представлена так: сила тока в проводнике прямо
пропорциональна напряжению (разности потенциалов) на его концах и обратно пропорциональна сопротивлению этого проводника

и записана в следующем виде:

I=U/R,

Закон Ома для участка цепи

где
I – сила тока в проводнике, измеряемая в амперах [А];
U – электрическое напряжение (разность потенциалов), измеря- емая в вольтах [В];
R – электрическое сопротивление проводника, измеряемое в омах [Ом]
.

Производные от этой формулы приобретают такой же незамысловатый вид:

R=U/I и U=R×I.

Зная любые два из трёх приведённых параметров можно произвести и расчёт величины мощности,
рассеиваемой на резисторе
.

Мощность является функцией протекающего тока I(А) и приложенного напряжения U(В) и вычисляется по следующим формулам,
также являющимся производными от основной формулы закона Ома:

P(Вт) = U(В)×I(А) = I2(А)×R(Ом) =
U2(В)/R(Ом)

Формулы, описывающие закон Ома, настолько просты, что не стоят выеденного яйца и, возможно, вообще не заслуживают отдельной
крупной статьи на страницах уважающего себя сайта.

Не заслуживают, так не заслуживают. Деревянные счёты Вам в помощь, уважаемые дамы и рыцари!

Считайте, учитывайте размерность, не стирайте из памяти, что:

Единицы измерения напряжения: 1В=1000мВ=1000000мкВ;
Единицы измерения силы тока:1А=1000мА=1000000мкА;
Единицы измерения сопротивления:1Ом=0.001кОм=0.000001МОм;
Единицы измерения мощности:1Вт=1000мВт=100000мкВт
.

Ну и так, на всякий случай, чисто для проверки полученных результатов, приведём незамысловатый калькулятор, позволяющий в онлайн
режиме проверить расчёты, связанные со знанием формул закона Ома.

ОНЛАЙН КАЛЬКУЛЯТОР ДЛЯ ПРОВЕРКИ РЕЗУЛЬТАТОВ РАСЧЁТОВ ЗАКОНА ОМА

Вводить в таблицу нужно только два имеющихся у Вас параметра, остальные посчитает таблица.


   Напряжение U   

     


   Сопротивление R   

     


   Сила тока I   

     


   Мощность Р   

     


  

     
        

     
        

Все наши расчёты проводились при условии, что значение внешнего сопротивления
R значительно превышает внутреннее
сопротивление источника напряжения rвнутр.
Если это условие не соблюдается, то под величиной R следует
принять сумму внешнего и внутреннего сопротивлений:
R = Rвнешн + rвнутр
,
после чего закон приобретает солидное название — закон Ома для полной цепи:
I=U/(R+r) .

Для многозвенных цепей возникает необходимость преобразования её к эквивалентному виду:

Закон Ома для сложной цепи

Значения последовательно соединённых резисторов просто суммируются, в то время как значения параллельно соединённых резисторов
определяются исходя из формулы:

1/Rll = 1/R4+1/R5.
А онлайн калькулятор для расчёта величин сопротивлений при параллельном соединении нескольких проводников можно найти на странице
ссылка на страницу.

Теперь, что касается закона Ома для переменного тока.
Если внешнее сопротивление у нас чисто активное (не содержит ёмкостей и индуктивностей), то формула, приведённая выше,
остаётся в силе.

Единственное, что надо иметь в виду для правильной интерпретации закона Ома для переменного тока — под значением U следует
понимать действующее (эффективное) значение амплитуды переменного сигнала
.

А что такое действующее значение и как оно связано с амплитудой сигнала переменного тока?
Приведём диаграммы для нескольких различных форм сигнала.

Закон Ома для переменного тока

Слева направо нарисованы диаграммы синусоидального сигнала, меандра (прямоугольный сигнал со скважностью, равной 2),
сигнала треугольной формы, сигнала пилообразной формы.
Глядя на рисунок можно осмыслить, что амплитудное значение приведённых сигналов — это максимальное значение, которого достигает
амплитуда в пределах положительной, или отрицательной (в наших случаях они равны) полуволны.

Рассчитываем действующее значение напряжение интересующей нас формы:

Для синуса U = Uд = Uа/√2;
для треугольника и пилы U = Uд = Uа/√3;
для меандра U = Uд = Uа.

С этим разобрались!

Теперь посмотрим, как будет выглядеть формула закона Ома при наличии индуктивности или ёмкости
в цепи переменного тока
.
В общем случае смотреться это будет так:

Закон Ома для переменного тока

А формула остаётся прежней, просто в качестве сопротивления R выступает полное сопротивление цепи Z,
состоящее из активного, ёмкостного и индуктивного сопротивлений
.
Поскольку фазы протекающего через эти элементы тока не одинаковы, то простым арифметическим сложением сопротивлений этих
трёх элементов обойтись не удаётся, и формула приобретает вид:
Закон Ома для переменного тока

Реактивные сопротивления конденсаторов и индуктивностей мы с Вами уже рассчитывали на странице
ссылка на страницу и знаем, что величины эти зависят от частоты, протекающего через них тока
и описываются формулами:
XC = 1/(2πƒС) ,   XL = 2πƒL .

Нарисуем таблицу для расчёта полного сопротивления цепи для переменного тока.

Количество вводимых элементов должно быть не менее одного, при наличии
индуктивного или емкостного элемента — необходимо указать значение частоты
f !

КАЛЬКУЛЯТОР ДЛЯ ОНЛАЙН РАСЧЁТА ПОЛНОГО СОПРОТИВЛЕНИЯ ЦЕПИ.


   Сопротивление R   

     


   Индуктивность L   

     


   Ёмкость С   

     


   Частота f   

     


  

  Реактивное сопротивление XC   

     

  Реактивное сопротивление XL   

     

  Полное сопротивление цепи Z  

     

Теперь давайте рассмотрим практический пример применения закона Ома в цепях переменного тока и рассчитаем
простенький бестрансформаторный источник питания.

Закон Ома для переменного тока

Токозадающими цепями в данной схеме являются элементы R1 и С1.

Допустим, нас интересует выходное напряжение Uвых = 12 вольт при токе нагрузки 100 мА.
Выбираем стабилитрон Д815Д с напряжением стабилизации 12В и максимально допустимым током стабилизации 1,4А.
Зададимся током через стабилитрон с некоторым запасом — 200мА.
С учётом падения напряжения на стабилитроне, напряжение на токозадающей цепи равно 220в — 12в = 208в.
Теперь рассчитаем сопротивление этой цепи Z для получения тока, равного 200мА: Z = 208в/200мА = 1,04кОм.
Резистор R1 является токоограничивающим и выбирается в пределах 10-100 Ом в зависимости от максимального тока
нагрузки.
Зададимся номиналами R1 — 30 Ом, С1 — 1 Мкф, частотой сети f — 50 Гц и подставим всё это хозяйство в таблицу.
Получили полное сопротивление цепи, равное 3,183кОм. Многовато будет — надо увеличивать ёмкость С1.
Поигрались туда-сюда, нашли нужное значение ёмкости — 3,18 Мкф, при котором Z = 1,04кОм.

Всё — закон Ома выполнил свою функцию, расчёт закончен, всем спать полчаса!

Понравилась статья? Поделить с друзьями:
  • Как найти прямые затраты предприятия
  • Как найти предохранитель стеклоподъемника
  • Как найти плотность жидкого вещества
  • Климатограмма как найти на карте
  • Аэропорт шереметьево как найти свой терминал