Как найти действующее напряжение от максимального

Действующее напряжение и амплитудное напряжение — что это, и в чем отличие

действующее напряжение и амплитудное напряжение

Все знают, что действующее напряжение в розетке 220 Вольт (230 по новым нормам, но для данной темы это не имеет особого значения). Это легко проверить при помощи мультиметра, который измерит разность потенциалов между фазой и рабочим нулевым проводником. То есть, при идеальных условиях, потенциал на нулевом проводе 0, а на фазном 220 Вольт. На самом деле все немного не так — переменный ток имеет синусоидальную форму с потенциалом на пиках 310 и -310 Вольт (амплитудное напряжение). Для того чтобы это увидеть, необходимо воспользоваться осциллографом.

Синусоида действующего и амплитудного напряжения

Понятно, что данный материал в большей степени ориентирован на простую аудиторию, у которой не то, что осциллографа нет, даже мультиметр наверняка не у каждого есть. Поэтому все примеры будут браться из среды программы Electronics Workbench, доступной каждому.

И первое, что нам нужно посмотреть — это синусоиду напряжения фазы из розетки. Для этого в программе отрисуем трехфазную сеть и подключим осциллограф к одной из фаз:

действующее напряжение и амплитудное напряжение - синусоида

Как видно при показании вольтметра 219,4 Вольт между одной из фаз и PEN проводником, осциллограф показал синусоиду с амплитудой 309,1 Вольт. Это значение напряжения называется максимальным (амплитудным). А 219,4 Вольт, которые показывает вольтметр — это действующее напряжение. Его также называют среднеквадратичным или эффективным. И прежде чем перейти к рассмотрению данной особенности, кратко, простыми словами пройдемся по отрисованной схеме трехфазной сети и разберемся в природе синусоиды.

Начнем со схемы:

  • Слева на право — три источника переменного напряжения с фазовыми углами 0, 120, 240 градусов и соединенными звездой.
  • Резистор 4 Ом — это заземление нейтрали трансформатора.
  • Резисторы по 0,8 Ом — условное сопротивление проводов, зависящее от сечения провода и длины линии.
  • Резисторы 15, 10 и 20 Ом — нагрузка потребителей по трем фазам.
  • К одной из фаз подключен осциллограф, показывающий амплитуду 309,1 Вольт.

Теперь рассмотрим синусоиду. Переменное напряжение в отличие от постоянного, график которого прямая на осциллографе, непрерывно изменяется как по величине, так и по направлению. Причем изменения эти происходят периодически, то есть точно повторяются через равные промежутки времени.

Переменное напряжение генерируется на электростанциях и посредством повышающих и понижающих распределительных трансформаторов попадает к конечному потребителю. При этом трансформация по пути никак не сказывается на синусоиде напряжения.

Видео — действующее напряжение и амплитудное

С полным и наглядным изложением рассматриваемого вопроса вы можете ознакомиться в следующем видео:

Работа генератора трехфазного переменного тока

Рассмотрим упрощенно работу генератора трехфазного переменного тока. Обмотки статора (фазы А, В и С) генератора расположены под углом 120 градусов относительно друг друга. Ротор с магнитом вращаясь индуцирует в обмотках статора периодически изменяющиеся ЭДС. Выглядит это следующим образом:

работа генератора трехфазного переменного тока

Такое вращение происходит с частотой 50 оборотов в секунду, то есть с частотой 50 Герц. Это значит, что электроны движутся в течение 1 секунды 50 раз в одном направлении (положительный полупериод синусоиды), и 50 — в обратном (отрицательный полупериод), 100 раз проходя чрез нулевое значение. Получается, что к примеру обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.

Определение действующего напряжения

Теперь непосредственно о том, почему произошел переход от максимального, амплитудного значения напряжения 310 Вольт к действующему 220 Вольт. Ответ можно найти в самом определении.

Действующее (эффективное или среднеквадратичное) значение напряжения — это такое напряжение постоянного тока, которое на такой же резистивной нагрузке выделит такую же мощность, как измеряемое переменное напряжение. Соответственно, действующее значение силы тока — такое значение силы постоянного тока, при прохождении которого через резистивную нагрузку выделится такая же мощность, что и при прохождении измеряемого тока.

Можно сформулировать и немного иначе. Действующее значение переменного тока равно величине такого постоянного тока, который за время, равное одному периоду переменного тока, произведет такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток.

Общая формула расчета действующего напряжения произвольной формы следующая:

формула расчета действующего напряжения

Объяснение действующего напряжения

Определение и формула — это хорошо. Но лучше все понять на наглядном примере. Объяснить все можно через мощность. Причем есть сложный для восприятия способ и более простой, который мы и рассмотрим далее.

Нам нужно взять один период синусоиды переменного напряжения, на этом промежутке построить синусоиду переменного тока и проанализировать мощность. Начнем с периода синусоиды переменного напряжения. Здесь же построим синусоиду переменного тока с учетом условной резистивной нагрузки (например, лампочки). По закону Ома сила тока равна напряжению, деленному на сопротивление.

Точные значения в конкретный момент при данном объяснении не принципиальны, поэтому все построения приблизительные. Естественно нужно понимать, что деля напряжение на сопротивление, мы получим синусоиду переменного тока с амплитудой в R раз меньшей, чем у напряжения. R – это значение сопротивления.

объяснение действующего напряжения

Теперь по двум синусоидам строим график мощности по формуле мощность равна силе тока умноженной на напряжение (P = I × U). Так как напряжение и ток имеют общие нулевые точки, то график мощности не будет заходить в отрицательную область. То есть сила тока со знаком «+» и напряжение со знаком «+» дадут мощность со знаком «+», так же как и сила тока со знаком «-» и напряжение со знаком «-» дадут мощность со знаком «+».

Анализируя полученный график можно отметить, что мощность пульсирующая. Она поднимается до максимального значения и падает до нуля, потом опять поднимается и снова падает. Как на эти колебания мощности реагируют электроприборы? Никак. Поскольку частота переменного тока 50 Герц, то эти колебания происходят очень быстро. Электроприборы откликаются не на максимальные и минимальные значения мощности, а на усредненные. То есть берется максимальное значение мощности и делится на два. Это значение называется действующим и находится по следующей формуле:

Pд = (Imax × Umax) / 2, где Pд — мощность действующая, Imax — сила тока максимальная, Umax — напряжение максимальное.

Двойку можно представить в виде корень из двух умножить на корень из двух. Получаем Действующее значение мощности = сила тока максимальная деленная на корень из двух умноженная на напряжение максимальное деленное на корень из двух (Pд = (Imax/√2) × (Umax/√2)).

Соответственно сила тока максимальная деленная на корень из двух — это действующее значение силы переменного тока, а напряжение максимальное деленное на корень из двух – это действующее значение переменного напряжения.

И действительно, если мы возьмем максимальное напряжение из предыдущего примера 309,1 Вольт и разделим на корень из двух, то получим действующее напряжение (то, которое показывает вольтметр) 219,4 Вольт.

Выберите подписку для получения дополнительных возможностей Kalk.Pro

Любая активная подписка отключает

рекламу на сайте

    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов

Более 10 000 пользователей уже воспользовались расширенным доступом для успешного создания своего проекта. Подробные чертежи и смета проекта экономят до 70% времени на подготовку элементов конструкции, а также предотвращают лишний расход материалов.

Подробнее с подписками можно ознакомиться здесь.

Всем доброго времени суток! В прошлой статье я рассказал, как рассчитать индуктивность катушки выполненной на разомкнутом сердечнике (например, ферритовой антенны, контурных катушек радиоприёмников, катушек с построечными сердечниками и т. д.). Сегодняшняя статья посвящена переменному напряжению и параметрам, которые его характеризуют.

Что такое переменное напряжение?

Как известно электрическим током называется упорядоченное движение заряженных частиц, которое возникает под действием разности потенциалов или напряжения. Одной из основных характеристик любого типа напряжения является его зависимость от времени. В зависимости от данной характеристики различают постоянной напряжение, значение которого с течением времени практически не изменяется и переменное напряжение, изменяющееся во времени.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Переменное напряжение в свою очередь бывает периодическим и непериодическим. Периодическим называется такое напряжение, значения которого повторяются через равные промежутки времени. Непериодическое напряжение может изменять своё значение в любой период времени. Данная статья посвящена периодическому переменному напряжению.

Виды напряжений
Постоянное (слева), периодическое (в центре) и непериодическое (справа) переменное напряжение.

Минимальное время, за которое значение переменного напряжения повторяется, называется периодом. Любое периодическое переменное напряжение можно описать какой-либо функциональной зависимостью. Если время обозначить через t, то такая зависимость будет иметь вид F(t), тогда в любой период времени зависимость будет иметь вид

где Т – период.

Величина обратная периоду Т, называется частотой f. Единицей измерения частоты является Герц, а единицей измерения периода является Секунда

Наиболее часто встречающаяся функциональная зависимость периодического переменного напряжения является синусоидальная зависимость, график которой представлен ниже

Синусоидальное переменное напряжениеСинусоидальное переменное напряжение.

Из математики известно, что синусоида является простейшей периодической функцией, и все другие периодические функции, возможно, представить в виде некоторого количества таких синусоид, имеющих кратные частоты. Поэтому необходимо изначально рассмотреть особенности синусоидального напряжения.

Таким образом, синусоидальное напряжение в любой момент времени, мгновенное напряжение, описывается следующим выражением

где Um – максимальное значение напряжения или амплитуда,

ω –угловая частота, скорость изменения аргумента (угла),

φ – начальная фаза, определяемая смещением синусоиды относительно начала координат, определяется точкой перехода отрицательной полуволны в положительную полуволну.

Величина (ωt + φ) называется фазой, характеризующая значение напряжения в данный момент времени.

Таким образом, амплитуда Um, угловая частота ω и начальная фаза φ являются основными параметрами переменного напряжения и определяют его значение в каждый момент времени.

Обычно, при рассмотрении синусоидального напряжения считают, что начальная фаза равна нулю, тогда

В практической деятельности, довольно часто, используют ещё ряд параметров переменного напряжения, такие как, действующее напряжение, среднее напряжение и коэффициент формы, которые мы рассмотрим ниже.

Что такое действующее напряжение переменного тока?

Как я писал выше, одним из основных параметров переменного напряжения является амплитуда Um, однако использовать в расчётах данную величину не удобно, так как временной интервал в течение, которого значение напряжения u равно амплитудному Um ничтожно мал, по сравнению с периодом Т напряжения. Использовать мгновенное значение напряжения u, также не очень удобно, вследствие больших объёмов расчётов. Тогда возникает вопрос, какое значение переменного напряжения использовать при расчётах?

Для решения данного вопроса необходимо обратиться к энергии, которая выделяется под воздействием переменного напряжения, и сравнить её с энергией, которая выделяется под воздействием постоянного напряжения. Для решения данного вопроса обратимся к закону Джоуля – Ленца для постоянного напряжения

Для переменного напряжения мгновенное значение выделяемой энергии составит

где u – мгновенное значение напряжения

Тогда количество энергии за полный период от t0 = 0 до t1 = T составит

Приравняв выражения для количества энергии при переменном напряжении и постоянном напряжении и выразив полученное выражение через постоянное напряжение, получим действующее значение переменного напряжения

Получившееся выражение, позволяет вычислить действующее значение напряжение U для периодического переменного напряжения любой формы. Из выше изложенного можно сделать вывод, что действующее значение переменного напряжения называется такое постоянное напряжение, которое за такое же время и на таком же сопротивлении выделяет такую же энергию, которая выделяется данным переменным напряжением.

Действующее значение синусоидального напряжения
Действующее значение синусоидального напряжения.

Вычислим действующее значение синусоидального напряжения

Стоит отметить, все напряжения электротехнических устройств определяются, как правило, действующим значением напряжения.

Для определения амплитудного значения синусоидального напряжения необходимо преобразовать полученное выражение

Таким образом если в розетке у нас U = 230 В, следовательно, амплитудное значение данного напряжения

Действующее напряжение также имеет название эффективного напряжения и среднеквадратичного напряжения.

С действующим напряжением разобрались, теперь рассмотрим среднее значение напряжение.

Что такое среднее значение переменного напряжения?

Ещё одним параметром переменного напряжения, который его характеризует, является средним значением переменного напряжения. В отличие от действующего значения переменного напряжения, которое характеризует работу переменного напряжения, среднее значение напряжения характеризует количество электричества, которое перемещается из одной точки цепи в другую, под действием переменного напряжения. Среднее значение напряжения за период определяется следующим выражением

где Т – период переменного напряжения,

fu(t) – функциональная зависимость напряжения от времени.

Таким образом, среднее значение переменного напряжения численно будет равно высоте прямоугольника с основанием T, площадь которого равна площади, ограниченной функцией fu(t) и осью Ox за период Т.

Среднее значение переменного напряжения
Среднее значение переменного напряжения.

В случае синусоидальной функции, можно говорить только о среднем значении за полупериод, так как в течение всего периода положительная полуволна компенсируется отрицательной полуволной, и тогда среднее за период напряжение будет равно нулю.

Таким образом, среднее за полупериод Т/2 значение переменного напряжения синусоидальной формы будет равно

где Um – максимальное значение напряжения или амплитуда,

ω –угловая частота, скорость изменения аргумента (угла).

Какие коэффициенты, характеризуют переменное напряжение?

Иногда возникает необходимость охарактеризовать форму переменного напряжения. Для этой цели существует ряд параметров данного переменного напряжения:

1. Коэффициент формы переменного напряжения kф – показывает как относится действующее значение переменного напряжения U к его среднему значению Ucp.

Так для синусоидального напряжения коэффициент формы составит

2. Коэффициент амплитуды переменного напряжения kа – показывает как относится амплитудное значение переменного напряжения Um к его действующему значению U

Так для синусоидального напряжения коэффициент амплитуды составит

На сегодня всё, в следующей статье я рассмотрю прохождение переменного напряжения через сопротивление, индуктивность и емкость.

ads

Переменное напряжение — это напряжение, которое изменяется с течением времени. Далее будем рассматривать только гармоническое переменное напряжение (изменяется по синусоиде).Напряжение в цепи переменного тока

u = Umsin(2πt + Ψ ) = Umsin(ωt + Ψ )

Где u = u(t) — мгновенное значение переменного напряжения [В].

Um максимальное значение напряжения (амплитудное значение) [В].

f — частота  равная числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с-1)

ω — угловая частота (омега) (единица угловой частоты — рад/с или с-1)

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

U — Действующее значение напряжения [В]:Действующее значение напряжения

Рассмотрим параметры напряжения в бытовой электросети.

Все мы знаем, что у нас дома в розетке поступает переменный ток, с напряжением 220 вольт и частотой 50 герц (в идеальных условиях) на самом деле допускается не большая погрешность как в меньшую, так и в большую сторону так, что не удивляйтесь если ваш вольтметр покажет не 220, а например 210 или даже 230 В.).

Большинство приборов измеряет не амплитудное, а действующее значение переменного напряжения, тока, мощности так, что если мы говорим что у нас напряжение сети 220, 380 В и т. д. то имеется виду именно действующие значения.

  • Действующее значение напряжения U = 220 В.
  • Амплитудное значение напряжения цепи переменного тока Um = U*√2 = 220 *√2 = 311 В.
  • Угловая частота ω = 2πf = 3,14*2*50 = 314 рад/с.
  • Начальная фаза Ψ = 0 град.
  • Мгновенное значение u  = 311sin(314t) В.

Падение напряжения в электрической сети может стать настоящей проблемой с приобретением современных мощных электроприборов. Чаще всего от этого страдают жильцы старых многоквартирных и частных домов, проводка в которых проложена 20, а то и 30 лет назад. Для энергопотребителей тех времен сечения кабеля было вполне достаточно, однако сегодня практически все пользователи полностью перешли на электрическую технику, эксплуатация которой требует модернизации проводки.

Наглядную картину можно наблюдать на примере освещения. Когда в электрической сети падает напряжение при подключении нагрузки с малым сопротивлением, лампы начинают гореть с меньшей яркостью. Причиной такого явления может быть недостаточное сечение проводки.

Чтобы убедиться в том, что источник выдает больший вольтаж, чем потребитель, необходимо вычислить напряжение на нагрузке. Сделать это можно путем включения в цепь вольтметра или по формуле. В первом случае измерительный прибор, который изначально имеет достаточно высокое сопротивление на входе, необходимо подключать параллельно линии. Это позволяет избежать шунтирования нагрузки и искажения результатов измерения.

video1.jpg



Как рассчитать напряжение по формуле

Когда возникают перебои в подаче электроэнергии к приборам, важно проанализировать работу линии. При этом следует определить напряжение на нагрузке по формуле – такое решение дает максимально точный результат и позволяет вычислить другие параметры аналогичным способом. Так, формула расчета напряжения на нагрузке выглядит следующим образом:

1.jpg

U1 – напряжение источника;

ΔU – падение напряжения в линии;

I – ток в линии;

R0 – сопротивление линии.

В том случае, если сопротивление линии и напряжение источника постоянны, напряжение на нагрузке напрямую зависит от силы тока в линии.

Например, при подключении прибора в электрическую сеть с напряжением 220 В, током 10 А и сопротивлением линии, равным 2 Ом, напряжение на нагрузке составит:

2.jpg

В режиме холостого хода падения напряжения в линии нет (ΔU = 0), поэтому напряжение на нагрузке теоретически равно вольтажу источника (U2 = U1). Однако на практике напряжение источника равняться напряжению потребителя не может, поскольку и проводка, и источник электроэнергии, и подключенный к сети прибор имеют собственное сопротивление.

Пример. Напряжение источника составляет 220 В, внутреннее его сопротивление можно не учитывать. Сопротивление проводки – 1 Ом. Сопротивление включенного в сеть электрического прибора – 12 Ом. Суммарное сопротивление цепи составит 13 Ом. Ток в линии рассчитывается по закону Ома и составляет:

3.jpg

Напряжение на нагрузке вычисляется по формуле, приведенной выше:

4.jpg

Таким образом, видно, что напряжение на нагрузке меньше исходных 220 В, остальной вольтаж «теряется» на проводах.

Падение напряжения при подключении нагрузки потребителя

Из-за скачков вольтажа в сети страдают преимущественно жители частного сектора, дачных и коттеджных поселков. Из-за чего же происходит падение напряжения при подключении потребителя?

Первая причина этого явления – недостаточное сечение электрической проводки в доме. Дело в том, что слишком тонкие жилы кабеля не выдерживают большой нагрузки, которая возникает при включении в сеть электроприборов с высокой мощностью. Вторая причина – некачественные контакты в местах соединения проводов, что создает дополнительное сопротивление на линии.

Из-за падения напряжения в обоих случаях есть риск перегрева проводки или участка, в котором находится неисправный контакт. Это может стать причиной полного прекращения подачи электроэнергии на объект и даже возгорания.

Иногда падение напряжения наблюдается не на стороне пользователя, а на линиях электропередач. Оно может возникать вследствие перегрузки подстанции. В этом случае решить проблему может лишь поставщик электроэнергии путем замены устаревшей подстанции на более новую модель с современной релейной защитой. Еще одной причиной низкого напряжения может быть недостаточное сечение проводов на линии электропередач, а также нестабильное распределение нагрузки фаз на стороне подстанции. Как и в первом случае, устранить эти недочеты может только поставщик коммунальной услуги.

Узнать, действительно ли поставщик электроэнергии виноват в «провалах» напряжения, можно, опросив соседей. Если у них подобной проблемы нет, значит, стоит искать причину на территории участка. Зачастую этот вопрос успешно решается путем замены проводки на новый кабель с большим сечением. Однако в некоторых случаях падение напряжения продолжает наблюдаться. Причина может заключаться в так называемых «скрутках» – соединениях проводов путем их скручивания. Дело в том, что каждый некачественный контакт на линии снижает конечное напряжение в сети. Чтобы этого избежать, рекомендуется использовать заводские зажимы, которые гораздо более надежны, чем другие способы соединения электрических кабелей, а также абсолютно безопасны.

В случаях с применением низковольтных аккумуляторных батарей тоже могут наблюдаться «провалы». Если при включении потребителей падает напряжение зарядки источника питания, наиболее вероятная причина этого – некачественные контакты.

При падении напряжения в сети принципиально важно выяснить и устранить причину этого. В противном случае бездействие может обернуться печальными последствиями, особенно если дело касается электрической бытовой проводки. Современные кабели с подходящим сечением и качественно выполненные соединения проводов – залог длительной и эффективной работы всех электроприборов.

Понравилась статья? Поделить с друзьями:
  • Ошибка technical difficulties как исправить
  • Пересоленная тушеная картошка как исправить
  • Как найти на клавиатуре знаки препинания
  • Как найти человека по медицинскому полису
  • Как найти сокровищницу в ведьмаке