Как найти действующие значение токов

Что такое действующее значение напряжения

Содержание

  • 1 Как измеряется
    • 1.1 Практический пример
  • 2 Импульсный электрический заряд
    • 2.1 Расчёт кривой
    • 2.2 Вычисления
  • 3 Сила переменного тока
  • 4 Вывод
  • 5 Видео по теме

Всем нам известно о 220 вольт в бытовой розетке. Но если подключить к ней вольтметр, напряжение каждый раз будет разным. При этом зачастую напряжение может быть даже больше данной величины. Постараемся в данном материале разобраться — почему это происходит, что такое действующее значение переменного тока, и как его можно рассчитать с помощью различных вариантов.

Как измеряется

Электродинамические параметры в сети постоянно изменяются. Это связано с тем, что они представлены синусоидальным однополярным импульсом разной амплитуды. При измерении напряжения в цепи переменного тока, каждый раз будет получен разный результат. А при вычислении усреднённого параметра, он всегда будет составлять 0.

Измерение напряжения в розетке мультиметром

Получается, что математически вычислить данный параметр невозможно. Есть возможность получить только усреднённый параметр, который зависит от полупериода синусоидальной волны. Однако использовать его на практике или для каких-то вычислений нельзя.

Для решения этой проблемы и стали применять такое понятие, как действующее значение для расчёта силы тока и напряжения. Параметр определяется по характеристикам постоянного тока в цепи, генерирующей тепловую энергию такого же объёма, как и при подаче в цепь переменного тока.

Практический пример

Определение выше будет непонятным для человека, который не имеет особых познаний в области электротехники и электродинамики. Чтобы понять его смысл, предлагается рассмотреть следующий пример:

  1. Доступны две идентичные электроцепи (длина, элементы цепи и сечение проводников у них совпадают).
  2. В каждую включён одинаковый резистор — электронный компонент, который изменяет свое сопротивление в зависимости от подаваемого тока.
  3. Обе цепи подключаются к источникам электроэнергии, имеющим одинаковое напряжение.Измерение выделяемого тепла в двух идентичных цепях

Но между цепями есть одна разница. На первую электроцепь подаётся постоянный, а на вторую — переменный ток. По одной из них пойдёт стабильный электроток, а по другой потечет импульсный электрозаряд, который постоянно изменяется и имеет синусоидальной график.

Чтобы найти количества тепла в цепи с сопротивлением, используется такая формула:

Формула для вычисления количества тепла

После произведения ряда замеров и вычислений можно увидеть, что выделяемое тепло в этих двух электроцепях имеет одинаковую величину. Например, в цепи с постоянным током при подаче напряжения 30 вольт выделяется тепло 200 Джоуль (или Дж). Если вторая цепь имеет идентичные характеристики, то выделение тепла в ней также составит 200 Дж. Получается, что напряжение 30В в этих электроцепях — это и есть эффективное напряжение.

Импульсный электрический заряд

Вышеприведенный пример позволяет только определить действующее и среднее значение напряжения переменного тока. Но на практике такой метод также не применяется, из–за того, что получить доступ к источнику переменного напряжения не всегда представляется возможным. Поэтому параметры цепи рассчитываются с помощью формул, которые основаны на синусоидальных кривых.

Стоит отметить, что действующее напряжение не всегда формируется путём плавного изменения определённого импульсного электрозаряда. Кривая зачастую имеет форму, отличную от привычной нам синусоиды:

  1. Прямоугольную (меандр);
  2. треугольную;
  3. трапециевидную
  4. и другие.

Различные формы кривой переменного тока

То есть график электротока может иметь отличную, но при этом стабильную форму. Наглядным примером такого варианта является кривая осциллографа, регистрирующая ритмы сердцебиения человека.

Действующее значение переменного тока

Но независимо от действующего в сети импульсного заряда, во время расчётов используется именно синусоида. Это объясняется тем, что погрешности в расчетах будут крайне малыми. Поэтому ими можно пренебречь, ведь они не скажутся на конечном результате:

  1. Частота импульса в жилых домах составляет 50 Гц. За 1 сек электрический импульс проходит через фазу 100 раз. Это означает, что работающая от сети лампочка за секунду 100 раз загорается и тухнет, а электрический заряд при этом изменяется довольно плавно. Но человек этого не замечает из-за невосприимчивости человеческого зрения к сверхбыстрым колебаниям.Электролампочка
  2. Одинаковая площадь фигур. Независимо от формы кривой периода, описывающей переменный электроток идентичных параметров, площадь их фигур всегда будет одинаковой. Следовательно, при любых расчетах получится одно и то же эффективное значение переменного синусоидального тока. Поэтому эффективные значения не зависят от формы кривой. На них оказывает влияние именно величина амплитуды.Одинаковая площадь фигур

Форма кривой импульса важна только для сверхточных расчётов в лабораторных условиях. Также она учитывается для работы суперкомпьютеров. В остальных случаях синусоида позволит вычислить действующее значение переменного синусоидального тока.

Расчёт кривой

Синусоида — это периодическая функция, которую можно всегда описать с помощью уравнения. Если взять её за основу, то на входе имеются следующие исходные данные:

  • Т — амплитуда;
  • φ — начальная фаза;
  • ωt — угловая скорость.

Синусоидальный переменный ток

По этим входным характеристикам находим другие переменные параметры:

  • Uт — амплитудное напряжение;
  • Uм — действующие в момент измерения значения напряжения;
  • ωt + φ — фактическая фаза в точке измерения.

Т.к. начальная фаза равняется нулю, на выходе формула кривой будет иметь следующий вид:

Uм = Uт·sin(ωt + φ) = Uт·sin(ωt)

Теперь необходимо обратиться к закону выделения тепла, который еще называется законом Джоуля-Ленца. Согласно него квадрат напряжения — это произведение выделяемого тепла на сопротивление проводника.

Формулы для расчета тепловой энергии в электроцепях:
с постоянным током с переменным током
Q = U2/R Q = Uм2/R
  • Uм — величина постоянного напряжения;
  • Uм — величина действующего напряжения;
  • R — сопротивление проводника.

Мы видим, что при расчетах количества тепла в цепи переменного тока, пользуется именно действующим значением переменного тока.

Действующие средние значения напряжения силы тока

Из данных формул вытекают два важных нюанса, на которые стоит обратить внимание:

  1. В расчетах используется среднеквадратичное значение напряжения (СКЗ). Это связано с тем, что величина напряжения постоянно изменяется и можно получить только какую-то усредненную величину.
  2. Амплитуда постоянного тока довольно условная величина. Ее используют в расчетах, чтобы только описать период синусоиды переменного электрозаряда.

Вычисления

Волны синусоид будут одинаковыми. Однако в пределах периода в каждой точке измерения напряжения будут отличаться. Поэтому, чтобы уравнять между собой среднеквадратичное напряжение постоянного и переменного электротока по тепловыделению, требуется рассчитать объём выделенного тепла в течение времени, равного 1 периоду:

Формула

В уравнение теперь можно подставить выражение расчёта мгновенного напряжения

Uм = Uт·sin(ωt + ф) = Uт·sin(ωt)

Амплитудное и мгновенное напряжение синусоидального переменного тока

После математического преобразования можно рассчитать действующее значение электрического напряжения:

U = Uт / √2 = 0,707·Uм

Теперь найдем амплитудное напряжение по формуле:

Uт = U·√2

Амплитудное напряжение так же имеет и другое название – максимально возможное эффективное мгновенное значение напряжения.

Сила переменного тока

С помощью амперметра находим амплитудную силу тока в цепи. Используя её вместе с периодом, который равен 1/50 секунд, можно применить описанную выше формулу, чтобы рассчитать среднеквадратичное значение напряжения. В результате этого будет получена действующие значения силы тока.

Действующее значение тока можно рассчитать, когда других исходных параметров нет, но нам известно эффективное значение величины напряжения в цепи. Следовательно, можно воспользоваться всем нам известным законом Ома вычисления значения силы тока:

U = I·R и I = U/R

где:

  • U — будет действующим напряжением переменного синусоидального тока;
  • R — сопротивление проводника, которое всегда можно узнать в любом справочнике, зная состав материала проводника.

Ранее электропроводку делали из алюминия и меди, которые отличались довольно высоким сопротивлением. Эффективное значение реальной силы тока этих металлов было меньше 6.5А. По этой причине в старых домах зачастую срабатывает автоматический выключатель, если одновременно подключить в сеть несколько приборов. Сегодня открыты сложные сплавы с низким сопротивлением. Они позволяют достичь с действующее значение силы переменного тока около 16А даже в обычных современных многоквартирных домах.

Пробка автоматическая 16А

С уменьшением сопротивления проводника, прямопропорционально возрастает мощность и тепловыделение. При том надо помнить о том, что у каждого сплава есть свой определенный температурный предел. Поэтому в жилых сетях сила тока часто не превышает 20 ампер, а при резком ее скачке, например, при неполадках на подстанции, электронная часть устройств просто сгорает. Для предотвращения таких случаев и подключаются автоматы, которые при регистрации высоких действующих значений размыкают цепь на данном участке. Более мощные источники электроэнергии встречаются только в промышленных трехфазных сетях с напряжением 380В.

Вывод

Мы рассмотрели в данной статье — что называют действующим значением силы тока и напряжения, а так же как определяют эти значения переменного тока в электроцепи. Это эффективные значения переменного тока, под действием которого выделяется точно такое же количества тепла, как и в цепи постоянного тока, имеющей аналогичные характеристики.

Видео по теме

    Понятие
действующего значения тока вводится в
связи с необходимостью производства
измерений. Что измерять у переменного
тока? Если бы мы имели дело только с
синусоидами – кривыми одной формы, то
можно было бы измерять амплитуды. Но на
практике встречаются самые разные
кривые, и может оказаться так, что два
различных по форме тока имеют одинаковые
амплитуды, хотя очевидно, что на
электрическую цепь они будут оказывать
разное воздействие.

    Поэтому
наиболее целесообразно оценивать
величину тока по той работе, которую он
совершает. При такой оценке действие
переменного тока сравнивается с
аналогичным действием постоянного
тока. Например, если некоторый переменный
ток выделяет на участке цепи такое же
количество тепла, что и постоянный ток
силой 10 ампер, то говорят, что величина
этого переменного тока составляет 10
ампер. Это значение тока и называют
действующим.

    Итак,
действующим
значением переменного тока называется
численное значение такого постоянного
тока, который за время, равное одному
периоду, выделяет в сопротивлении такое
же количество тепла, что и ток переменный
.

    Таким
образом, для оценки величины переменного
тока мы должны сделать следующее.

    1.
Определить количество теплоты,
выделяющейся в сопротивлении R
за время Т
при протекании переменного тока i.
Это количество теплоты равно

.

`   
2. Подобрать такой постоянный ток I,
который за то же время Т
в том же сопротивлении R
выделяет такое же количество тепла. При
постоянном токе оно равно

.

    3.
Приравнять W
и
W=:


,

откуда


.
                                           
(2.5)

    Последняя
формула и определяет действующее
значение переменного тока.

    Пример
2.1
.
На вход некоторой цепи подается импульсное
напряжение треугольной формы (рис. 2.4,
а).
Чему равно его действующее значение?

    Р
е ш е н и е.


.

Рис.
2.4. Переменные напряжения различной
формы

    Пример
2.2.

На рис. 2.4, б
показана кривая напряжения на выходе
схемы однофазного однополупериодного
выпрямления. Чему равно действующее
значение напряжения, если его амплитудное
значение Um
составляет 311 В?

    Р
е ш е н и е.


155,5
В.

    Пример
2.3.

Определить действующее значение
синусоидального тока

 
.

    Р
е ш е н и е.


.

    Рассмотренные
примеры показывают, что действующее
значение переменного тока зависит от
его формы.

    У
синусоидального тока оно равно амплитуде,
деленной на


.

2.4. Представление синусоидальной функции времени вращающимся вектором. Векторные диаграммы

    Пусть
в прямоугольной системе координат
имеется вектор длиной Im,
расположенный под углом  к горизонтальной
оси (рис. 2.5). Заставим этот вектор
вращаться против часовой стрелки c
угловой скоростью  . Тогда за время t
он повернется на угол  t.

Рис. 2.5. Вращающийся
вектор

Проекцию вектора на вертикальную ось
обозначим i.
Из треугольника oab
она равна

,
т.е. представляет собой функцию,
определяющую мгновенное значение
тока. Таким образом, последняя может
быть представлена как проекция на
вертикальную ось вращающегося вектора.
Изображение тока с помощью вектора
называется его векторной диаграммой.
Длина вектора может быть равна
амплитудному Im,
либо действующему значению I.

Обычно
вектор при этом показывается не в
произвольный момент времени t,
а в начальный (t
= 0), когда его угол наклона к горизонтальной
оси равен начальной фазе.

    Теперь по уравнениям (2.3)
построим векторную диаграмму двух
векторов – тока и напряжения (рис. 2.6).

Рис.
2.6. Векторная диаграмма тока и напряжения

    Длины векторов равны
действующим значениям, углы их наклона
к горизонтальной оси – начальным
фазам, а угол между векторами, равный
разности начальных фаз 
u
и 
i,
в соответствии с уравнением (2.4)
определяет сдвиг фаз напряжения и
тока.

  
Подчеркиваем,
что на
диаграмме стрелка, отмечающая угол

, всегда направляется от вектора тока
к вектору напряжения
.
Сейчас она направлена в положительном
направлении – против часовой стрелки.

    Векторная
диаграмма дает наглядное представление
об отставании одних величин и опережении
других. Если вращать картинку, показанную
на рис. 2.6, против часовой стрелки, то
вектор тока будет отставать от напряжения
на угол 
. Так как при вращении длины векторов и
угол между ними не меняются, то в том
случае, когда начальные фазы напряжения
и тока нас не интересуют, мы можем
изображать диаграмму без осей и
располагать ее так, как нам удобно (рис.
2.7).

Рис.
2.7. Варианты построения векторной
диаграммы

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

ads

Одним из способов расчета цепей переменного тока является комплексный, или еще как говорят, символический метод расчета. Этот метод применяется при анализе схем с гармоническими ЭДС, напряжениями и токами. В результате решения получают комплексное значение токов и напряжений, используя для решения любые методы (эквивалентных преобразований, контурных токов, узловых потенциалов и т.п.). Но для начала необходимо иметь понятие, в каких именно формах может представляться синусоидальная величина. 1. Одна из форм представления – это вращающийся вектор (см. рис.1):

Вращающийся вектор

Рис.1. Вращающийся вектор

С помощью рисунка ясно видно, как с течением времени меняется значение синусоидальной величины. В нашем случае – это величина а на графике, которая может быть, например, входным напряжением. Величина имеет некоторое начальное значение при t = 0 при начальной фазе φ

имеет положительное максимальное значение при угле ωt3, когда при времени t3 сумма ωt3φ = 90° и соответственно,

имеет отрицательное максимальное значение при угле ωt7, когда при времени t7 сумма углов ωt7φ = 270° и, соответственно,

и имеет два нулевых значения при ωtn + φ = 0, когда ωtn = —φ (на рис.1 эта область не показана и находится слева от начала координат)

и тогда

и имеет нулевое значение при угле ωt11, когда при времени t11 сумма ωt11φ = 360° и соответственно,

Именно по такому закону и меняется привычное нам переменное напряжение 220 В, изменяясь по синусоидальному закону от  значения  0 В до максимальных 311 В и обратно.

2. Другая форма представления – это комплексное число. Чтобы представить ранее рассмотренную форму представления синусоидальной величины, которая имеет некоторую начальную фазу φ, создают комплексную плоскость в виде графика зависимости двух величин (рис.2)

Комплексное число на комплексной плоскости

Рис.2. Комплексное число на комплексной плоскости

Длина вектора Am на такой комплексной плоскости равна амплитуде (максимальному значению) рассматриваемой величины. С учетом начальной фазы φ такое число записывают как .

На практике при использовании для расчетов символического (комплексного) метода расчета используют для некоторых удобств не амплитудное значение величины, а так называемое действующее значение. Его величина в корень из двух раз меньше амплитудного и обозначается без индекса m, т.е. равна

действующее значение

На рисунке выше этот вектор также показан.
Например, при том же нашем напряжении в сети, максимальное значение синусоидально изменяющегося напряжения равно 311 В, а действующее значение, к значению которого мы привыкли

Действующее значение напряжения

При работе с комплексными числами и расчетов применяют различные формы записи комплексного числа. Например, при сложении комплексных чисел удобнее использовать алгебраическую форму записи таких чисел, а при умножении или делении – показательную форму записи. В некоторых случаях пишут тригонометрическую форму.
Итак, три формы записи комплексного числа:

1) показательная форма в виде

Показательная форма комплексного числа

2) тригонометрическая форма в виде

Тригонометрическая форма комплексного числа

3) алгебраическая форма

Алгебраическая форма комплексного числа

где ReA — это действительная составляющая комплексного числа, ImA — мнимая составляющая.

Например, имеем комплексное число в показательной форме вида

в тригонометрической форме записи это запишется как

при подсчете получим число, плавно переходящее в алгебраическую форму с учетом того, что

В итоге получим

где

При переходе от алгебраической формы к показательной комплексное число вида

переходит к показательному виду  по следующим преобразованиям

а угол

Таким образом, и получим

Перейдем к рассмотрению несложных примеров использования  символического, или по-другому, комплексного метода расчета электрических цепей. Составим небольшой алгоритм комплексного метода:

      • Составить комплексную схему, заменяя мгновенные значения ЭДС, напряжений и токов их комплексным видом
      • В полученной схеме произвольно выбирают направления токов в ветвях и обозначают их на схеме.
      • При необходимости составляют комплексные уравнения по выбранному методу решения.
      • Решают уравнения относительно комплексного значения искомой величины.
      • Если требуется, записывают мгновенные значения найденных комплексных величин.

Пример 1. В схеме рис.3 закон изменения ЭДС e = 141sin*ωt. Сопротивления R1 = 3 Ом, R2 = 2 Ом, L = 38,22 мГн, С = 1061,6 мкФ. Частота f = 50 Гц. Решить символическим методом. Найти ток и напряжения на элементах. Проверить 2-ой закон Кирхгофа для цепи.

Схема с последовательным соединением элементов

Рис.3. Схема с последовательным соединением элементов

Составляем комплексную схему, обозначив комплексные токи и напряжения (рис.4):

Схема с комплексными обозначениями

Рис.4. Схема с комплексными обозначениями

По закону Ома ток в цепи равен

Закон ома в комплексной форме

где U — комплексное входное напряжение, Z — полное сопротивление всей цепи. Комплекс входного напряжения находим как

Пояснение: здесь начальная фаза  φ = 0°, так как  общее выражение для мгновенного значения напряжение вида при  φ = 0° равно

Соответственно, комплекс входного напряжения в показательной форме запишется как

Полное комплексное сопротивление цепи в общем виде

Находим комплексное сопротивление индуктивности

Находим комплексное сопротивление емкости

Соответственно, общее комплексное сопротивление цепи

Ток в цепи

Комплексные напряжения на элементах

Проверяем второй закон Кирхгофа для замкнутого контура, т.е. должно выполняться равенство

Проверяем

С небольшим расхождением из-за округлений промежуточных вычислений всё верно.

Пример 2. В электрической цепи (рис.5) однофазного синусоидального тока, схема и параметры элементов которой заданы для каждого варианта в таблице, определить:
1)  полное сопротивление электрической цепи и его характер;
2)  действующие значения токов в ветвях;
3) показания вольтметра и ваттметра;

    1. Исходные данные: Е = 220 В, f = 50 Гц, L1 = 38,2 мГн, R2 = 6 Ом, С2 = 318 мкФ, L2 = 47,7 мГн, R3 = 10 Ом, С3 = 300 мкФ.

Рис.5.Цепь однофвзного синусоидального тока

Решение:
1.  Находим комплексные сопротивления ветвей и всей цепи:
Учитываем, что

Комплексное сопротивление первой ветви:

Комплексное сопротивление второй ветви:

Комплексное сопротивление третьей ветви:

Общее сопротивление цепи

Откуда

— нагрузка носит активно-индуктивный характер

2. Находим действующие значения токов в ветвях:

Рис.6. Схема с обозначенными комплексными токами

Действующие значения, соответственно,

3. Определим показания приборов:
Вольтметр подключен по схеме параллельно источнику питания. Соответственно его показание равно:
U=220 В
Ваттметр включен токовой обмоткой в разрыв третьей ветви, а обмоткой напряжения также к выводам третьей ветви, измеряя, таким образом,  активную мощность третьей ветви. Эта мощность равна мощности на сопротивлении R3. Его показания:

Автор статьи

Демьян Бондарь

Эксперт по предмету «Электроника, электротехника, радиотехника»

преподавательский стаж — 5 лет

Задать вопрос автору статьи

Действующее значение переменного тока. Характеристики переменного тока

Определение 1

Действующее или эффективное значение переменного тока – это значение переменного электрического тока равное величине постоянного тока, который проделает такую же работу, сопровождающуюся тепловым эффектом или электродинамическим эффектом, что и рассматриваемый переменный ток за время равное одному периоду переменного тока.

К основным характеристикам переменного тока относятся:

  1. Амплитуда, являющаяся максимальным значением периодически изменяющегося тока.
  2. Период, который является временем, в течении которого электрическим током совершается полный цикл изменений, после чего они повторяются в той же последовательности.
  3. Частота, которая обратна периоду, то есть показывает количество завершенных циклов изменений за единицу времени.
  4. Мгновенное значение, являющееся значением переменного тока в конкретный момент времени.
  5. Угловая скорость или угловая частота, которая характеризуется углом поворота рамки за единицу времени.

В современной литературе обычно используется математическое определение действующего значения переменного тока, которое звучит следующим образом: действующее значение переменного тока — среднеквадратичное значение переменного тока. Таким образом эта величина рассчитывается по следующей формуле:

Формула. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Формула. Автор24 — интернет-биржа студенческих работ

Существует пять типичных случаев переменного электрического тока:

  1. Синусоида.
  2. Прямоугольная форма.
  3. Треугольная форма.
  4. Трапециевидная форма.
  5. Дугообразная форма.

Для синусоидального тока формула для расчета действующего значения выглядит следующим образом:

Формула. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Формула. Автор24 — интернет-биржа студенческих работ

«Действующее и среднее значение переменного тока» 👇

где Im — амплитудное значение тока.

Для электрического тока, который имеет форму однополярного прямоугольного импульса используется следующая формула для расчета действующего значения.

Формула. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Формула. Автор24 — интернет-биржа студенческих работ

где D — коэффициент заполнения.

Если коэффициент заполнения равен 0,5, то есть ток имеет форму однополярного меандра, то формула выглядит так:

$I = Im* √0.5 = 0.707*Im$

В том случае, когда у тока форма двуxполярного меандра, то:

$I = Im$

Для токов пилообразной и треугольной формы расчет действующего значения осуществляется по формуле:

Формула. Автор24 — интернет-биржа студенческих работ

Рисунок 4. Формула. Автор24 — интернет-биржа студенческих работ

Посредством разбивки периода на отрезки действия максимального значения, положительного фронта и отрицательного фронта, получается формула для расчета действующего значения переменного тока трапециевидной формы:

Формула. Автор24 — интернет-биржа студенческих работ

Рисунок 5. Формула. Автор24 — интернет-биржа студенческих работ

где: t1, t2, t3 — соответственно продолжительность положительного фронта, действия максимального значения и отрицательного фронта; Т — длительность полного периода.

Для тока, который имеет форму дуги или половины окружности, формула для расчета действующего значения имеет следующий вид:

Формула. Автор24 — интернет-биржа студенческих работ

Рисунок 6. Формула. Автор24 — интернет-биржа студенческих работ

Для измерения тока в цепях переменного тока большинство электроизмерительных приборов, таких как вольтметры и амперметры, градуируются таким образом, чтобы показания соответствовали эффективному значению переменного тока или напряжения.

Среднее значение переменного тока. Коэффициенты амплитуды и формы

Определение 2

Среднее значение переменного тока – это значение переменного тока равное величине постоянного тока, при котором через поперечное сечение проводника проходит такое же количество электричества, что и в случае переменного тока.

Среднее значение переменного тока эквивалентно постоянному по величине электричества, которое проходит через поперечное сечение проводника за определенный промежуток времени. если электрический ток изменяется согласно синусоидальному закону, то за пол через поперечное сечение проводника проходит определенное количество электричества и в определенном направлении. Таким образом его среднее значение за один период равно нулю:

$Iс=0$

Поэтому в данном случае среднее значение переменного синусоидального тока определяется за половину периода, и формула выглядит следующим образом:

$Ic = Q / (T/2)$

где: Q — количество электричества; Т — длительность периода.

Рассмотрим рисунок, который представлен ниже.

Переменный ток. Автор24 — интернет-биржа студенческих работ

Рисунок 7. Переменный ток. Автор24 — интернет-биржа студенческих работ

В общем виде значение переменного тока рассчитывается по формуле:

$i = dQ / dt$

Отсюда получается, что

$Q = idt$

Таким образом среднее значение синусоидального переменного тока за половину период и с начальной фазой равной нулю на представленном выше рисунке рассчитывается по формуле:

Формула. Автор24 — интернет-биржа студенческих работ

Рисунок 8. Формула. Автор24 — интернет-биржа студенческих работ

Где: w — угловая скорость; $Т = 1/f; w = 2*п*f; п = 3,14; f $- частота электрического тока.

Графически среднее значение синусоидального переменного тока является высотой прямоугольника, основание которого равняется половине периода, а площадь ограниченна кривой электрического тока и осью абсцисс за половину периода.

Средним значением переменной величины является постоянная составляющая данной величины. Поэтому, чтобы рассчитать среднее значение переменного напряжения и электродвижущей силы можно использовать формулы:

$Uc = (2/п )* Um$

$Ec = (2/п)*Em$

где: Um — амплитудное значение напряжения; Еm — амплитудное значение электродвижущей силы.

Отклонения кривых электрического тока от синусоиды характеризуется коэффициентами формы и амплитуды. Отношением действующего значения переменной величины к ее среднему значению определяется коэффициент формы, то есть:

$Кф = I/Ic$

Коэффициент формы должен учитываться в процессе проектирования и изучения выпрямительных устройств и электрических машин. Для синусоиды коэффициент формы рассчитывается следующим образом:

$Кф = (Im*п) / (√2*2*Im) = 1.11$

Чтобы рассчитать коэффициент амплитуды, используется формула:

$Ка = Im / I$

где I — действующее значение переменного тока.

Для синусоидальной величины формула имеет следующий вид:

$Ка = (I*√2) / I = /2 = 1,41$

Чем больше значение коэффициентов амплитуды и формы отличаются от иx значения для синусоидальных величин, тем больше кривая электрического тока отличается от синусоиды.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Господа, в прошлой статье мы говорили про мощность и работу переменного тока. Напомню, что тогда мы считали ее через некоторый интеграл, а в самом конце статьи я вскользь сказал, что существуют способы облечения и без того нелегкой жизни и часто можно обойтись вообще без взятия интеграла, если знать про действующее значение тока. Сегодня про него и поговорим!

Господа, вероятно, для вас не станет секретом, что в природе существует большое число видов переменного тока: синусоидальный, прямоугольный, треугольный и так далее. И как их вообще можно сравнивать между собой? По форме? Хмм…Пожалуй, да. Они же визуально различаются, с этим не поспоришь. По частоте? Тоже да, но иногда это вызывает вопросы. Некоторые считают, что само определение частоты применимо исключительно для синусоидального сигнала и его нельзя использовать, например, для последовательности импульсов. Возможно, формально они и правы, но я не разделяю их точку зрения. А еще как еще можно? А, например, по деньгам! Неожиданно? Напрасно. Ток ведь стоит денег. Вернее, стоит денег работа тока. В конце концов ведь те самые киловатт·часы, за которые вы все платите каждый месяц по счетчику не что иное, как работа тока. А поскольку деньги вещь серьезная, то ради такого стоит и термин отдельный ввести. И для сравнения между собой токов различной формы по количеству работы ввели понятие действующего тока.

Итак, действующее (или среднеквадратичное) значение переменного тока – это такая величина некоторого постоянного тока, который за время, равное периоду переменного тока выделит столько же тепла на резисторе, что и наш переменный ток. Звучит очень хитро и, скорее всего, если вы читаете это определение в первый раз, то вряд ли вы его поймете. Это нормально. Когда я его в первый раз услышал в школе, я сам долго доходил, что же это значит. Поэтому сейчас я постараюсь разобрать это определение поподробнее, чтобы вы поняли, что за этой мудреной фразой скрывается быстрее, чем я в свое время.

Итак, у нас есть переменный ток. Допустим, синусоидальный. У него своя амплитуда Аm и период Tпериод (ну или частота f). На фазу в данном случае пофиг, считаем ее равной нулю. Этот переменный ток течет через некоторый резистор R и на этом резисторе выделяется энергия. За один период Tпериод нашего синусоидального тока выделится вполне определенное количество джоулей энергии. Это число джоулей мы можем точно посчитать по формулам с интегралом, которые я приводил в прошлый раз. Допустим, мы насчитали, что за один период Tпериод синусоидального тока выделится Q джоулей тепла. А теперь, внимание, господа, важный момент! Давайте мы заменим переменный ток на постоянный, причем выберем его такой величины (ну то есть столько ампер), чтобы на том же самом резисторе R за то же самое время Tпериод выделилось ровно такое же количество джоулей Q. Очевидно, мы должны как-то определить величину этого самого постоянного тока, эквивалентного переменному с энергетической точки зрения. И вот когда мы найдем эту величину, то она-то как раз и будет тем самым действующим значением переменного тока. А теперь, господа, вернитесь еще разок к тому мудреному формальному определению, которое я давал вначале. Сейчас оно стало лучше понятно, не так ли?

Итак, суть вопроса, надеюсь, стала понятной, поэтому давайте все сказанное выше переведем на язык математики. Как мы уже писали в прошлой статье, закон изменения мощности переменного тока равен

Количество выделившейся энергии при работе тока за время Tпериод – соответственно, равно интегралу за время периода Tпериод:

Господа, теперь нам надо взять этот интеграл. Если по причине нелюбви к математике вам это кажется чем-то слишком мудреным, вы волне можете пропустить выкладки и посмотреть сразу результат. А у меня что-то сегодня настроение вспомнить молодость и аккуратненько разобраться со всеми этими интегральчиками .

Итак, как его нам брать? Ну, величины Im2 и R являются константами и их можно сразу вынести за знак интеграла. А для квадрата синуса нам надо применить формулу понижения степени из курса тригонометрии. Надеюсь, вы ее помните . А если нет, то напомню еще раз:

Погнали считать!

Теперь давайте разобьем интеграл на два интеграла. Можно воспользоваться тем, что интеграл от суммы или разности равен сумме или разности интегралов. В принципе, это очень даже логично, если вспомнить про то, что интеграл – это площадь.

Итак, имеем

Господа, у меня есть для вас просто отличнейшая новость. Второй интеграл равен нулю!

Почему это так? Да просто потому, что интеграл любого синуса/косинуса на величине, кратной его периоду, равен нулю. Полезнейшее свойство, кстати! Рекомендую его запомнить. Геометрически это тоже понятно: первая полуволна синуса идет выше оси абсцисс и интеграл от нее больше нуля, а вторая полуволна идет ниже оси абсцисс, поэтому его величина меньше нуля. А по модулю они равны между собой, поэтому их сложение (собственно, интеграл за весь период) даст в итоге нолик.

Итак, отбрасывая интеграл с косинусом, получаем

Ну и не надо быть большим гуру математики, чтобы сказать, что этот интеграл равен

И, таким образом, получаем ответ

Это мы получили количество джоулей, которое выделится на резисторе R при протекании через него синусоидального тока амплитудой Im в течении периода Tпериод. Теперь, чтобы найти чему в данном случае равен действующий ток нам надо исходить из того, что на том же самом резисторе R за то же самое время Tпериод выделится то же самое количество энергии Q. Поэтому мы можем записать

Если не совсем понятно, откуда здесь взялась левая часть, рекомендую вам повторить статью про закон Джоуля-Ленца. А мы тем временем выразим действующее значение тока Iдейств. из этого выражения, предварительно сократив все, что можно

Вот такой вот результат, господа. Действующее значение переменного синусоидального тока в корень из двух раз меньше его амплитудного значения. Хорошо запомните этот результат, это важный вывод.

Вообще говоря никто не мешает по аналогии с током ввести действующее значение напряжения. При этом у нас зависимость мощности от времени примет вот такой вид

Именно его мы будем подставлять под интеграл и выполнять все преобразования. Господа, каждый из вас может на досуге при желании это проделать, я же просто приведу конечный результат, поскольку он полностью аналогичен случаю с током. Итак, действующее значение напряжения синусоидального тока равно

Как видим, аналогия полнейшая. Действующее значения напряжения точно также в корень из двух раз меньше амплитуды.

Подобным образом можно рассчитать действующее значение тока и напряжения для сигнала абсолютно любой формы: надо только лишь записать закон изменения мощности для этого сигнала и выполнить пошагово все вышеописанные преобразования.

Все вы, наверняка, слышали, что у нас в розетках напряжение 220 В. А каких вольт? У нас ведь теперь есть два термина – амплитудное и действующее значение. Так вот, оказывается, что 220 В в розетках – это действующее значение! Вольтметры и амперметры, включаемые в цепи переменного тока показывают именно действующие значения. А форму сигнала вообще и его амплитуду в частности можно посмотреть с помощью осциллографа. Ну, мы же уже говорили, что всем интересны деньги, то бишь работа тока, а не какая-то там непонятная амплитуда. Тем не менее давайте-ка все-таки определим, чему равна амплитуда напряжения в наших с вами сетях. Пользуясь только что написанной формулой, можно записать

Отсюда получаем

Вот так вот, господа. В розетках у нас, оказывается, синус с амплитудой аж 311 В, а не 220, как можно было подумать сначала. Что бы убрать все сомнения представлю вам картинку, как выглядит закон изменения напряжения в наших розетках (помним, что частота сети равна 50 Гц или, что тоже самое, период равен 20 мс). Этот закон представлен на рисунке 1.

Рисунок 1 – Закон изменения напряжения в розетках

И специально для вас, господа, я посмотрел напряжение в розетке с помощью осциллографа. Смотрел я его через делитель напряжения 1:5. То есть форма сигнала полностью сохранится, а амплитуда сигнала на экране осциллографа будет в пять раз меньше, чем на самом деле в розетке. Зачем я так сделал? Да просто потому, что из-за большого размаха входного напряжения картинка целиком не влезает на экран осциллографа.

ВНИМАНИЕ! Если у вас нет достаточного опыта работы с высоким напряжением, если вы абсолютно четко не представляете себе как могут течь токи при измерениях в гальванически не отвязанных от сети цепях, настоятельно не рекомендую проводить подобный эксперимент самостоятельно, это опасно! Дело в том, что при подобных измерениях с помощью осциллографа, подключенного к розетке с заземлением есть очень большой шанс что произойдет короткое замыкание через внутренние земли осциллографа и прибор сгорит без возможности восстановления! А если делать эти измерения с помощью осциллографа, подключенного к розетке без заземления, на его корпусе, кабелях и разъемах может присутствовать смертельно опасный потенциал! Это не шутки, господа, если нет понимания, почему это так, лучше этого не делать, тем более, что осциллограммы уже сняты и вы можете их наблюдать на рисунке 2.

Рисунок 2 – Осциллограмма напряжения в розетке (делитель 1:5)

На рисунке 2 мы видим, что амплитуда синуса составляет около 62 вольт, а частота – ровно 50 Гц. Помня, что мы смотрим через делитель напряжения, который делит входное напряжение на 5, мы можем рассчитать реальную величину напряжения в розетке, она равна

Как мы видим, результат измерения очень близок к теоретическому, не смотря на погрешность измерения осциллографа и неидеальность резисторов делителя напряжения. Это свидетельствует о том, что все наши расчеты верны.

На этом на сегодня все, господа. Сегодня мы узнали, что такое действующий ток и действующее напряжение, научились их рассчитывать и проверили результаты расчетов на практике. Спасибо что прочитали это и до новых статей!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.

Понравилась статья? Поделить с друзьями:
  • Цикл карно как найти объем
  • Как найти козу в рдр 2
  • Известен периметр треугольника как найти одну сторону
  • Как найти предохранитель на прикуриватель ниссан
  • Как найти удельный вес экономика