Онлайн калькулятор. Решение систем линейных уравнений методом Крамера
Используя этот онлайн калькулятор для решения систем линейных уравнений (СЛУ) методом Крамера, вы сможете очень просто и быстро найти решение системы.
Воспользовавшись онлайн калькулятором для решения систем линейных уравнений методом Крамера, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на решения систем линейных уравнений, а также закрепить пройденный материал.
Решить систему линейных уравнений методом Крамера
Изменить названия переменных в системе
Заполните систему линейных уравнений:
Ввод данных в калькулятор для решения систем линейных уравнений методом Крамера
- В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
- Для изменения в уравнении знаков с «+» на «-» вводите отрицательные числа.
- Если в уравнение отсутствует какая-то переменная, то в соответствующем поле ввода калькулятора введите ноль.
- Если в уравнение перед переменной отсутствуют числа, то в соответствующем поле ввода калькулятора введите единицу.
Например, линейное уравнение x 1 — 7 x 2 — x 4 = 2
будет вводится в калькулятор следующим образом:
Дополнительные возможности калькулятора для решения систем линейных уравнений методом Крамера
- Между полями для ввода можно перемещаться нажимая клавиши «влево», «вправо», «вверх» и «вниз» на клавиатуре.
- Вместо x 1, x 2, . вы можете ввести свои названия переменных.
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Метод Крамера для решения СЛАУ
В данной статье мы разберем, как найти неизвестные переменные по методу Крамера и опишем решение систем линейных уравнений.
Метод Крамера предназначен для того, чтобы решать системы линейных алгебраических уравнений (СЛАУ), в которых число неизвестных переменных равняется числу уравнений, а определитель основной матрицы не равен нулю.
Метод Крамера — вывод формул
Найти решение системы линейных уравнений вида:
a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n
В этой системе x 1 , x 2 , . . . , x n — неизвестные переменные,
a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n — числовые коэффициенты,
b 1 , b 2 , . . . , b n — свободные члены.
Решение такой системы линейных алгебраических уравнений — набор значений x 1 , x 2 , . . . , x n , при которых все уравнения системы становятся тождественными.
Матричный вид записи такой системы линейных уравнений:
A X = B , где A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n — основная матрица системы, в которой ее элементы — это коэффициенты при неизвестных переменных;
B = b 1 b 2 ⋮ b n — матрица-столбец свободных членов;
X = x 1 x 2 ⋮ x n — матрица-столбец неизвестных переменных.
После того как мы найдем неизвестные переменные x 1 , x 2 , . . . , x n , матрица X = x 1 x 2 ⋮ x n становится решением системы уравнений, а равенство A X = B обращается в тождество.
Метод Крамера основан на 2-х свойствах определителя матрицы:
- Определитель квадратной матрицы A = a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n равняется сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения:
a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n = a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q
- Сумма произведений какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующие элементы другой матрицы равняется нулю:
a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = 0 a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q = 0
p = 1 , 2 , . . . , n , q = 1 , 2 , . . . , n p не равно q
Приступаем к нахождению неизвестной переменной x 1 :
- Умножаем обе части первого уравнения системы на А 11 , обе части второго уравнения на А 21 и т.д. Таким образом, мы умножаем уравнения системы на соответствующие алгебраические дополнения 1-го столбца матрицы А :
A 11 a 11 x 1 + A 11 a 12 x 2 + . . . + A 11 a 1 n x n = A 11 b 1 A 21 a 21 x 1 + A 21 a 22 x 2 + . . . + A 21 x 2 n x n = A 21 b 2 ⋯ A n 1 a n 1 x 1 + A n 1 a n 2 x 2 + . . . + A n 1 a n n x n = A n 1 b n
- Складываем все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных , и приравниваем получившуюся сумму к сумме всех правых частей уравнения:
x 1 ( A 11 a 11 + A 21 a 21 + . . . + A n 1 a n 1 ) + + x 2 ( A 11 a 12 + A 21 a 22 + . . . + A n 1 a n 2 ) + + . . . + + x n ( A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n ) = = A 11 b 1 + A 21 b 2 + . . . + A n 1 b n
Если воспользоваться свойствами определителя, то получится:
А 11 а 11 + А 21 а 21 + . . . + А n 1 a n 1 = А А 11 а 12 + А 21 а 22 + . . . + А n 1 а n 2 = 0 ⋮ A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n = 0
A 11 b 1 + A 21 b 2 + . . . + A n 1 b n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n
Предыдущее равенство будет иметь следующий вид:
x 1 A = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .
x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n A
Таким же образом находим все оставшиеся неизвестные переменные.
∆ = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , ∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n ,
∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , . ∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .
то получаются формулы для нахождения неизвестных переменных по методу Крамера:
x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .
Алгоритм решения СЛАУ методом Крамера
- Необходимо вычислить определитель матрицы системы и убедиться, что он не равен нулю.
- Найти определители
∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n
∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n
∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n
Эти определители являются определителями матриц, которые получены из матрицы А путем замены k -столбца на столбец свободных членов.
- Вычислить неизвестные переменные при помощи формул:
x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .
- Выполнить проверку результатов: если все определители являются тождествами, то решение найдено верно.
Примеры решения СЛАУ методом Крамера
Найти решение неоднородной системы линейных уравнений методом Крамера:
3 x 1 — 2 x 2 = 5 6 2 x 1 + 3 x 2 = 2
Основная матрица представлена в виде 3 — 2 2 3 .
Мы можем вычислить ее определитель по формуле:
a 11 a 12 a 21 a 22 = a 11 × a 22 — a 12 × a 21 : ∆ = 3 — 2 2 3 = 3 × 3 — ( — 2 ) × 2 = 9 + 4 = 13
Записываем определители ∆ x 1 и ∆ x 2 . Заменяем 1-ый столбец основной матрицы на столбец свободных членов и получаем определитель ∆ x 1 = 5 6 — 2 2 3
По аналогии заменяем второй столбец основной матрицы на столбец свободных членов и получаем определитель:
Находим эти определители:
∆ x 1 = 5 6 — 2 2 3 = 5 6 × 3 — 2 ( — 2 ) = 5 2 + 4 = 13 2
∆ x 2 = 3 5 6 2 2 = 3 × 2 — 5 6 × 2 = 6 — 5 3 = 13 3
Находим неизвестные переменные по следующим формулам
x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆
x 1 = ∆ x 1 ∆ = 13 2 13 = 1 2
x 2 = ∆ x 2 ∆ = 3 13 = 1 3
Выполняем проверку — подставляем полученные значения переменных в в исходную систему уравнений:
3 1 2 — 2 1 3 = 5 6 2 1 2 + 3 1 3 = 2 ⇔ 5 6 = 5 6 2 = 2
Оба уравнения превращаются в тождества, поэтому решение верное.
Ответ: x 1 = 1 2 , x 2 = 1 3
Поскольку некоторые элементы системы линейных уравнений могут равняться нулю, то в системе не будет соответствующих неизвестных переменных.
Найти решение 3-х нелинейных уравнений методом Крамера с 3-мя неизвестными:
2 y + x + z = — 1 — z — y + 3 x = — 1 — 2 x + 3 z + 2 y = 5
За основную матрицу нельзя брать 2 1 1 — 1 — 1 — 3 — 2 3 2 .
Необходимо привести к общему порядку все неизвестные переменные во всех уравнениях системы:
x + 2 y + z = — 1 3 x — y — z = — 1 — 2 x + 2 y + 3 z = 5
С этого момента основную матрицу хорошо видно:
1 2 1 3 — 1 — 1 — 2 2 3
Вычисляем ее определитель:
∆ = 1 2 1 3 — 1 — 1 — 2 2 3 = 1 × ( — 1 ) × 3 + 2 × ( — 1 ) ( — 2 ) + 1 × 2 × 3 — 1 ( — 1 ) ( — 2 ) — 2 × 3 × 3 — — 1 ( — 1 ) × 2 = — 11
Записываем определители и вычисляем их:
∆ x = — 1 2 1 — 1 — 1 — 1 5 2 3 = ( — 1 ) ( — 1 ) × 3 + 2 ( — 1 ) × 5 + 1 ( — 1 ) × 2 — 1 ( — 1 ) × 5 — 2 ( — 1 ) × 3 — — 1 ( — 1 ) × 2 = 0
∆ y = 1 — 1 1 3 — 1 — 1 — 2 5 3 = 1 ( — 1 ) × 3 + ( — 1 ) ( — 1 ) ( — 2 ) + 1 × 3 × 5 — 1 ( — 1 ) ( — 2 ) — ( — 1 ) — — 1 ( — 1 ) × 2 = 22
∆ z = 1 2 — 1 3 — 1 — 1 — 2 2 5 = 1 ( — 1 ) × 5 + 2 ( — 1 ) ( — 2 ) + ( — 1 ) × 3 × 2 — ( — 1 ) ( — 1 ) ( — 2 ) — 2 × 3 × 5 — — 1 ( — 1 ) × 2 = — 33
Находим неизвестные переменные по формулам:
x = ∆ x ∆ , y = ∆ y ∆ , z = ∆ z ∆ .
x = ∆ x ∆ = 0 — 11 = 0
y = ∆ y ∆ = 22 — 11 = — 2
z = ∆ z ∆ = — 33 — 11 = 3
Выполняем проверку — умножаем основную матрицу на полученное решение 0 — 2 3 :
1 2 1 3 — 1 — 1 — 2 2 3 × 0 — 2 3 = 1 × 0 + 2 ( — 2 ) + 1 × 3 3 × 0 + ( — 1 ) ( — 2 ) + ( — 1 ) × 3 ( — 2 ) × 0 + 2 ( — 2 ) + 3 × 3 = — 1 — 1 5
Результатом являются столбцы свободных членов исходной системы уравнений, следовательно, решение верное.
Ответ: x = 0 , y = — 2 , z = 3
Метод Крамера решения систем линейных уравнений
Формулы Крамера
Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.
Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.
Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).
Определители
получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:
;
.
Формулы Крамера для нахождения неизвестных:
.
Найти значения и возможно только при условии, если
.
Этот вывод следует из следующей теоремы.
Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.
Пример 1. Решить систему линейных уравнений:
. (2)
Согласно теореме Крамера имеем:
Итак, решение системы (2):
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
Три случая при решении систем линейных уравнений
Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:
Первый случай: система линейных уравнений имеет единственное решение
(система совместна и определённа)
*
Второй случай: система линейных уравнений имеет бесчисленное множество решений
(система совместна и неопределённа)
* ,
** ,
т.е. коэффициенты при неизвестных и свободные члены пропорциональны.
Третий случай: система линейных уравнений решений не имеет
*
** .
Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.
Примеры решения систем линейных уравнений методом Крамера
Пусть дана система
.
На основании теоремы Крамера
………….
,
где
—
определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:
Пример 2. Решить систему линейных уравнений методом Крамера:
.
Решение. Находим определитель системы:
Следовательно, система является определённой. Для нахождения её решения вычисляем определители
По формулам Крамера находим:
Итак, (1; 0; -1) – единственное решение системы.
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.
Пример 3. Решить систему линейных уравнений методом Крамера:
.
Решение. Находим определитель системы:
Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных
По формулам Крамера находим:
Итак, решение системы — (2; -1; 1).
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
Применить метод Крамера самостоятельно, а затем посмотреть решения
Пример 4. Решить систему линейных уравнений:
.
Пример 5. Решить систему линейных уравнений методом Крамера:
.
К началу страницы
Пройти тест по теме Системы линейных уравнений
Продолжаем решать системы методом Крамера вместе
Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.
Пример 6. Решить систему линейных уравнений методом Крамера:
Решение. Находим определитель системы:
Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных
Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.
Пример 7. Решить систему линейных уравнений методом Крамера:
Здесь a — некоторое вещественное число. Решение. Находим определитель системы:
Находим определители при неизвестных
По формулам Крамера находим:
,
.
Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.
Пример 8. Решить систему линейных уравнений методом Крамера:
Решение. Находим определитель системы:
Находим определители при неизвестных
По формулам Крамера находим:
,
,
.
И, наконец, система четырёх уравнений с четырьмя неизвестными.
Пример 9. Решить систему линейных уравнений методом Крамера:
.
Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:
Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных
Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.
По формулам Крамера находим:
,
,
,
.
Итак, решение системы — (1; 1; -1; -1).
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.
http://zaochnik.com/spravochnik/matematika/issledovanie-slau/metod-kramera/
http://function-x.ru/systems_kramer.html
Метод Крамера. Примеры решения систем линейных алгебраических уравнений методом Крамера.
Метод Крамера предназначен для решения тех систем линейных алгебраических уравнений (СЛАУ), у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Решение системы уравнений методом Крамера проходит за три шага простого алгоритма:
- Составить определитель матрицы системы (его называют также определителем системы), и убедиться, что он не равен нулю, т.е. $Deltaneq 0$.
- Для каждой переменной $x_i$($i=overline{1,n}$) необходимо составить определитель $Delta_{x_i}$, полученный из определителя $Delta$ заменой i-го столбца столбцом свободных членов заданной СЛАУ.
- Найти значения неизвестных по формуле $x_i=frac{Delta_{x_{i}}}{Delta}$ ($i=overline{1,n}$).
Перед переходом к чтению примеров рекомендую ознакомиться с правилами вычисления определителей второго и третьего порядка, изложенными здесь.
Пример №1
Решить СЛАУ $left{begin{aligned}
& 3x_1+2x_2=-11;\
& -x_1+5x_2=15.
end{aligned}right.$ методом Крамера.
Решение
Матрица системы такова: $ A=left( begin{array} {cc} 3 & 2\ -1 & 5 end{array} right)$. Определитель этой матрицы:
$$Delta=left| begin{array} {cc} 3 & 2\ -1 & 5 end{array}right|=3cdot 5-2cdot(-1)=17.$$
Как вычисляется определитель второго порядка можете глянуть здесь.
Так как определитель системы не равен нулю, то продолжаем решение методом Крамера. Вычислим значения двух определителей: $Delta_{x_1}$ и $Delta_{x_2}$. Определитель $Delta_{x_1}$ получаем из определителя $Delta=left| begin{array} {cc} 3 & 2\ -1 & 5 end{array}right|$ заменой первого столбца (именно этот столбец содержит коэффициенты при $x_1$) столбцом свободных членов $left(begin{array} {c} -11\ 15end{array}right)$:
$$
Delta_{x_1}=left|begin{array}{cc}-11&2\15&5end{array}right|=-55-30=-85.
$$
Аналогично, заменяя второй столбец в $Delta=left|begin{array}{cc}3&2\-1&5end{array}right|$ столбцом свободных членов, получим:
$$
Delta_{x_2}=left|begin{array} {cc} 3 & -11\ -1 & 15end{array}right|=45-11=34.
$$
Теперь можно найти значения неизвестных $x_1$ и $x_2$.
$$x_1=frac{Delta_{x_1}}{Delta}=frac{-85}{17}=-5;;x_2=frac{Delta_{x_2}}{Delta}=frac{34}{17}=2.$$
В принципе, можно ещё проверить, правильно ли решена система методом Крамера. Подставим в заданную СЛАУ $x_1=-5$, $x_2=2$:
$$left{begin{aligned}
& 3x_1+2x_2=3cdot(-5)+2cdot{2}=-11;\
& -x_1+5x_2=-(-5)+5cdot{2}=15.
end{aligned}right.$$
Проверка пройдена, решение системы уравнений методом Крамера найдено верно. Осталось лишь записать ответ.
Ответ: $x_1=-5$, $x_2=2$.
Пример №2
Решить СЛАУ $
left{begin{aligned}
& 2x_1+x_2-x_3=3;\
& 3x_1+2x_2+2x_3=-7;\
& x_1+x_3=-2.
end{aligned} right.$, используя метод Крамера.
Решение
Определитель системы:
$$Delta=left| begin{array} {ccc} 2 & 1 & -1\ 3 & 2 & 2 \ 1 & 0 & 1 end{array}right|=4+2+2-3=5.$$
Как вычисляется определитель третьего порядка можете глянуть здесь.
Заменяя первый столбец в $Delta$ столбцом свободных членов, получим $Delta_{x_1}$:
$$
Delta_{x_1}=left| begin{array} {ccc} 3 & 1 & -1\ -7 & 2 & 2 \ -2 & 0 & 1 end{array}right|=6-4-4+7=5.
$$
Заменяя второй столбец в $Delta$ столбцом свободных членов, получим $Delta_{x_2}$:
$$
Delta_{x_2}=left| begin{array} {ccc} 2 & 3 & -1\ 3 & -7 & 2 \ 1 & -2 & 1 end{array}right|=-14+6+6-7-9+8=-10.
$$
Заменяя третий столбец в $Delta$ столбцом свободных членов, получим $Delta_{x_3}$:
$$
Delta_{x_3}=left| begin{array} {ccc} 2 & 1 & 3\ 3 & 2 & -7 \ 1 & 0 & -2 end{array}right|=-8-7-6+6=-15.
$$
Учитывая все вышеизложенное, имеем:
$$
x_1=frac{Delta_{x_1}}{Delta}=frac{5}{5}=1;; x_2=frac{Delta_{x_2}}{Delta}=frac{-10}{5}=-2; ; x_3=frac{Delta_{x_3}}{Delta}=frac{-15}{5}=-3.
$$
Метод Крамера завершён. Можно проверить, верно ли решена система уравнений методом Крамера, подставив значения $x_1=1$, $x_2=-2$ и $x_3=-3$ в заданную СЛАУ:
$$left{begin{aligned}
& 2x_1+x_2-x_3=2cdot{1}+(-2)-(-3)=3;\
& 3x_1+2x_2+2x_3=3cdot{1}+2cdot(-2)+2cdot(-3)=-7;\
& x_1+x_3=1+(-3)=-2.
end{aligned} right.$$
Проверка пройдена, решение системы уравнений методом Крамера найдено верно.
Ответ: $x_1=1$, $x_2=-2$, $x_3=-3$.
Пример №3
Решить СЛАУ $left{begin{aligned}
& 2x_1+3x_2-x_3=15;\
& -9x_1-2x_2+5x_3=-7.
end{aligned}right.$ используя метод Крамера.
Решение
Матрица системы $ left( begin{array} {ccc} 2 & 3 & -1\ -9 & -2 & 5 end{array} right) $ не является квадратной. Однако это вовсе не означает, что решение системы уравнений методом Крамера невозможно. Преобразуем заданную СЛАУ, перенеся переменную $x_3$ в правые части уравнений:
$$
left { begin{aligned}
& 2x_1+3x_2=x_3+15;\
& -9x_1-2x_2=-5x_3-7.
end{aligned} right.
$$
Теперь матрица системы $ left( begin{array} {cc} 2 & 3 \ -9 & -2 end{array} right) $ стала квадратной, и определитель её $Delta=left| begin{array} {cc} 2 & 3\ -9 & -2 end{array}right|=-4+27=23$ не равен нулю. Применим метод Крамера аналогично предыдущим примерам:
$$
begin{aligned}
& Delta_{x_1}
=left| begin{array} {cc} x_3+15 & 3\ -5x_3-7 & -2 end{array}right|
=-2x_3-30-left(-15x_3-21right)
=13x_3-9;\
\
& Delta_{x_2}
=left| begin{array} {cc} 2 & x_3+15\ -9 & -5x_3-7 end{array}right|
=-10x_3-14-left(-9x_3-135right)
=-x_3+121.
end{aligned}
$$
$$
x_1=frac{Delta_{x_1}}{Delta}=frac{13x_3-9}{23};;
x_2=frac{Delta_{x_2}}{Delta}=frac{-x_3+121}{23}.
$$
Ответ можно записать в таком виде: $left{begin{aligned}
& x_1=frac{13x_3-9}{23};\
& x_2=frac{-x_3+121}{23};\
& x_3in R.
end{aligned}right.$ Переменные $x_1$, $x_2$ – базисные (в иной терминологии – основные), а переменная $x_3$ – свободная (в иной терминологии – неосновная). Проверка, при необходимости, проводится так же, как и в предыдущих примерах.
Примечание
В подобных примерах возможна ситуация, когда после переноса переменной (или переменных) в правые части уравнений, определитель системы равняется нулю. В этом случае можно перенести в правую часть иную переменную (или переменные). Например, рассмотрим СЛАУ
$left{begin{aligned}
& 2x_1-5x_2+10x_3=14;\
& -4x_1+10x_2-7x_3=5.
end{aligned}right.$. Если перенести в правые части уравнений $x_3$, получим: $
left{begin{aligned}
&2x_1-5x_2=-10x_3+14;\
&-4x_1+10x_2=7x_3+5.
end{aligned}right.$. Определитель данной системы $Delta=left| begin{array} {cc} 2 & -5\ -4 & 10 end{array}right|=20-20=0$. Однако если перенести в правые части уравнений переменную $x_2$, то получим систему $
left{begin{aligned}
&2x_1+10x_3=5x_2+14;\
&-4x_1-7x_3=-10x_2+5.
end{aligned}right.$, определитель которой $Delta=left| begin{array} {cc} 2 & 10\ -4 & -7 end{array}right|=-14+40=26$ не равен нулю. Дальнейшее решение аналогично рассмотренному в примере №3.
Пример №4
Решить СЛАУ
$$left{begin{aligned}
&x_1-5x_2-x_3-2x_4+3x_5=0;\
&2x_1-6x_2+x_3-4x_4-2x_5=0; \
&-x_1+4x_2+5x_3-3x_4=0.
end{aligned}right.$$
методом Крамера.
Решение
Матрица системы $left(begin{array} {ccccc} 1 & -5 & -1 & -2 & 3 \
2 & -6 & 1 & -4 & -2 \
-1 & 4 & 5 & -3 & 0
end{array}right)$ не является квадратной. Преобразуем заданную СЛАУ, перенеся переменные $x_4$, $x_5$ в правые части уравнений, и применим метод Крамера:
$$
left{begin{aligned}
& x_1-5x_2-x_3=2x_4-3x_5;\
& 2x_1-6x_2+x_3=4x_4+2x_5; \
& -x_1+4x_2+5x_3=3x_4.
end{aligned}right.$$
$$
begin{aligned}
& Delta
=left| begin{array} {ccc} 1 & -5 & -1\ 2 & -6 & 1\-1 & 4 & 5 end{array}right|
=19;\
\
& Delta_{x_1}
=left| begin{array} {ccc} 2x_4-3x_5 & -5 & -1\ 4x_4+2x_5 & -6 & 1\3x_4 & 4 & 5 end{array}right|
=-17x_4+144x_5;\
\
& Delta_{x_2}
=left| begin{array} {ccc} 1 & 2x_4-3x_5 & -1\ 2 & 4x_4+2x_5 & 1\-1 & 3x_4 & 5 end{array}right|
=-15x_4+41x_5;\
\
& Delta_{x_3}
=left| begin{array} {ccc} 1 & -5 & 2x_4-3x_5\ 2 & -6 & 4x_4+2x_5\-1 & 4 & 3x_4 end{array}right|
=20x_4-4x_5.
end{aligned}
$$
Ответ таков: $left{begin{aligned}
& x_1=frac{-17x_4+144x_5}{19};\
& x_2=frac{-15x_4+41x_5}{19};\
& x_3=frac{20x_4-4x_5}{19}; \
& x_4in R; ; x_5in R.
end{aligned}right.$ Переменные $x_1$, $x_2$, $x_3$ – базисные, переменные $x_4$, $x_5$ – свободные.
Естественно, что применение метода Крамера в случаях вроде того, что рассмотрен в примере №4, не всегда оправдано с точки зрения временных затрат. Мы ведь не можем гарантировать, что после переноса каких-либо переменных в правые части уравнений, определитель системы не будет равен нулю. А перебирать различные варианты – слишком долгий процесс. Гораздо удобнее в таком случае применить метод Гаусса. Я привёл пример №4 лишь с одной целью – показать, что метод Крамера применим вне зависимости от содержимого правых частей уравнений заданной СЛАУ (числа, переменные, функции – не имеет значения). Главное, чтобы определитель матрицы системы был отличен от нуля.
Метод Крамера
Одним из методов решения систем линейных уравнений является метод Крамера. Используется для нахождения решения систем, в которых количество строк равно количеству неизвестных. То есть для квадратных систем уравнений. Основан он на вычислении определителей матрицы: основного и дополнительных, получающихся замещением одного из столбца основного определителя на столбец свободных членов системы алгебраических уравнений. Рассмотрим сам алгоритм метода Крамера и примеры с решением.
Дано СЛАУ $ begin{cases} a_{11}x_1+a_{12}x_2+a_{13}x_3 = b_1\a_{21}x_1+a_{22}x_2+a_{23}x_3 = b_2\a_{31}x_1+a_{32}x_2+a_{33}x_3=b_3 end{cases} $
Найти неизвестные $ begin{pmatrix}x_1\x_2\x_3 end{pmatrix} $
Алгоритм решения заключается в том, что составляется из системы матрица $ A = begin{pmatrix} a_{11}&a_{12}&a_{13}\a_{21}&a_{22}&a_{23}\a_{31}&a_{32}&a_{33} end{pmatrix} $ и столбец свободных членов $ B = begin{pmatrix} b_1\b_2\b_3 end{pmatrix} $
Далее вычисляется основной определитель матрицы $ Delta = |A| $ и дополнительные $ Delta_i $, получающиеся из основного определителя путем поочередного замещения столбцов на столбец свободных членов$ begin{pmatrix}b_1\b_2\b_3 end{pmatrix} $
Если получается $ Delta = 0 $, тогда система не может быть решена методом Крамера!
В итоге по формуле метода Крамера находим неизвестные в системе линейных уравнений: $$ x_1 = frac{Delta_1}{Delta}, x_2 = frac{Delta_2}{Delta}, x_3 = frac{Delta_3}{Delta} $$
Примеры с решением
Пример 1 |
Решить систему линейных уравнений методом Крамера: $$ begin{cases} 3x_1+x_2+2x_3 = 4\-x_1+2x_2-3x_3 = 1\-2x_1+x_2+x_3=-2 end{cases} $$ |
Решение |
Составляем матрицу $ A = begin{pmatrix} 3&1&2\-1&2&-3\-2&1&1 end{pmatrix} $ и выписываем столбец свободных членов $ b = begin{pmatrix} 4\1\-2 end{pmatrix} $ Вычисляем главный определитель матрицы: $$ Delta = |A| = begin{vmatrix} 3&1&2\-1&2&-3\-2&1&1 end{vmatrix} = 6 + 6 -2 +8 + 1 + 9 = 28 $$ Замечаем, что $ Delta = 28 ne 0 $, то систему можно решить методом Крамера. Вычисляем первый дополнительный определитель $ Delta_1 $. Подставляем столбец свободных членов $ b = begin{pmatrix} 4\1\-2 end{pmatrix} $ на место первого столбца в основной матрице: $$ Delta_1 = begin{vmatrix} 4&1&2\1&2&-3\-2&1&1 end{vmatrix} = 8 +6 +2 + 8 -1 +12 = 35 $$ Аналогично вычислим $ Delta_2 $: $$ Delta_2 = begin{vmatrix} 3&4&2\-1&1&-3\-2&-2&1 end{vmatrix} = 3 + 24 + 4 +4 -18 +4 = 21 $$ Точно также находим $ Delta_3 $: $$ Delta_3 = begin{vmatrix} 3&1&4\-1&2&1\-2&1&-2 end{vmatrix} = -12 -2 -4 +16 -3 -2 = -7 $$ По формуле Крамера: $$ x_1 = frac{Delta_1}{Delta} = frac{35}{28} = frac{5}{4} $$ $$ x_2 = frac{Delta_2}{Delta} = frac{21}{28} = frac{3}{4} $$ $$ x_3 = frac{Delta_3}{Delta} = frac{-7}{28} = -frac{1}{4} $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ x_1 = frac{5}{4}; x_2 = frac{3}{4}; x_3 = -frac{1}{4} $$ |
Пример 2 |
Решить систему уравнений методом Крамера: $$ begin{cases} x+y-2z = 2\2x-3y-z = 1\x-4y+z=3 end{cases} $$ |
Решение |
Попробуем решить методом Крамера. Найдем основной определитель системы уравнений: $$ Delta = begin{vmatrix} 1&1&-2\2&-3&-1\1&-4&1 end{vmatrix} = -3 -1 +16 -6 -4 -2 = 0 $$ Внимание! Получили $ Delta = 0 $, а это означает, что данную систему нельзя решить методом Крамера. Алгоритм завершает свою работу. Советуем воспользоваться другим методом для решения, например, матричным методом или Гаусса. |
Ответ |
Метод Крамера нельзя применить к данной системе линейных уравнений |
(схема 16)
Дадим ряд необходимых определений.
Система линейных уравнений называется неоднородной,
если хотя бы один ее свободный член отличен от нуля, и однородной, если все ее
свободные члены равны нулю.
Решением системы уравнений называется упорядоченный набор чисел, который, будучи
подставленным вместо переменных в систему, обращает каждое ее уравнение в тождество.
Система уравнений называется совместной, если она
имеет хотя бы одно решение, и несовместной, если она решений не
имеет.
Совместная система уравнений называется определенной,
если она имеет единственное решение, и неопределенной, если она имеет более
одного решения.
Рассмотрим неоднородную систему линейных
алгебраических уравнений, имеющую при n=m следующий
общий вид:
. (1.5)
Главной матрицей A системы
линейных алгебраических уравнений называется матрица, составленная из
коэффициентов, стоящих при неизвестных:
.
Определитель главной матрицы системы называется главным
определителем и обозначается ∆.
Вспомогательный определитель ∆i получается
из главного определителя путем замены i-го
столбца на столбец свободных членов.
Теорема 1.1
(теорема Крамера). Если главный
определитель системы линейных алгебраических уравнений отличен от нуля, то
система имеет единственное решение, вычисляемое по формулам:
. (1.6)
Если
главный определитель ∆=0, то система либо
имеет бесконечное множество решений (при всех нулевых вспомогательных
определителях), либо вообще решения не имеет (при отличии от нуля хотя бы одного
из вспомогательных определителей).
В свете приведенных выше определений, теорема Крамера может быть сформулирована иначе: если
главный определитель системы линейных алгебраических уравнений отличен от нуля,
то система является совместной определенной и при этом ; если главный определитель нулевой, то система является
либо совместной неопределенной (при всех ∆i=0),
либо несовместной (при отличии хотя бы одного из ∆i от нуля).
После этого следует провести проверку полученного
решения.
Пример 1.4. Решить
систему методом Крамера
Решение. Так
как главный определитель системы
отличен от нуля, то система имеет единственное
решение. Вычислим вспомогательные определители
Воспользуемся
формулами Крамера (1.6):
Пример 1.5. Данные дневной выручки молочного цеха от реализации молока, сливочного масла
и творога за три дня продаж (на 2017 год) занесены в таблицу 1.4.
Таблица 1.4
Определить стоимость 1 единицы продукции молокоцеха
каждого вида.
Решение. Обозначим через x – стоимость 1 литра молока, y – 1 кг сливочного масла, z –
1 кг
творога. Тогда, учитывая данные таблицы 1.4, выручку молочного цеха каждого из
трех дней реализации можно отобразить следующей системой:
.
Решим систему методом Крамера. Найдем главный
определитель системы по формуле (1.2):
Так
как он отличен от нуля, то система имеет единственное решение. Вычислим
вспомогательные определители с помощью формулы (1.2):
По формулам Крамера (1.6) имеем:
Вернувшись к обозначениям, видим, что стоимость 1
литра молока равна 44 рубля, 1
кг масла – 540 рублей, 1 кг творога – 176 рублей
Примечание. Как видно, процесс вычисления определителей вручную с
помощью калькулятора трудоемок, поэтому на практике используют персональный
компьютер. Так, для решения систем линейных алгебраических уравнений методом
Крамера в MS Excel высчитывают ее главный и вспомогательные определители
с использованием функции МОПРЕД( ), где аргументом является диапазон ячеек
и элементы матрицы, определитель которой находится.
В MathCAD для
нахождения определителя пользуются палитрой оператора Matrix
Вопросы для
самопроверки
Метод Крамера часто применяется для систем линейных алгебраических уравнений (СЛАУ). Этот способ решения один из самых простых. Как правило, данный метод применяется только для тех систем, где по количеству неизвестных столько же, сколько и уравнений. Чтобы получилось решить уравнение, главный определитель матрицы не должен равняться нулю.
Габриель Крамер – математик, создатель одноименного метода решения систем линейных уравнений
Габриель Крамер – известный математик, который родился 31 июля 1704 года. Ещё в детстве Габриель поражал своими интеллектуальными способностями, особенно в области математики. Когда Крамеру было 20 лет, он устроился в Женевский университет штатным преподавателем.
Во время путешествия по Европе Габриель познакомился с математиком Иоганном Бернулли, который и стал его наставником. Только благодаря Иоганну, Крамер написал много статей по геометрии, истории математики и философии. А в свободное от работы время изучал математику всё больше и больше.
Наконец-то наступил тот день, когда Крамер нашёл способ, при помощи которого можно было бы легко решать не только лёгкие, но и сложные системы линейных уравнений.
В 1740 году у Крамера были опубликованы несколько работ, где доступно изложено решение квадратных матриц и описан алгоритм, как находить обратную матрицу. Далее математик описывал нахождения линейных уравнений разной сложности, где можно применить его формулы. Поэтому тему так и назвали: «Решение систем линейных уравнений методом Крамера».
Учёный умер в возрасте 48 лет (в 1752 году). У него было ещё много планов, но, к сожалению, он так и не успел их осуществить.
Вывод формулы Крамера
Пусть дана система линейных уравнений такого вида:
где , , – неизвестные переменные, – это числовые коэффициенты, в – свободные члены.
Решением СЛАУ (систем линейных алгебраических уравнение) называются такие неизвестные значения при которых все уравнения данной системы преобразовываются в тождества.
Если записать систему в матричном виде, тогда получается , где
В данной главной матрице находятся элементы, коэффициенты которых при неизвестных переменных,
Это матрица-столбец свободных членов, но есть ещё матрица-столбец неизвестных переменных:
После того, когда найдутся неизвестные переменные, матрица и будет решением системы уравнений, а наше равенство преобразовывается в тождество. . Если умножить , тогда . Получается: .
Если матрица – невырожденная, то есть, её определитель не равняется нулю, тогда у СЛАУ есть только одно единственное решение, которое находится при помощи метода Крамера.
Как правило, для решения систем линейных уравнений методом Крамера, нужно обращать внимания на два свойства, на которых и основан данный метод:
1. Определитель квадратной матрицы равняется сумме произведений элементов любой из строк (столбца) на их алгебраические дополнения:
, здесь – 1, 2, …, n; – 1, 2, 3, …, n.
2. Сумма произведений элементов данной матрицы любой строки или любого столбца на алгебраические дополнения определённых элементов второй строки (столбца) равняется нулю:
,
,
где – 1, 2, …, n; – 1, 2, 3, …, n. .
Итак, теперь можно найти первое неизвестное . Для этого необходимо умножить обе части первого уравнения системы на , части со второго уравнения на , обе части третьего уравнения на и т. д. То есть, каждое уравнение одной системы нужно умножать на определённые алгебраические дополнения первого столбца матрицы :
Теперь прибавим все левые части уравнения, сгруппируем слагаемые, учитывая неизвестные переменные и приравняем эту же сумму к сумме правых частей системы уравнения:
.
Можно обратиться к вышеописанным свойствам определителей и тогда получим:
И предыдущее равенство уже выглядит так:
Откуда и получается .
Аналогично находим . Для этого надо умножить обе части уравнений на алгебраические дополнения, которые находятся во втором столбце матрицы .
Теперь нужно сложить все уравнения системы и сгруппировать слагаемые при неизвестных переменных. Для этого вспомним свойства определителя:
Откуда получается .
Аналогично находятся все остальные неизвестные переменные.
Если обозначить:
тогда получаются формулы, благодаря которым находятся неизвестные переменные методом Крамера:
, , .
Замечание.
Тривиальное решение при может быть только в том случае, если система уравнений является однородной . И действительно, если все свободные члены нулевые, тогда и определители равняются нулю, так как в них содержится столбец с нулевыми элементами. Конечно же, тогда формулы , , дадут
Нужна помощь в написании работы?
Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.
Заказать работу
Метод Крамера – теоремы
Прежде чем решать уравнение , необходимо знать:
- теорему аннулирования;
- теорему замещения.
Теорема замещения
Сумма произведений алгебраических дополнений любого столбца (строки) на произвольные числа равняется новому определителю, в котором этими числами заменены соответствующие элементы изначального определителя, что отвечают данным алгебраическим дополнениям.
Например,
=
где – алгебраические дополнения элементов первого столбца изначального определителя:
Теорема аннулирования
Сумма произведений элементов одной строки (столбца) на алгебраические дополнения соответствующих элементов другой строки (столбца) равняется нулю.
Например:
Алгоритм решения уравнений методом Крамера
Метод Крамера – простой способ решения систем линейных алгебраических уравнений. Такой вариант применяется исключительно к СЛАУ, у которых совпадает количество уравнений с количеством неизвестных, а определитель отличен от нуля.
Итак, когда выучили все этапы, можно переходить к самому алгоритму решения уравнений методом Крамера. Запишем его последовательно:
Шаг 1. Вычисляем главный определитель матрицы
и необходимо убедиться, что определитель отличен от нуля (не равен нулю).
Шаг 2. Находим определители
Это и есть определители матриц, которые получались из матрицы при замене столбцов на свободные члены.
Шаг 3. Вычисляем неизвестные переменные
Теперь вспоминаем формулы Крамера, по которым вычисляем корни (неизвестные переменные):
, , .
Шаг 4. Выполняем проверку
Выполняем проверку решения при помощи подстановки в исходную СЛАУ. Абсолютно все уравнения в системе должны быть превращены в тождества. Также можно высчитать произведение матриц . Если в итоге получилась матрица, которая равняется , тогда система решена правильно. Если же не равняется , скорей всего в одном из уравнений есть ошибка.
Давайте для начала рассмотрим систему двух линейных уравнений, так как она более простая и поможет понять, как правильно использовать правило Крамера. Если вы поймёте простые и короткие уравнения, тогда сможете решить более сложные системы трёх уравнений с тремя неизвестными.
Кроме всего прочего, есть системы уравнений с двумя переменными, которые решаются исключительно благодаря правилу Крамеру.
Итак, дана система двух линейных уравнений:
Для начала вычисляем главный определитель (определитель системы):
Значит, если , тогда у системы или много решений, или система не имеет решений. В этом случае пользоваться правилом Крамера нет смысла, так как решения не получится и нужно вспоминать метод Гаусса, при помощи которого данный пример решается быстро и легко.
В случае, если , тогда у система есть всего одно решение, но для этого необходимо вычислить ещё два определителя и найти корни системы.
и
Часто на практике определители могут обозначаться не только , но и латинской буквой , что тоже будет правильно.
Корни уравнения найти просто, так как главное, знать формулы:
,
Так как мы смогли решить систему двух линейных уравнений, теперь без проблем решим и систему трёх линейных уравнений, а для этого рассмотрим систему:
(1)
Здесь алгебраические дополнения элементов – первый столбец . Во время решения не забывайте о дополнительных элементах. Итак, в системе линейных уравнений нужно найти три неизвестных – при известных других элементах.
Создадим определитель системы из коэффициентов при неизвестных:
Умножим почленно каждое уравнение соответственно на , , – алгебраические дополнения элементов первого столбца (коэффициентов при ) и прибавим все три уравнения. Получаем:
Согласно теореме про раскладывание, коэффициент при равняется . Коэффициенты при и будут равняться нулю по теореме аннулирования. Правая часть равенства по теореме замещения даёт новый определитель, который называется вспомогательным и обозначается
После этого можно записать равенство:
(2)
Для нахождения и перемножим каждое из уравнений изначальной системы в первом случае соответственно на , во втором – на и прибавим. Впоследствии преобразований получаем:
где
,
Если , тогда в результате получаем формулы Крамера:
= , = , =
Порядок решения однородной системы уравнений
Отдельный случай – это однородные системы:
(3)
Среди решений однородной системы могут быть, как нулевые решения , так и решения отличны от нуля.
Если определитель однородной системы (3) отличен от нуля , тогда у такой системы может быть только одно решение.
Действительно, вспомогательные определители , как такие у которых есть нулевой столбец и поэтому, за формулами Крамера
Если у однородной системы есть отличное от нуля решение, тогда её определитель равняется нулю
Действительно, пусть одно из неизвестных , например, , отличное от нуля. Согласно с однородностью Равенство (2) запишется: . Откуда выплывает, что
Примеры решения методом Крамера
Рассмотрим на примере решение методом Крамера и вы увидите, что сложного ничего нет, но будьте предельно внимательно, так как частые ошибки в знаках приводят к неверному ответу.
Задача
Решить систему линейных уравнений методом Крамера:
Решение
Первое, что надо сделать – вычислить определитель матрицы:
Как видим, , поэтому по теореме Крамера система имеет единственное решение (система совместна). Далее нужно вычислять вспомогательные определители. Для этого заменяем первый столбец из определителя на столбец свободных коэффициентов. Получается:
Аналогично находим остальные определители:
И проверяем:
,
.
Ответ
, .
Задача
Решить систему уравнений методом Крамера:
Решение
Находим определители:
Ответ
= = = = = =
Проверка
* = * = =
* = * = =
* = * = =
Уравнение имеет единственное решение.
Ответ
= = =
Задача
Решить систему методом Крамера
Решение
Как вы понимаете, сначала находим главный определитель:
Как мы видим, главный определитель не равняется нулю и поэтому система имеет единственное решение. Теперь можно вычислить остальные определители:
При помощи формул Крамера находим корни уравнения:
, , .
Чтобы убедиться в правильности решения, необходимо сделать проверку:
Как видим, подставив в уравнение решённые корни, у нас ответ получился тот же, что и в начале задачи, что говорит о правильном решении уравнений.
Ответ
Система уравнений имеет единственное решение: , , .
Есть примеры, когда уравнение решений не имеет. Это может быть в том случае, когда определитель системы равен нулю, а определители при неизвестных неравны нулю. В таком случае говорят, что система несовместна, то есть не имеет решений. Посмотрим на следующем примере, как такое может быть.
Задача
Решить систему линейных уравнений методом Крамера:
Решение
Как и в предыдущих примерах находим главный определитель системы:
В этой системе определитель равняется нулю, соответственно, система несовместна и определенна или же несовместна и не имеет решений. Чтобы уточнить, надо найти определители при неизвестных так, как мы делали ранее:
Мы нашли определители при неизвестных и увидели, что все они не равны нулю. Поэтому система несовместна и не имеет решений.
Ответ
Система не имеет решений.
Часто в задачах на системы линейных уравнений встречаются такие уравнения, где есть не одинаковые буквы, то есть, кроме букв, которые обозначают переменные, есть ещё и другие буквы и они обозначают некоторое действительное число. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. Давайте и рассмотрим такой пример.
Задача
Решить систему линейных уравнений методом Крамера:
Решение
В этом примере – некоторое вещественное число. Находим главный определитель:
Находим определители при неизвестных:
Используя формулы Крамера, находим:
, .
Ответ
,
.
И наконец, мы перешли к самой сложной системе уравнений с четырьмя неизвестными. Принцип решения такой же, как и в предыдущих примерах, но в связи с большой системой можно запутаться. Поэтому рассмотрим такое уравнение на примере.
Задача
Найти систему линейных уравнений методом Крамера:
Здесь действуют система определителей матрицы высших порядков, поэтому вычисления и формулы рассмотрены в этой теме, а мы сейчас просто посчитаем систему уравнений с четырьмя неизвестными.
Решение
В изначальном определители из элементов второй строки мы отнимали элементы четвёртой строки, а из элементов третьей строки отнимались элементы четвёртой строки, которые умножались на 2. Также отнимали из элементов четвёртой строки элементы первой строки, умноженной на два. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Теперь можно находить определители при неизвестных:
Для преобразований определителя при четвёртом неизвестном из элементов первой строки мы вычитали элементы четвёртой строки.
Теперь по формулам Крамера нужно найти:
,
,
,
.
Ответ
Итак, мы нашли корни системы линейного уравнения:
,
,
,
.
Подведём итоги
При помощи метода Крамера можно решать системы линейных алгебраических уравнений в том случае, если определитель не равен нулю. Такой метод позволяет находить определители матриц такого порядка, как на благодаря формулам Крамера, когда нужно найти неизвестные переменные. Если все свободные члены нулевые, тогда их определители равны нулю, так как в них содержится столбец с нулевыми элементами. И конечно же, если определители равняются нулю, лучше решать систему методом Гаусса, а не Крамера, только тогда ответ будет верный.
Рекомендуем почитать для общего развития
Анкилов А. В. Высшая математика, ч. 1: учеб. Пособие/П. А. Вельмисов, Ю. А. Решетников – Ульяновск – 2011 – 252 с.
Письменный Д. – Конспект лекций по высшей математике: учеб. для вузов/Письменный Д. – М. 2006 – 602 с.
Решение методом Крамера в Excel
Метод Крамера в Excel 2003 (XLS)
Метод Крамера в Excel от 2007 (XLSX)